中考数学模拟试题与答案4(1)
- 格式:doc
- 大小:285.00 KB
- 文档页数:8
中考数学考试模拟卷(含答案解析)一、选择题(每题只有一个正确选项,本题共10小题,每题3分,共40分)1.(3分)﹣3的绝对值是()A.﹣B.3 C.D.﹣32.(3分)冬季奥林匹克运动会是世界上规模最大的冬季综合性运动会,下列四个图是历届冬奥会图标中的一部分,其中是轴对称图形的为()A.B.C.D.3.(3分)节肢动物是最大的动物类群,目前已命名的种类有120万种以上,将数据120万用科学记数法表示为()A.0.12×106B.1.2×107C.1.2×105D.1.2×1064.(3分)正多边形的每个内角为108°,则它的边数是()A.4 B.6 C.7 D.55.(3分)《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架,其中《盈不足》卷记载了一道有趣的数学问题:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”译文:“今有人合伙购物,每人出8钱,会多出3钱;每人出7钱,又差4钱.问人数、物价各多少?”设人数为x人,物价为y钱,根据题意,下面所列方程组正确的是()A.B.C.D.6.(3分)如图,一束光线AB先后经平面镜OM,ON反射后,反射光线CD与AB平行,当∠ABM =35°时,∠DCN的度数为()A.55°B.70°C.60°D.35°7.(3分)在平面直角坐标系中,将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,所得函数的解析式为()A.y=(x﹣2)2﹣1 B.y=(x﹣2)2+3 C.y=x2+1 D.y=x2﹣18.(3分)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C,D,则cos∠ADC的值为()A.B.C.D.9.(3分)若关于x的分式方程:2﹣=的解为正数,则k的取值范围为()A.k<2 B.k<2且k≠0 C.k>﹣1 D.k>﹣1且k≠010.(3分)下列命题:①(m•n2)3=m3n5②数据1,3,3,5的方差为2③因式分解x3﹣4x=x(x+2)(x﹣2)④平分弦的直径垂直于弦⑤若使代数式在实数范围内有意义,则x≥1其中假命题的个数是()A.1 B.3 C.2 D.4二、细心填一填(本大题共6小题,每小题4分,满分24分,请把答案填在答題卷相应题号的横线上)11.(4.00分)计算:()0﹣1= .12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= .14.(4.00分)不等式组的解集为.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= .16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.[来源:学,科,网]18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有人;在扇形统计图中,B所对应的扇形的圆心角的度数是°;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.参考答案与解析一、选择题1.【分析】应用绝对值的计算方法进行计算即可得出答案.【解答】解:|﹣3|=3.故选:B.【点评】本题主要考查了绝对值,熟练掌握绝对值的计算方法进行求解是解决本题的关键.2.【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:120万用科学记数法表示为:1.2×106.故选:D.4.【分析】方法一:根据相邻的内角与外角互为邻补角求出每一个外角的度数为72°,再用外角和360°除以72°,计算即可得解;方法二:设多边形的边数为n,然后根据多边形的内角和公式(n﹣2)•180°列方程求解即可.【解答】解:方法一:∵正多边形的每个内角等于108°,∴每一个外角的度数为180°﹣108°=72°,∴边数=360°÷72°=5,方法二:设多边形的边数为n,由题意得,(n﹣2)•180°=108°•n,解得n=5,所以,这个多边形的边数为5.故选:D.5.【分析】根据“每人出8钱,会多出3钱;每人出7钱,又差4钱”,即可得出关于x,y 的二元一次方程组,此题得解.【解答】解:依题意得:.故选:C.6.【分析】根据“两直线平行,同旁内角互补”解答即可.【解答】解:∵∠ABM=35°,∠ABM=∠OBC,∴∠OBC=35°,∴∠ABC=180°﹣∠ABM﹣∠OBC=180°﹣35°﹣35°=110°,∵CD∥AB,∴∠ABC+∠BCD=180°,∴∠BCD=180°﹣∠ABC=70°,∵∠BCO=∠DCN,∠BCO+∠BCD+∠DCN=180°,∴∠DCN=(180°﹣∠BCD)=55°,故选:A.7.【分析】根据图象的平移规律,可得答案.【解答】解:将二次函数y=(x﹣1)2+1的图象向左平移1个单位长度,再向下平移2个单位长度,得到的抛物线的解析式是y=(x﹣1+1)2+1﹣2,即y=x2﹣1.故选:D.8.【分析】由格点构造直角三角形,由直角三角形的边角关系以及圆周角定理可得答案.【解答】解:∵AB为直径,∴∠ACB=90°,又∵点A,B,C都在格点上,∴∠ADC=∠ABC,在Rt△ABC中,cos∠ABC====cos∠ADC,故选:B.9.【分析】先解分式方程可得x=2﹣k,再由题意可得2﹣k>0且2﹣k≠2,从而求出k的取值范围.【解答】解:2﹣=,2(x﹣2)﹣(1﹣2k)=﹣1,2x﹣4﹣1+2k=﹣1,2x=4﹣2k,x=2﹣k,∵方程的解为正数,∴2﹣k>0,∴k<2,∵x≠2,∴2﹣k≠2,∴k≠0,∴k<2且k≠0,故选:B.10.【分析】利用幂的运算性质、方差的计算公式、因式分解的方法、垂径定理及二次根式有意义的条件分别判断后即可确定正确的选项.【解答】解:①(m•n2)3=m3n6,故原命题错误,是假命题,符合题意;②数据1,3,3,5的方差为2,故原命题正确,是真命题,不符合题意;③因式分解x3﹣4x=x(x+2)(x﹣2),正确,是真命题,不符合题意;④平分弦(不是直径)的直径垂直于弦,故原命题错误,是假命题,符合题意;⑤若使代数式在实数范围内有意义,则x≥1,正确,是真命题,不符合题意,假命题有2个,故选:C.二、细心填一填11.(4.00分)计算:()0﹣1= 0 .【分析】根据零指数幂:a0=1(a≠0)进行计算即可.【解答】解:原式=1﹣1=0,故答案为:0.12.(4.00分)某8种食品所含的热量值分别为:120,134,120,119,126,120,118,124,则这组数据的众数为120 .【分析】根据众数的定义:一组数据中出现次数最多的数据即为众数.【解答】解:∵这组数据中120出现次数最多,有3次,∴这组数据的众数为120,故答案为:120.13.(4.00分)如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD= 3 .【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【解答】解:∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为:3.14.(4.00分)不等式组的解集为x>2 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x>1,解不等式②得:x>2,∴不等式组的解集为x>2,故答案为:x>2.15.(4.00分)把两个同样大小的含45°角的三角尺按如图所示的方式放置,其中一个三角尺的锐角顶点与另一个的直角顶点重合于点A,且另三个锐角顶点B,C,D在同一直线上.若AB=,则CD= ﹣1 .【分析】先利用等腰直角三角形的性质求出BC=2,BF=AF=1,再利用勾股定理求出DF,即可得出结论.【解答】解:如图,过点A作AF⊥BC于F,在Rt△ABC中,∠B=45°,∴BC=AB=2,BF=AF=AB=1,∵两个同样大小的含45°角的三角尺,∴AD=BC=2,在Rt△ADF中,根据勾股定理得,DF==∴CD=BF+DF﹣BC=1+﹣2=﹣1,故答案为:﹣1.16.(4.00分)如图,直线y=x+m与双曲线y=相交于A,B两点,BC∥x轴,AC∥y轴,则△ABC面积的最小值为 6 .【分析】根据双曲线y=过A,B两点,可设A(a,),B(b,),则C(a,).将y=x+m 代入y=,整理得x2+mx﹣3=0,由于直线y=x+m与双曲线y=相交于A,B两点,所以a、b 是方程x2+mx﹣3=0的两个根,根据根与系数的关系得出a+b=﹣m,ab=﹣3,那么(a﹣b)2=(a+b)2﹣4ab=m2+12.再根据三角形的面积公式得出S=AC•BC=m2+6,利用二次函数的性质即可△ABC求出当m=0时,△ABC的面积有最小值6.【解答】解:设A(a,),B(b,),则C(a,).将y=x+m代入y=,得x+m=,整理,得x2+mx﹣3=0,则a+b=﹣m,ab=﹣3,∴(a﹣b)2=(a+b)2﹣4ab=m2+12.=AC•BC∵S△ABC=(﹣)(a﹣b)=••(a﹣b)=(a﹣b)2=(m2+12)=m2+6,∴当m=0时,△ABC的面积有最小值6.故答案为6.三、专心解一解(本大题共9小题,满分86分,请认真读题,冷静思考解答题应写出必要的文宇说明、证明过程或演算步骤,请把解题过程写在答题卷相应题号的位置)17.(8.00分)解方程组:.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:3x=9,解得:x=3,把x=3代入①得:y=﹣2,则方程组的解为.18.(5分)计算:•+4|1﹣|sin60°﹣()﹣1.【分析】先化简各式,然后再进行计算即可解答.【解答】解:•+4|1﹣|sin60°﹣()﹣1=2+4×(﹣1)×﹣2=2+2(﹣1)﹣2=2+6﹣2﹣2=4.【点评】本题考查了特殊角的三角函数值,负整数指数幂,绝对值,估算无理数的大小,二次根式的乘除法,实数的运算,准确熟练地化简各式是解题的关键.19.(6分)先化简,再求值:(a﹣)÷,请从不等式组的整数解中选择一个合适的数求值.【分析】先算括号里的异分母分式的减法,再算括号外,然后把a的值代入化简后的式子进行计算即可解答.【解答】解:(a﹣)÷=•=•=a(a+2)=a2+2a,,解得:﹣1<a≤2,∴该不等式组的整数解为:0,1,2,∵a≠0,a﹣2≠0,∴a≠0且a≠2,∴a=1,∴当a=1时,原式=12+2×1=1+2=3.【点评】本题考查了分式的混合运算,解一元一次不等式组,准确熟练地进行计算是解题的关键.20.(7分)如图,一个圆环被4条线段分成4个区域,现有2022年冬奥会吉祥物“冰墩墩”和“雪容融”各一个,将这两个吉祥物放在任意两个区域内:(1)求:吉祥物“冰墩墩”放在区域①的概率;(2)求:吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率.(用树状图或列表法表示)【分析】(1)直接根据概率公式求解即可;(2)画出树状图,共有12个等可能的结果,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的结果有8个,再由概率公式求解即可.【解答】解:(1)吉祥物“冰墩墩”放在区域①的概率是;故答案为:;(2)根据题意画图如下:共有12种等可能的情况数,其中吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域有8种,则吉祥物“冰墩墩”和“雪容融”放在相邻的两个区域的概率是=.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.(6分)某型号飞机的机翼形状如图所示,根据图中数据计算AB的长度(结果保留小数点后一位,≈1.7).【分析】在Rt△BDE中求出ED,再在Rt△ACM中求出AM,最后根据线段的和差关系进行计算即可.【解答】解:如图,过点C、D分别作BE的平行线交BA的延长线于点M、N,在Rt△BDE中,∠BDE=90°﹣45°=45°,∴DE=BE=14m,在Rt△ACM中,∠ACM=60°,CM=BE=14m,∴AM=CM=14(m),∴AB=BM﹣AM=CE﹣AM=20+14﹣14≈10.2(m),答:AB的长约为10.2m.【点评】本题考查解直角三角形的应用,掌握直角三角形的边角关系是正确解答的前提,构造直角三角形是解决问题的关键.22.(5分)某学校在本校开展了四项“课后服务”项目(项目A:足球;项目B:篮球;项目C:跳绳;项目D:书法),要求每名学生必选且只能选修其中一项,为了解学生的选修情况,学校决定进行抽样调查,并根据收集的数据绘制了图1和图2两幅不完整的统计图.(1)本次调查的学生共有200 人;在扇形统计图中,B所对应的扇形的圆心角的度数是108 °;(2)将条形统计图补充完整;(3)若全校共有1200名学生,估计该校选修篮球和跳绳两个项目的总人数.【分析】(1)根据A项目的人数和所占的百分比,求出调查的总人数,再用360°乘以B所占的百分比即可得出答案;(2)用总人数减去其它项目的人数,求出C选项的人数,从而补全统计图;(3)用全校的总人数乘以选修篮球和跳绳两个项目的总人数所占的百分比即可.【解答】解:(1)本次调查的学生共有:30÷15%=200(人),在扇形统计图中,B所对应的扇形的圆心角的度数是:360°×=108°;故答案为:200,108;(2)C项目的人数有:200﹣30﹣60﹣20=90(人),补全统计图如下:(3)根据题意得:1200×=900(人),答:估计该校选修篮球和跳绳两个项目的总人数有900人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.(8分)为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.【分析】(1)根据题意和题目中的数据,可以分别写出y甲,y乙关于x的函数关系式;(2)根据(1)中的结果和题意,令0.85x=0.7x+90,求出x的值,再求出相应的y的值,即可得到点A的坐标.(3)根据函数图象和(2)中点A的坐标,可以写出选择去哪个体育专卖店购买体育用品更合算.【解答】解:(1)由题意可得,y=0.85x,甲当0≤x≤300时,y乙=x,当x>300时,y乙=300+(x﹣300)×0.7=0.7x+90,则y乙=;(2)令0.85x=0.7x+90,解得x=600,将x=600代入0.85x得,0.85×600=510,即点A的坐标为(600,510);(3)由图象可得,当x<600时,去甲体育专卖店购买体育用品更合算;当x=600时,两家体育专卖店购买体育用品一样合算;当x>600时,去乙体育专卖店购买体育用品更合算.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.24.(12.00分)已知四边形ABCD是⊙O的内接四边形,AC是⊙O的直径,DE⊥AB,垂足为E.(1)延长DE交⊙O于点F,延长DC,FB交于点P,如图1.求证:PC=PB;(2)过点B作BC⊥AD,垂足为G,BG交DE于点H,且点O和点A都在DE的左侧,如图2.若AB=,DH=1,∠OHD=80°,求∠BDE的大小.【分析】(1)先判断出BC∥DF,再利用同角的补角相等判断出∠F=∠PCB,即可得出结论;(2)先判断出四边形DHBC是平行四边形,得出BC=DH=1,再用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,即可得出结论.【解答】解:(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥DC,∵BC∥DE,∴四边形DHBC是平行四边形,∴BC=DH=1,在Rt△ABC中,AB=,tan∠ACB=,∴∠ACB=60°,∴BC=AC=OD,∴DH=OD,在等腰三角形DOH中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE交AC于N,∵BC∥DE,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD)=40°,∴∠DOC=∠DOH﹣∠NOH=40°,∵OA=OD,∴∠OAD=∠DOC=20°,∴∠CBD=∠OAD=20°,∵BC∥DE,∴∠BDE=∠CBD=20°.25.(14.00分)已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.【分析】(1)由抛物线经过点A可求出c=2,再代入(﹣,0)即可找出2a﹣b+2=0(a ≠0);(2)①根据二次函数的性质可得出抛物线的对称轴为y轴、开口向下,进而可得出b=0,由抛物线的对称性可得出△ABC为等腰三角形,结合其有一个60°的内角可得出△ABC为等边三角形,设线段BC与y轴交于点D,根据等边三角形的性质可得出点C的坐标,再利用待定系数法可求出a值,此题得解;②由①的结论可得出点M的坐标为(x1,﹣+2)、点N的坐标为(x2,﹣+2),由O、M、N三点共线可得出x2=﹣,进而可得出点N及点N′的坐标,由点A、M的坐标利用待定系数法可求出直线AM的解析式,利用一次函数图象上点的坐标特征可得出点N′在直线PM上,进而即可证出PA平分∠MPN.【解答】解:(1)∵抛物线y=ax2+bx+c过点A(0,2),∴c=2.又∵点(﹣,0)也在该抛物线上,∴a(﹣)2+b(﹣)+c=0,∴2a﹣b+2=0(a≠0).(2)①∵当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,∴x1﹣x2<0,y1﹣y2<0,∴当x<0时,y随x的增大而增大;同理:当x>0时,y随x的增大而减小,∴抛物线的对称轴为y轴,开口向下,∴b=0.∵OA为半径的圆与拋物线的另两个交点为B、C,∴△ABC为等腰三角形,又∵△ABC有一个内角为60°,∴△ABC为等边三角形.设线段BC与y轴交于点D,则BD=CD,且∠OCD=30°,又∵OB=OC=OA=2,∴CD=OC•cos30°=,OD=OC•sin30°=1.不妨设点C在y轴右侧,则点C的坐标为(,﹣1).∵点C在抛物线上,且c=2,b=0,∴3a+2=﹣1,∴a=﹣1,∴抛物线的解析式为y=﹣x2+2.②证明:由①可知,点M的坐标为(x1,﹣+2),点N的坐标为(x2,﹣+2).直线OM的解析式为y=k1x(k1≠0).∵O、M、N三点共线,∴x1≠0,x2≠0,且=,∴﹣x1+=﹣x2+,[来源:Z。
2024年九年级学业水平模拟测试(一)数学试题(2023.4)一、选择题(本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.)1.下列几何体的主视图和俯视图完全相同的是( )2.根据中国航天局提供的资料,天和核心舱组合体运行轨道参数是:远地点高度约394900米;近地点高度约384000米;将数据394900用科学记数法可以表示为( )A. 39.49×10⁴B. 0.3949×10⁶D. 3.949×10⁶3. 如图, 已知直线AB∥CD, EG平分∠BEF, ∠1=36°,则∠2的度数是( )A. 70°B. 72°C. 36°D. 54°4.实数a,b,c在数轴上的对应点的位置如图所示,则下列式子正确的是( )A. a+c<0B. a+b<a+cC. ac>bcD. ab>ac5.下列运算中,正确的是( )A.x⁹÷x³=x³D.x³+x=x6.每年的4月22日是世界地球日,2023年世界地球日的主题是“众生的地球” 某校在此期间组织学生开展“爱护地球”图标设计征集活动,如图所示图标是中心对称图形的是( )7.如图,正比例函数. 的图象与反比例函数y2=k2(k2鈮?)的图x象相交于A ,B 两点,已知点B 的横坐标为3,当y ₂<y ₁时,x 的取值范围是 ( )A. x<-3或0<x<3B. x<-3C. x>3D. -3<x<0或x>38.在项目化学习中,“水是生命之”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是 ( )A. B. C.12 D. Error! Cannot insertreturn character.9. 如图, 在△ABC 中, 分别以A, B 为圆心, 以大于 Error! Digitexpected.的长为半径作弧,两弧相交于F ,G 两点,作直线 FG 分别交AB, BC 于点M, D; 再分别以A, C 为圆心,以大于 Error! Digit expected.的长为半径作弧,两弧相交于H ,I 两点,作直线HI分别交AC, BC于点N, E; 若 BD =32,DE =2,EC =52,则AC 的长为 ( ) A.3102B.332C.352D.32210. 阅读材料: 已知点P(x ₀, y ₀) 和直线y=kx+b, 则点P 到直线y=kx+b 的距离d 可用公式 d =|kx 0―y 0+b|1+k 2计算.例如:求点P(-2,1)到直线y=x+1的距离.其中k=1,b=1.所以点P (-2, 1) 到直线y=x+1的距离为 d =|kx 0―y 0+b|1+k 2=|ln(―2)―1+1|1+12=22=2.根据以上材料,有下列结论:①点(2,0) 到直线y=-2x 的距离是 LJ②直线y=-2x 和直线y=-2x+6的距离是 ʏ③抛物线 y =x²―4x +3上存在两个点到直线y=-2x 的距离是. Error! Digit expected.④若点 P 是抛物线 y =x²―4x +3上的点,则点P 到直线y=-2x 距离的最小值是 ÿ其中,正确结论的个数是 ( ) A. 1B. 2C. 3D. 4二、填空题(本题共6小题,每小题4分,共24分.)11. 分解因式: m 2―4m +4=.12.不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.13. 方程Error! Digit expected.的解为.14. 如图, 正八边形ABCDEFGH的边长为3, 以顶点A为圆心, AB的长为半径画圆, 则阴影部分的面积为(结果保留π)15.中国人逢山开路,遇水架桥,靠自己勤劳的双手创造了世界奇迹.雅西高速是连接雅安和西昌的高速公路,被国内外专家学者公认为全世界自然环境最恶劣、工程难度最大、科技含量最高的山区高速公路之一,全长240km.一辆货车和一辆轿车先后从西昌出发驶向雅安,如图,线段OM表示货车离西昌距离y₁(km)与时间x(h)之间的函数关系,线段AN表示轿车离西昌距离y₂(km)与时间x(h)之间的函数关系,则货车出发小时后与轿车相遇.16. 如图, 正方形ABCD中, AB=4, 点E为AD上一动点, 将三角形ABE沿BE折叠, 点A落在点F处,连接DF并延长,与边AB交于点G,若点G为AB中点,则AE=.三、解答题(本题共10小题,共86分.解答应写出文字说明、证明过程或演算步骤.)17. (6分) 计算:18. (6分) 解不等式组并写出其所有整数解.19.(6分)如图, 在▱ABCD中, E, G, H, F分别是AB, BC, CD, DA上的点, 且BE=DH,AF=CG.求证:EF=GH.20.(8分)综合与实践活动中,要利用测角仪测量塔的高度,如图,塔AB前有一座高为DE的观景台,已知( CD=8m,CD的坡度为i=13,点E,C,A在同一条水平直线上.某学习小组在观景台C处测得塔顶部B的仰角为,在观景台D处测得塔顶部B的仰角为:(1) 求DE的长;(2) 求塔AB的高度. (结果精确到1m)(参考数据:21.(8分)某校开展“图书月”活动,为了解七年级学生的阅读情况,小华设计调查问卷,用随机抽样的方式调查了部分学生,并对相关数据进行了收集、整理、描述和分析.下面是其中的部分信息:a.将学生每天阅读时长数据分组整理,绘制了如下两幅不完整的统计图表.七年级学生每天阅读时长情况统计表组别每天阅读时长(单位: 分钟)人数(单位: 人)A 0≤x<308B 30≤x<60nC 60≤x<9016D90≤x<1208b. 每天阅读时长在60≤x<90的具体数据如下: 60, 60, 66, 68,69, 69, 70, 70, 72,73, 73, 73, 80, 83, 84, 85根据以上信息,回答下列问题:(1) 表中n=, 图中m=;(2)C 组这部分扇形的圆心角是°;(3)每天阅读时长在60≤x<90这组具体数据的中位数是 ,众数是;(4)各组每天平均阅读时长如表:组别A 0≤x<30B 30≤x<60C 60≤x<90D 90≤x<120平均阅读时长(分钟)204575.599求被调查学生的平均阅读时长.22.(8分)如图, AB 是⊙O 的直径, C 是⊙O 上一点, 过点C 作⊙O 的切线CD, 交AB 的延长线于点D ,过点A 作.于点 E.(1) 若 ∠DAC =25°,求的度数;(2) 若( OB =4,BD =2,求CE 的长.23.(10分)2023年中国新能汽车市场火爆.某汽车销售公司为抢占先机,计划购进一批新能汽车进行销售.据了解,1辆A型新能汽车、3辆B型新能汽车的进价共计55万元;4辆A型新能汽车、2辆B 型新能汽车的进价共计120万元.(1)求A,B型新能汽车每辆进价分别是多少万元.(2)公司决定购买以上两种新能汽车共100辆,总费用不超过1180万元,该汽车销售公司销售1辆A型新能汽车可获利0.9万元,销售1辆B型新能汽车可获利0.4万元,若汽车全部销售完毕,那么销售A型新能汽车多少辆时获利最大?最大利润是多少?24.(10分) 如图, 在平面直角坐标系xOy中, 直线y=2x+4与函数的图象交于点A(1,m), 与x轴交于点B.(1) 求m, k的值;(2) 过动点P (0, n) (n>0) 作平行于x轴的直线, 交直线y=2x+4于点C,交函数的图象于点D,①当n=2时,求线段CD的长;②若CD鈮?OB,,结合函数的图象,直接写出n的取值范围.25.(12分) 如图所示, 中, 若D是内一点,将线段CD绕点C顺时针旋转Error! Digit expected.得到CE, 连结AD, BE.(1) ①如图1,判断AD与BE的位置关系并给出证明;②如图2, 连接AE, BD, 当. AE=AB时,请直接用等式表示线段BD和CD的数量关系;(2) 如图3,O是斜边AB的中点,M为BC上方一点,且CM与斜边AB的交点在线段OA上, 若求. BM的长.26.(12分)如图,在平面直角坐标系中,二次函数. y =x²+bx +c 的图象与x 轴交于点. A (―1,0)和点B (3, 0), 与y 轴交于点C.(1)求二次函数的表达式;(2)如图,二次函数图象的顶点为.对称轴与直线BC 交于点D ,在直线BC 下方抛物线上是否存在一点 M (不与点 N 重合),使得 S NDC =S MDC ?若存在,请求出点M 的坐标;若不存在,请说明理由;(3)将线段AB 先向右平移一个单位,再向上平移6个单位,得到线段EF ,若抛物线与线段EF 只有一个公共点,请直接写出a 的取值范围.2024年九年级学业水平模拟测试(一)数学试题(答案)一、选择题12345678910D C B D C C A B A D二、填空题11.;12. 6;13.;14.;15. 1.8;16. .三、解答题17.原式=……………………………………………………………………………4分==………………………………………………………………………………………………………………6分18.解:解不等式①得:,………………………………………………………………………………2分解不等式②得:,..........................................................................................4分该不等式组的解集为:, (5)分该不等式组的整数解为:.………………………………………………………………………6分19.证明:∵四边形ABCD为平行四边形,∴∠A=∠C,AB=CD,…………………………………………………………………………………………2分又∵BE=DH,∴AB-BE=CD-DH,∴AE=CH, (3)分在△AEF和△CHG中,∴△AEF≌△CHG(SAS) (5)分∴EF=HG. (6)分20. (1)解:在Rt△DCE中,的坡度为,,∴, (1)分∴.即的长为. (2)分(2)解:设,在Rt△DCE中,,∴.…………………………………………………………………3分在Rt△BCA中,由,,,则.∴.…………………………………………………………………………………4分即的长为.如图,过点作,垂足为.根据题意,,∴四边形是矩形.∴,.可得.………………………………………………………………………………5分在中,,∴,………………………………………………………………………………………………6分解得:………………………………………………………………………………………………7分15m答:塔的高度约为. (8)分21. (1); (2)分(2)72; (3)分(3),; (5)分(4)20×10%+45×60%+75.5×20%+99×10%=54(分钟). (8)分22.(1)解:连接OC,∵O与CD相切于点C,∴OC⊥CD,∠OCD=90°,……………………………………1分∵于点,∴,∴∠AEC=∠OCD,∴AE∥OC,∴∠EAC=∠ACO,…………………………………………………………………………………………2分又∵OA=OC,∴∠DAC=∠ACO,……………………………………………………………………………………3分∴∠EAC=∠DAC=25°…………………………………………………………………………………4分(2)解:,,,.…………………………………………………………………………………5分,, (6)分,……………………………………………………………………………………………………7分. (8)分23. (1)设A型新能汽车每辆进价为a万元,B型新能汽车每辆进价为b万元.…………………1分由题意,得……………………………………………………………………………………3分解得 (4)分答:A型新能汽车每辆进价为25万元,B型新能汽车每辆进价为10万元.…………………………5分(2)设购买A型新能汽车x辆,则购买B型新能汽车辆.………………………………6分由题意,得.解得.……………………………………………………………………………………………………7分设销售A型新能汽车x辆所获利润为W万元.则.…………………………………………………………………………8分∵,∴W随x的增大而增大.∴当时,W有最大值46万元.…………………………………………………………………………9分答:当销售A型新能汽车12辆时获利最大,最大利润为46万元.……………………………………10分24. 解:(1)直线经过点,,………………………………………………………………………………………………1分反比例函数的图象经过点,;………………………………………………………………………………………………2分(2)①当时,点的坐标为,当时,,解得,点D的坐标为,……………………………………………………………………………………4分当时,,解得,点C的坐标为,……………………………………………………………………………………6分;……………………………………………………………………………………………7分②的取值范围为(1分)或(2分).………………………………………………10分25. 解:(1)AD⊥BE…………………………………………………………………………………………1分延长AD交CB于O点,交BE于H点.∵△ABC是等腰直角三角形,∠ACB=90°,∴AC=BC,由旋转的性质得:CD=CE,∠DCE=90°,∵∠ACD+∠DCB=90°,∠BCE+∠DCB=90°,∴∠ACD=∠BCE,又∵AC=BC,CD=CE,∴△ACD≌△BCE(SAS),…………………………………………………………………………3分∴∠CAD=∠CBE又∵∠AOC=∠BOH;∴△AOC∽△BOH,∴∠BHO=∠ACO=90°;∴AD⊥BE.…………………………………………………………………………………………5分(2)BD=CD;………………………………………………………………………………8分(3)解:如图,过点O作ON⊥OM,且ON=OM,连接NM、NC,N C交BM于点H,ON交MB于F点,连接OC,则∠NOM=90°,∵△ABC是等腰直角三角形,O是斜边AB的中点,∴CO⊥AB,CO=AB=OB,∴∠COB=∠NOM=90°,∴∠NOC=∠MOB,∴△NOC≌△MOB(SAS),………………………………………………………………………………9分∴CN=BM,∠ONC=∠OMB,又∵∠OFM=∠HFN,∴∠MHN=∠MOF=90°,∵∠BMC=45°,∴△CMH是等腰直角三角形,∴CH=MH=CM=12,……………………………………………………………………………10分在Rt△NOM中,NM=OM==13,…………………………………………………11分在Rt△NHM中,NM=13,MH=12,∴NH=5∴CN=CH+HN=17,∴BM=CN=17………………………………………………………………………………………………12分(此题方法不唯一,阅卷组可根据不同方法设置不同标准.)26.解:(1)把A(-1,0),B(3,0)代入二次函数y=x2+bx+c可得,,…………………………………………………………………………………………2分解得:,…………………………………………………………………………………………3分∴二次函数的表达式为y=x2-2x-3.………………………………………………………………………4分(2)由题意可得:N(1,-4),…………………………………………………………………………5分∵S△NDC=S△MDC,∴过点N作CD的平行线,与抛物线交于点M,由B(3,0),C(0,-3)可得直线DC的表达式为,……………………………………6分∵MN∥DC,N(1,-4),∴直线MN的表达式为,…………………………………………………………………7分∴,解得:,………………………………………………………………………8分∴M(2,-3).…………………………………………………………………………………………9分(3)………………………………………………………………………12分(答出一种情况得1分)。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 92.如图,下面几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y34.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°5.设点A(-3,a),B(b,12)在同一个正比例函数图象上,则ab的值为()A.23- B.32- C. -6 D.326.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A. 35B. 34C. 12D. 237.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8.如图, 在三边互不相等的△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对9.如图,在⊙O 中,弦AB 垂直平分半径OC ,垂足为D .若点P 是⊙O 上异于点A ,B 的任意一点,则∠APB=( )A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120° 10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A 45°B. 60°C. 90°D. 120° 二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.12.如图,五边形ABCDE 的对角线共有 ________条.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.14.如图,在正方形ABCD 中,AB=4,E 是BC 边中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .三.解答题(共11小题)15.计算:2(3)|25|20-+--.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点的抛物线的函数表达式;(3)在(2)所求抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.答案与解析一.选择题(共10小题)1.计算:(-3)×(- 13)=()A. -1B. 1C. -9D. 9 【答案】B【解析】【分析】根据两数相乘,同号得正,把绝对值相乘,再进行计算.【详解】解:1313⎛⎫-⨯-=⎪⎝⎭.故答案为:B.【点睛】此题主要考查了有理数的乘法,要熟练掌握,解答此题的关键是要明确有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.2.如图,下面的几何体由两个大小相同的正方体和一个圆柱体组成,则它的左视图是( )A. B. C. D.【答案】D【解析】【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看上下都是正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.3.计算(-2x2y)3的结果是( )A. -8x6y3B. 6x6y3C. -8x5y3D. -6x5y3【答案】A【解析】【分析】根据幂的乘方与积的乘方运算法则进行运算即可.【详解】(-2x2y)3=-8x6y3.故选A.4.如图,AB∥CD.若∠1=40°,∠2=65°,则∠CAD=()A. 50°B. 65°C. 75°D. 85°【答案】C【解析】【分析】根据对顶角性质可知∠BAD=∠1=40°,然后利用平行线性质可得∠CAB=115°,据此进一步计算求解即可. 【详解】∵∠BAD与∠1是对顶角,∴∠BAD=∠1=40°,∵AB∥CD,∴∠2+∠CAB=180°,∴∠CAB=180°−∠2=115°,∴∠CAD=∠CAB−∠BAD=75°,故选:C.【点睛】本题主要考查了平行线性质以及对顶角性质,熟练掌握相关概念是解题关键.5.设点A(-3,a),B(b,12)在同一个正比例函数的图象上,则ab的值为()A.23- B.32- C. -6 D.32【答案】B【解析】【分析】设正比例函数的解析式为y=kx,将两点在分别代入函数解析式,就可表示出a,b,然后代入求出ab的值.【详解】设正比例函数的解析式为y=kx(k≠0)∴a=-3k,bk=1 2∴b=1 2k∴13322 ab kk=-⋅=-.故答案为:B.【点睛】此题考查了一次函数图象上点的坐标特征,此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.6.如图,在△ABC中,∠BAC=90°,AB=20,AC=15,△ABC的高AD与角平分线CF交于点E,则DE AF的值为()A 35B.34C.12D.23【答案】A【解析】【分析】利用勾股定理求出BC的长,再根据直角三角形的两个面积公式就可求出AD的长,利用勾股定理求出DC 的长,然后利用角平分线的定义,可得到tan∠ACF=tan∠ECD,然后利用锐角三角函数的定义,就可求出DE与AF的比值.【详解】解:在△ABC中2222201525BC AB AC+=+=∵AD是高∴1122AD BC AB AC⋅=⋅∴25AD=20×15解之:AD=12.在Rt△ADC中,222215129 DC AC AD--=∵CF平分∠ACB,∴∠ACF=∠ECD∴tan ∠ACF=tan ∠ECD ∴AF DE AC DC =即159AF DE = ∴35DE AF =. 故答案为:A .【点睛】本题主要考查三角函数的应用,解题的关键是掌握勾股定理、三角函数的定义得到式子求解. 7.已知两个一次函数y=3x+b 1和y=-3x+b 2若b 1<b 2<0,则它们图象的交点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】将两函数联立方程组,解方程组求出两函数的交点坐标,再根据b 1<b 2<0 ,就可得到b 2-b 1>0,b 2+b 1<0,就可确定出交点的横纵坐标的符号,从而可判断出两函数图像的交点所在的象限. 【详解】解:1233y x b y x b =+⎧⎨=-+⎩解之:212162b b x b b y -⎧=⎪⎪⎨+⎪=⎪⎩∵ b 1<b 2<0∴b 2-b 1>0,b 2+b 1<0∴x >0,y <0∴它们图像的交点在第四象限.故答案为:D .【点睛】本题主要考查两直线相交或平行的问题及象限内点的坐标特点,掌握根据直线解析式求得交点坐标且各象限内点的坐标特点是解题的关键.8.如图, 在三边互不相等△ABC 中, D ,E ,F 分别是AB ,AC ,BC 边的中点.连接DE ,过点C 作CM ∥AB 交DE 的延长线于点M ,连接CD 、EF 交于点N ,则图中全等三角形共有( )A. 3对B. 4对C. 5对D. 6对【答案】C【解析】【分析】 利用已知条件可证得DE ,EF 都是△ABC 的中位线,同时可证得AE=EC ,CF=12BC ,利用三角形中位线定理可得到DE=12BC ,DE ∥BC ,EF ∥AB ,从而可以推出∠EDC=∠FCN ,DE=CF ,再利用AAS 证明△DEN ≌△CFN ,然后利用有两组对边平行的四边形是平行四边形,可证得四边形EFCM 是平行四边形,再利用平行四边形的性质可以推出△EMC ≌△CFE ,△ADE ≌△CME ,△ADE ≌△CEF, △BCD ≌△MDC .【详解】证明:∵D ,E ,F 分别是AB ,AC ,BC 边的中点.∴CF=12BC ,DE 是△ABC 的中位线,EF 是△ABC 的中位线,AE=EC ∴DE=12BC ,DE ∥BC ,EF ∥AB , ∴∠EDC=∠FCN ,DE=CF在△DEN 和△CFN 中DNE CNF EDC FCN DE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△DEN ≌△CFN (AAS );∵EF ∥AB ,CM ∥AB∴EF ∥CM ,DE ∥BC∴四边形EFCM 是平行四边形,∴EM=CF=DE ,EF=CM,在△EMC 和△CFE 中,EM CF EF CM CE EC =⎧⎪=⎨⎪=⎩∴△EMC ≌△CFE (SSS );在△ADE 和△CME 中,AE EC AED CEM DE ME =⎧⎪∠=∠⎨⎪=⎩∴△ADE≌△CME(SAS);∴△ADE≌△CEF,∴DE∥BC又BD∥CM∥EF∴四边形DBCM是平行四边形,∴△BCD≌△MDC∴图中的全等三角形一共有5对.故答案为:C.【点睛】本题考查的是三角形中位线定理、全等三角形的判定定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.9.如图,在⊙O中,弦AB垂直平分半径OC,垂足为D.若点P是⊙O上异于点A,B的任意一点,则∠APB=()A. 30°或60°B. 60°或150°C. 30°或150°D. 60°或120°【答案】D【解析】【分析】利用垂径定理及已知可得到∠OAD=30°,再求出∠AOB的度数,再分情况讨论:当点P在优弧AB上时,利用圆周角定理就可取出∠P的度数;当点P在劣弧上时,利用圆内接四边形的对角互补,就可求出∠AP1B 的度数.【详解】连接OA,OB,∵ 弦AB 垂直平分半径OC∴OD=12OA , ∴∠OAD=30°,∵OA=OB∴∠OAB=∠OBA=30°,∴∠AOB=180°-∠OAB-∠OBA=180°-30°-30°=120°;当点P 在优弧AB 上时∠APB=12∠AOB=12×120°=60°; 当点P 在劣弧上时,∠APB+∠AP 1B=180°∴∠AP 1B=180°-60°=120°.∴∠APB=120°或60°.故答案为:D .【点睛】此题考查了垂径定理,以及圆周角定理,熟练掌握垂径定理是解本题的关键.10.将抛物线M :y=- 13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M'.若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,则∠ACB=( ) A. 45°B. 60°C. 90°D. 120° 【答案】C【解析】【分析】利用二次函数的平移规律:上加下减,左加右减,可求出抛物线M'的函数解析式,由此可得到点C 的坐标,再由y=0求出抛物线M'与x 轴的两个交点A ,B 的坐标,然后利用勾股定理求出AC 2、BC 2、AB 2,由此可以推出AC 2+BC 2=AB 2,利用勾股定理的逆定理,可求出∠ACB 的度数.【详解】∵y=-13x 2+2向左平移2个单位,再向上平移1个单位,得到抛物线M', ∴抛物线M'的解析式为y=21(2)33x -++ ∵ 若抛物线M'与x 轴交于A 、B 两点,M'的顶点记为C ,∴点C (-2,3)当y=0时21(2)303x -++=解之:x 1=1,x 2=-5∴点A(1,0),点B(-5,0)∴AB2=|-5-1|2=36AC2=32+32=18,BC2=32+32=18∴AC2+BC2=AB2∴∠ACB=90°.故答案为:C.【点睛】本题考查抛物线与x轴的交点、二次函数与几何变换、勾股定理的逆定理等知识,解题的关键是灵活运用所学知识解决问题,属于基础题.二.填空题(共4小题)11.不等式-2x+1>-5的最大整数解是________.【答案】2【解析】【分析】先求出不等式的解集,再求出不等式的最大整数解.【详解】解-2x+1>-5-2x>-6x<3,∴这个不等式的最大整数解为2.故答案为:2.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.12.如图,五边形ABCDE的对角线共有________条.【答案】5【解析】【分析】根据n边形的对角线的总数量为(3)2n n,再将n=5代入计算可求出结果.【详解】五边形的对角线的条数为:(53)552-⨯=. 故答案为:5. 【点睛】此题考查了多边形的对角线,掌握多边形的对角线公式是解题的关键.13.如图,在x 轴上方,平行于x 轴的直线与反比例函数y =1k x和y =2k x 的图象分别交于A 、B 两点,连接OA 、OB ,若△AOB 的面积为6,则k 1﹣k 2=_____.【答案】-12. 【解析】【分析】根据AB ∥x 轴,设1211k k x k A x B x k x(,),(,),得到21k x AB x k -=,根据△AOB 的面积为6,列方程即可得到结论.【详解】∵AB ∥x 轴,∴设1211k k x k A x B x k x(,),(,) ∴21k x AB x k -=, ∵△AOB 的面积为6,∴(2111•62k x k x k x-()=, ∴k 1﹣k 2=﹣12,故答案为:﹣12.【点睛】本题考查的是反比例函数系数k 的几何意义,即在反比例函数k y x=图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|;在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是2y k ,且保持不变. 14.如图,在正方形ABCD 中,AB=4,E 是BC 边的中点, F 是CD 边上的一点, 且DF=1.若M 、N 分别是线段AD 、AE 上的动点,则MN+MF 的最小值为________ .【答案】955【解析】【分析】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,可证得MG=MF ,△MDG ≌△MDF ,DF=DG=1 ,可推出MN+MF=NG ,根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长;利用正方形的性质,可求出BE 的长,同时可以推出∠B=∠ANM=∠FDM ,∠AMN=∠BAE=∠FMD ,再利用有两组对应角相等的三角形相似,可证得△ABE ∽△MNA ∽△FMD ,然后利用相似三角形的性质及勾股定理就可求出MN ,MG 的长,由此看求出NG 的长.【详解】作点F 关于AD 的对称点G ,过点G 作GN ⊥AE 于点N ,交AD 于点M ,∴MG=MF ,△MDG ≌△MDF ,DF=DG=1∴∠GMD=∠DMF∴MN+MF=MN+MG=NG根据垂线段最短,可知此时MN+MF 的最小值就是NG 的长.∵正方形BCD ,点E 是BC 的中点∴BE=12BC=12AB=2∴∠B=∠ANM=∠FDM=90°,∠BAE+∠MAN=90°,∵∠AMN+∠MAN=90°,∴∠AMN=∠BAE ,∵∠AMN=∠DMG∴∠AMN=∠BAE=∠FMD∴△ABE ∽△MNA ∽△FMD ∴AB MD BE DF =即421MD = 解之:MD=2,∴AM=AD-MD=4-2=2 ∴2AB MN BE AN== 设AN=x ,则MN=2x∴AN 2+MN 2=AM 2,∴x 2+4x 2=4解之:∴在Rt △MDG 中,=∴NG=MN+MG==. 【点睛】本题考查了轴对称−最短距离问题,相似三角形的判定和性质,正确的确定M ,N 的位置是解题的关键.三.解答题(共11小题)15.计算:2(3)|2|-+-【答案】7【解析】【分析】先计算乘方,化简绝对值,计算算术平方根,再进行实数的加减混合运算即可解答.【详解】解:原式=9+5-2-25=7-5【点睛】本题考查实数的混合运算,解题关键是熟练掌握绝对值的化简和算术平方根的意义.16.化简:(22739a a a +--﹣43a a ++)÷33a a +-. 【答案】269(3)a a ++ 【解析】【分析】根据分式的运算法则,先去括号,然后除一个数等于乘这个数的倒数即可.【详解】解:原式=(273(3)(3)a a a a +-+-﹣43a a ++)÷33a a +-. =2273(3)a a a +-+﹣2(4)(3)(3)a a a +-+ =269(3)a a ++ 【点睛】本题考查分式的除法,需要注意,在去括号时,括号中的每一项都要除后面的除数17.如图,已知锐角△ABC ,点D 是AB 边上的一定点,请用尺规在AC 边上求作一点E ,使△ADE 与△ABC 相似.(作出符合题意的一个点即可,保留作图痕迹,不写作法.)【答案】详见解析【解析】【分析】以DA 为边、点D 为顶点在△ABC 内部作一个角等于∠B ,角的另一边与AC 的交点即为所求作的点.【详解】如图,点E 即为所求作的点.【点睛】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作DE∥BC并熟练掌握做一个角等于已知角的作法式解题的关键.18.2016年4月23日是我国第一个”全民阅读日”某校开展了”建设书香校园,捐赠有益图书”活动.我们在参加活动的所有班级中,随机抽取了一个班,已知这个班是八年级5班,全班共50名学生.现将该班捐赠图书情况的统计结果,绘制成如下两幅不完整的统计图.请你根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)求八年级5班平均每人捐赠了多少本书?(3)若该校八年级共有800名学生,请你估算这个年级学生共可捐赠多少本书?【答案】(1)见解析;(2)6本书;(3)4800本书【解析】【分析】(1)观察两统计图可知全班捐赠图书的总数=其它书的数量÷其它书的数量所占的百分比,列式计算;再利用全班捐赠图书的总数×捐赠工具类书的数量所占的百分比,就可求出捐赠工具类书的数量,就可补全条形统计图;然后利用部分的数量÷总数,就可求出文学类和科普类所占的百分比,从而可以补全扇形统计图中的数据;(2)用全班捐赠图书的总数除以八年级5班的人数,列式计算;(3)用800×平均每一个人的捐赠图书的数量,列式计算.【详解】(1)解:全班捐赠图书的总数为24÷8%=300(本),则捐赠工具类书有300×20%=60(本),文学类百分比为120300×100%=40%,科普类百分比为96300×100%=32%,完成统计图如下:八年级5班全班同学捐赠图书情况统计图(2)解:八年级5班平均每人捐赠了30050=6本书;(3)解:∵800×6=4800,估算这个年级学生共可捐赠4800本书.【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确它们各自的含义,利用数形结合的思想解答.19.如图,菱形ABCD中,点E是边AD上一点,延长AB至点F,使BF=AE,连结BE,CF.求证:BE=CF.【答案】证明见解析【解析】【分析】由菱形的性质得出AD∥BC,AB=BC,得出∠A=∠CBF,证明△ABE≌△BCF(SAS),即可得出BE=CF.【详解】解:∵四边形ABCD是菱形,∴AD∥BC,AB=BC,∴∠A=∠CBF.在△ABE和△BCF中,∵AE=BF,∠A=∠CBF,AB=BC,∴△ABE≌△BCF(SAS),∴BE=CF.点睛:本题考查了菱形的性质、平行线的性质、全等三角形的判定与性质;熟练掌握菱形的性质,证明三角形全等是解决问题的关键.20.某市为了创建绿色生态城市,在城东建了”东州湖”景区,小明和小亮想测量”东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算”东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,2≈1.414.)【答案】1057米.【解析】分析】先根据题意得出△BCD是等腰直角三角形,故可得出CD=BD,再由锐角三角函数的定义得出AD的长,进而可得出结论.【详解】∵∠BCD=45°,CD⊥AB,∴△BCD是等腰直角三角形,∴CD=BD.∵BC=350米,∴CD=BD=350×2=2≈175×1.414=247.45米,∴AD=CD•tan73°≈247.45×3.2709≈809.38米,∴AB=AD+BD=809.38+247.45≈1057(米).答:”东州湖”东西两端之间AB的长为1057米.【点睛】本题是锐角三角函数在实际问题中的考查,在解决此类题型的时候,我们首先需要抽象出数学模型,然后构造出直角三角形,最后利用三角函数解决.21.上周六上午点,小颖同爸爸妈妈一起从西安出发回安康看望姥姥,途中他们在一个服务区休息了半小时,然后直达姥姥家,如图,是小颖一家这次行程中距姥姥家的距离 (千米)与他们路途所用的时间(时)之间的函数图象,请根据以上信息,解答下列问题:(1)求直线AB所对应的函数关系式;(2)已知小颖一家出服务区后,行驶分钟时,距姥姥家还有千米,问小颖一家当天几点到达姥姥家?【答案】详见解析【解析】试题分析:由图象知AB过(0,320)和((2,120)两点,故可设AB所在直线解析式为y=kx+b,代入即可求出a,b 的值,从而确定函数关系式;(2)先求出CD所在直线解析式,令y=0,则可求出x的值,从而可知小颖一家当天几点到达姥姥家.试题解析:(1)由图象知:A(0,320),B(2,120)设AB所在直线解析式为y=kx+b,把A、B坐标代入得:320 2120 bk b=⎧⎨+=⎩解得:320 {100 bk==-故AB所在直线解析式为y=-100x+320; (2)由图象知:CD过点(2.5,120)和(3,80)设CD所在直线解析式为y=mx+n,则有2.5120 {380m nm n+=+=解得:80320 mn=-⎧⎨=⎩故CD所在直线解析式为y=-80x+320令y=0时,-80x+320=0,解得x=4所以:8+4=12故小颖一家当天12点到达姥姥家.22.孙老师在上《等可能事件的概率》这节课时,给同学们提出了一个问题:”如果同时随机投掷两枚质地均匀的骰子,它们朝上一面的点数和是多少的可能性最大?”同学们展开讨论,各抒己见,其中小芳和小超两位同学给出了两种不同的回答.小芳认为6的可能性最大,小超认为7的可能性最大.你认为他们俩的回答正确吗?请用列表或画树状图等方法加以说明.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体.)【答案】小超的回答正确,图表见解析【解析】【分析】根据题意列表,再根据表中的数据可求出所有等可能的结果数及点数之和等于6和点数之和等于7的情况数,然后分别求出点数之和等于6与点数之和等于7的概率,由此可作出判断.【详解】列表如下共有36种等可能的结果数,其中点数之和等于6占5种,点数之和等于7的占6种,∴点数之和为6的概率为536,点数之和为7的概率为61366故小超的回答正确.【点睛】本题考查了利用列表法或树状图求概率的方法:先利用列表法或树状图展示所有等可能的结果数n,再找出其中某事件所占有的结果数m,然后根据概率的概念计算出这个事件的概率=mn.23.如图,已知⊙O的半径为5,△ABC是⊙O的内接三角形,AB=8,.过点B作⊙O的切线BD,过点A作AD⊥BD,垂足为D.(1)求证:∠BAD+∠C=90°(2)求线段AD的长.【答案】(1)证明见解析;(2)325.【解析】【分析】(1)由弦切角等于同弧所对的圆周角得:∠C=∠ABD,再根据直角三角形两锐角互余得出结论;(2)作弦心距,由勾股定理得:OE=3,再证明△OEB∽△BDA,列比例式可以求AD的长.【详解】:(1)∵BD为⊙O的切线,∴∠C=∠ABD,∵AD⊥BD,∴∠ADB=90°,∴∠BAD+∠ABD=90°,∴∠C+∠BAD=90°,(2)连接OB,过O作OE⊥AB于E,∴AE=BE=12AB=4,由勾股定理得:OE22OB BE-2254-3,∵BD为⊙O的切线,∴OB⊥BD,∴∠OBD=90°,∵∠ADB=90°,∴AD∥OB,∴∠DAB=∠ABO,∵∠D=∠OEB=90°,∴△OEB∽△BDA,∴BE OB AD AB=,∴458 AD=,∴AD=325;则线段AD的长为325.【点睛】本题考查了切线的性质和垂径定理、以及三角形的外接圆,是常考题型,熟练掌握切线的性质和垂径定理:圆的切线垂直于经过切点的半径.24.如图,在平面直角坐标系中,O为坐标原点,△AOB是等腰直角三角形,∠AOB=90°,点A(2,1).(1)求点B的坐标;(2)求经过A、O、B三点抛物线的函数表达式;(3)在(2)所求的抛物线上,是否存在一点P,使四边形ABOP的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1) B(-1.2);(2) y=57x?66x-;(3)见解析.【解析】【分析】(1)过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,则可证明△ACO≌△ODB,则可求得OD和BD的长,可求得B点坐标;(2)根据A、B、O三点的坐标,利用待定系数法可求得抛物线解析式;(3)由四边形ABOP可知点P在线段AO的下方,过P作PE∥y轴交线段OA于点E,可求得直线OA解析式,设出P点坐标,则可表示出E点坐标,可表示出PE的长,进一步表示出△POA的面积,则可得到四边形ABOP的面积,再利用二次函数的性质可求得其面积最大时P点的坐标.【详解】(1)如图1,过A作AC⊥x轴于点C,过B作BD⊥x轴于点D,∵△AOB 为等腰三角形,∴AO=BO ,∵∠AOB=90°,∴∠AOC+∠DOB=∠DOB+∠OBD=90°,∴∠AOC=∠OBD ,△ACO 和△ODB 中AOC OBD ACO ODB AO BO ===∠∠⎧⎪∠∠⎨⎪⎩∴△ACO ≌△ODB (AAS ),∵A (2,1),∴OD=AC=1,BD=OC=2,∴B (-1,2);(2)∵抛物线过O 点,∴可设抛物线解析式为y=ax 2+bx ,把A 、B 两点坐标代入可得4212a b a b +⎧⎨-⎩==,解得5676a b ⎧⎪⎪⎨⎪-⎪⎩==, ∴经过A 、B 、O 原点的抛物线解析式为y=56x 2-76x ; (3)∵四边形ABOP ,∴可知点P 在线段OA 的下方,过P 作PE ∥y 轴交AO 于点E ,如图2,设直线AO解析式为y=kx,∵A(2,1),∴k=12,∴直线AO解析式为y=12x,设P点坐标为(t,56t2-76t),则E(t,12t),∴PE=12t-(56t2-76t)=-56t2+53t=-56(t-1)2+56,∴S△AOP=12PE×2=PE═-56(t-1)2+56,由A(2,1)可求得5∴S△AOB=12AO•BO=52,∴S四边形ABOP=S△AOB+S△AOP=-56(t-1)2+56+52=()2510163t--+,∵-56<0,∴当t=1时,四边形ABOP的面积最大,此时P点坐标为(1,-13 ),综上可知存在使四边形ABOP的面积最大的点P,其坐标为(1,-13 ).【点睛】本题为二次函数的综合应用,主要涉及待定系数法、等腰直角三角形的性质、全等三角形的判定和性质、三角形的面积以及方程思想等知识.在(1)中构造三角形全等是解题的关键,在(2)中注意待定系数法的应用,在(3)中用t表示出四边形ABOP的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.25.问题提出(1)如图①,在△ABC中,BC=6,D为BC上一点,AD=4,则△ABC面积的最大值是.问题探究(2)如图②,已知矩形ABCD的周长为12,求矩形ABCD面积的最大值.问题解决(3)如图③,△ABC是葛叔叔家的菜地示意图,其中AB=30米,BC=40米,AC=50米,现在他想利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔欲建的鱼塘是四边形ABCD,且满足∠ADC=60°.你认为葛叔叔的想法能否实现?若能,求出这个四边形鱼塘周长的最大值;若不能,请说明理由.【答案】(1)12;(2)9;(3)能实现;170(米).【解析】【分析】(1)当AD⊥BC时,△ABC的面积最大.(2)由题意矩形邻边之和为6,设矩形的一边为m,另一边为6﹣m,可得S=m(6﹣m)=﹣(m﹣3)2+9,利用二次函数的性质解决问题即可.(3)由题意,AC=100,∠ADC=60°,即点D在优弧ADC上运动,当点D运动到优弧ADC的中点时,四边形鱼塘面积和周长达到最大值,此时△ACD为等边三角形,计算出△ADC的面积和AD的长即可得出这个四边形鱼塘面积和周长的最大值.【详解】(1)如图①中,∵BC=6,AD=4,∴当AD⊥BC时,△ABC的面积最大,最大值=12×6×4=12.故答案为12.(2)∵矩形的周长为12,∴邻边之和为6,设矩形的一边为m,另一边为6﹣m,∴S=m(6﹣m)=﹣(m﹣3)2+9,∵﹣1<0,∴m=3时,S有最大值,最大值为9.(3)如图③中,∵AC=50米,AB=40米,BC=30米,∴AC2=AB2+BC2∴∠ABC=90°,作△AOC,使得∠AOC=120°,OA=OC,以O为圆心,OA长为半径画⊙O,∵∠ADC=60°,∴点D在优弧ADC上运动,当点D是优弧ADC的中点时,四边形ABCD面积取得最大值,设D′是优弧ADC上任意一点,连接AD′,CD′,延长CD′到F,使得D′F=D′A,连接AF,则∠AFC=30°=12∠ADC,∴点F在D为圆心DA为半径的圆上,∴DF=DA,∵DF+DC≥CF,∴DA+DC≥D′A+D′C,∴DA+DC+AC≥D′A+D′C+AC,∴此时四边形ADCB的周长最大,最大值=40+30+50+50=170(米).答:这个四边形鱼塘周长的最大值为170(米).【点睛】本题主要是最大值的考查,求最大值,常用方法为:(1)利用平方为非负的性质求解;(2)利用三角形两边之和大于第三边求解,在求解过程中,关键在与将要求解的线段集中到一个三角形中。
数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1.2020的相反数是( )A. 2020B. ﹣2020C. 12020D. 12020- 2.下列计算中,正确的是( )A. a 2•a 4=a 8B. (a 3)4=a 7C. (ab )4=ab 4D. a 6÷a 3=a 3 3.若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是( )A. ∠1=2∠2B. ∠1=3∠2C. ∠1+∠2=180°D. ∠1+2∠2=180°4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d 的取值范围是( )A. 0<d <3B. 0<d <7C. 3<d <7D. 0≤d <3 5.如果正十边形的边长为a ,那么它的半径是( )A. sin 36a ︒B. cos36a ︒C. 2sin18a ︒D. 2cos18a ︒ 6.已知在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形是( )A. AD =BC ,AC =BDB. AC =BD ,∠BAD =∠BCDC. AO =CO ,AB =BCD. AO =OB ,AC =BD二.填空题(共12小题)7.分解因式:2mx -6my =__________.8.函数1x -中,自变量x 的取值范围是____________________. 9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是_____. 10.一组数据:2,2,5,5,6,那么这组数据的方差是_____.11.不等式组21021xx-+<⎧⎨-⎩解集是_____.12.方程+2x x=的根是__________.13.已知关于的一元二次方程2210mx x-+=有两个不相等的实数根,则的取值范围是___.14.在△ABC中,D、E分别在边AB、AC上,DE∥BC,DE经过△ABC的重心,如果AB=π,AC n=,那么DE=_____.(用π、n表示)15.如图,已知在5×5的正方形网格中,点A、B、C在小正方形的顶点上,如果小正方形的边长都为1,那么点C到线段AB所在直线的距离是_____.16.如图,已知在平面直角坐标系中,点A在x轴正半轴上,点B在第一象限内,反比例函数y=kx的图象经过△OAB的顶点B和边AB的中点C,如果△OAB的面积为6,那么k的值是_____.17.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为”k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为”3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为”k级函数”,那么k的值是_____.18.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=43,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP 的值是_____.三.解答题(共7小题)19.先化简,再求值:(1222a a ++-)÷2322a a a++,其中a =5+1. 20.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩ 21.如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB (弧所对的弦的长)为8米,拱高CD (弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB 上升到EF 时,从点E 测得桥顶D 的仰角为α,且cotα=3,求水面上升的高度.22.某社区为了加强居民对新型冠状病毒肺炎防护知识了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下:收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 70 80 95 75 100 90整理数据(每组数据可含最低值,不含最高值) 分组(分)频数 频率 60~704 0.1 70~80 a b 80~9010 025 90~100c d 100~1108 0.2分析数据(1)填空:a = ,b = ,c = ,d = ;(2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在(分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为人.23.如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.(1)如果EN∥BD,求证:四边形DMNE是菱形;(2)如果EN⊥DC,求证:AN2=NC•AC.24.如图,已知平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B(3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.25.如图,已知在△ABC中,∠ACB=90°,AC=4,BC=8,点P是射线AC上一点(不与点A、C重合),过P作PM⊥AB,垂足为点M,以M为圆心,MA长为半径的⊙M与边AB相交的另一个交点为点N,点Q 是边BC上一点,且CQ=2CP,联结NQ.(1)如果⊙M与直线BC相切,求⊙M的半径长;(2)如果点P在线段AC上,设线段AP=x,线段NQ=y,求y关于x的函数解析式及定义域;(3)如果以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,求线段AP的长.答案与解析一.选择题(共6小题)1.2020的相反数是( )A. 2020B. ﹣2020C.12020D.12020【答案】B【解析】【分析】直接利用相反数的定义得出答案.【详解】解:2020的相反数是:﹣2020.故选:B.【点睛】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列计算中,正确的是()A. a2•a4=a8B. (a3)4=a7C. (ab)4=ab4D. a6÷a3=a3【答案】D【解析】【分析】直接利用积的乘方、幂的乘方运算法则以及同底数幂的乘除运算法则分别计算得出答案.【详解】A.a2•a4=a2+4=a6,故此选项计算错误,B.(a3)4=a3×4=a12,故此选项计算错误,C.(ab)4=a4b4,故此选项计算错误,D.a6÷a3=a6-3=a3,故此选项计算正确.故选D.【点睛】此题主要考查了积的乘方、幂的乘方运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.3.若将一个长方形纸条折成如图的形状,则图中∠1与∠2的数量关系是( )A. ∠1=2∠2B. ∠1=3∠2C. ∠1+∠2=180°D. ∠1+2∠2=180°【答案】A【解析】【分析】由折叠可得,∠2=∠ABC,再根据平行线的性质,即可得出∠1=∠ABD=2∠2.【详解】解:如图,由折叠可得,∠2=∠ABC,又∠2+∠ABC=∠ABD,即:∠ABD=2∠2,∵AB∥CD,∴∠1=∠ABD(两直线平行,内错角相等),∴∠1=∠ABD=2∠2故选:A.【点睛】本题考查了平行线的性质,翻折变换的性质,熟记各性质并准确识图是解题的关键.4.已知两圆的半径分别为2和5,如果这两圆内含,那么圆心距d的取值范围是( )A. 0<d<3B. 0<d<7C. 3<d<7D. 0≤d<3【答案】D【解析】【分析】本题直接告诉了两圆的半径及两圆的位置的关系,根据数量关系与两圆位置关系的对应情况便可直接得出答案.【详解】解:由题意知,两圆内含,则0≤d<5-2(当两圆圆心重合时圆心距为0),即如果这两圆内含,那么圆心距d 的取值范围是0≤d <3,故选:D .【点睛】本题主要考查圆与圆的位置关系,①外离,则d >R+r ;②外切,则d=R+r ;③相交,则R-r <d <R+r ;④内切,则d=R-r ;⑤内含,则d <R-r .5.如果正十边形的边长为a ,那么它的半径是( ) A. sin 36a ︒ B. cos36a ︒ C. 2sin18a ︒ D. 2cos18a ︒【答案】C【解析】【分析】如图,画出图形,在直角三角形OAM 中,直接利用三角函数即可得到OA.【详解】如图,正十边形的中心角∠AOB=360°÷10=36°,AB=a∴∠AOM=∠BOM=18°,AM=MB=12a ; ∴OA=AM sin OAM ∠=218a sin ︒故选C.【点睛】本题考查三角函数,能够画出图形,找到正确的三角函数关系是解题关键.6.已知在四边形ABCD 中,AB ∥CD ,对角线AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是矩形的是( )A. AD =BC ,AC =BDB. AC =BD ,∠BAD =∠BCDC. AO =CO ,AB =BCD. AO =OB ,AC =BD【答案】B【解析】【分析】根据矩形的判定方法,一一判断即可解决问题.【详解】解:A、AB∥DC,AD=BC,无法得出四边形ABCD是平行四边形,故无法判断四边形ABCD是矩形.故错误;B、∵AB∥CD,∴∠BAD+∠ABC=∠ADC+∠BCD=180°,∵∠BAD=∠BCD,∴∠ABC=∠ADC,∴得出四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形.故正确;C、∵AO=CO,AB=BC,∴BD⊥AC,∠ABD=∠CBD,∵AB∥CD,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD,∴AB=CD,∴四边形ABCD是菱形,无法判断四边形ABCD是矩形.故错误;D、AO=OB,AC=BD无法判断四边形ABCD是矩形,故错误;故选:B.【点睛】本题考查矩形的判定方法、熟练掌握矩形的判定方法是解决问题的关键,记住对角线相等的平行四边形是矩形,有一个角是90度的平行四边形是矩形,有三个角是90度的四边形是矩形,属于中考常考题型.二.填空题(共12小题)7.分解因式:2mx-6my=__________.【答案】2m(x-3y)【解析】试题分析:对于因式分解的题目.如果有公因式,我们首先都需要提取公因式,然后利用公式法或十字相乘法进行因式分解.原式=2m(x-3y).考点:因式分解.8.函数中,自变量x的取值范围是____________________.【答案】x>1【解析】【分析】根据被开方数不能为负数,以及分母不能为零,列出不等式解不等式即可.【详解】根据题意得:x-1≥0,且x-1≠0解得x>1故填x>1【点睛】本题考查自变量的取值范围,正确列出不等式是解题关键.9.从1,2,3,4,5,6,7,这七个数中,任意抽取一个数,那么抽到素数的概率是_____.【答案】4 7【解析】【分析】根据素数定义,先找到素数的个数,让素数的个数除以数的总数即为所求的概率.【详解】解:∵1,2,3,4,5,6,7这7个数有4个素数是2,3,5,7;∴抽到素数的概率是47.故答案为:47.【点睛】本题考查的是概率公式.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn;找到素数的个数为易错点.10.一组数据:2,2,5,5,6,那么这组数据的方差是_____.【答案】14 5【解析】【分析】根据题意先求出这组数的平均数是4,再根据方差公式求解即可【详解】解:∵x=15(2+2+5+5+6)=4,∴S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2]=15[(4﹣2)2+(4﹣2)2+(4﹣5)2+(4﹣5)2+(4﹣6)2]=145,故答案为:145.【点睛】本题考查了方差:一般地设n个数据,x1,x2,…,x n的平均数为x,则方差S2=1n[(x1−x)2+(x2−x)2+…+(x n−x)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.11.不等式组21021xx-+<⎧⎨-⎩解集是_____.【答案】13 2x <【解析】【分析】先求出各个不等式的解集,再求它们的公共解集即为不等式组得解集.【详解】解:21021xx-+<⎧⎨-⎩①②,解不等式①,得12 x>;解不等式②,得x≤3;所以原不等式组的解集为:13 2x<≤,故答案为:13 2x <.【点睛】此题主要考查了解一元一次不等式(组),关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.12.x=的根是__________.【答案】2【解析】【分析】本题可先对方程两边平方,得到x+2=x,再对方程进行因式分解即可解出本题.【详解】原方程变形为:x+2=x 即x−x−2=0∴(x−2)(x+1)=0∴x=2或x=−1∵x=−1时不满足题意.∴x=2.故答案为2.【点睛】此题考查解无理方程,解题关键在于掌握方程解法.13.已知关于的一元二次方程 2210mx x -+=有两个不相等的实数根,则的取值范围是___.【答案】1m <且0m ≠【解析】【分析】由二次项系数非零结合根的判别式△>0,即可得出关于m 的一元一次不等式组,解之即可得出结论.【详解】∵关于x 的一元二次方程mx 2-2x+1=0有两个不相等的实数根,∴()20240m m ≠⎧⎪⎨--⎪⎩=>, 解得:m <1且m≠0.故答案为1m <且0m ≠.【点睛】本题考查了根的判别式、一元二次方程的定义以及解一元一次不等式组,根据二次项系数非零结合根的判别式△>0列出关于m 的一元一次不等式组是解题的关键.14.在△ABC 中,D 、E 分别在边AB 、AC 上,DE ∥BC ,DE 经过△ABC 重心,如果AB =π,AC n =,那么DE =_____.(用π、n 表示) 【答案】2233n π- 【解析】分析】由DE ∥BC 推出AD :AB =AG :AF =DE :BC =2:3,推出DE =23BC ,求出 BC 即可解决问题.【详解】解:如图设G 是重心,作中线AF .∵DE ∥BC ,∴AD :AB =AG :AF =DE :BC =2:3,∴DE =23BC , ∵BC BA AC =+ ∴BC n π=-,∴()222333DE n n ππ=-=- 故答案为:2233n π-. 【点睛】本题考查三角形的重心、平行线的性质、平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.如图,已知在5×5的正方形网格中,点A 、B 、C 在小正方形的顶点上,如果小正方形的边长都为1,那么点C 到线段AB 所在直线的距离是_____.【答案】355【解析】分析】根据题意,连接AD 、AC ,作CE ⊥AD 于点E ,由每个小正方形的边长为1,利用勾股定理,可以得到AC 、CD 、AD 的长,然后即可得到△ACD 的形状,再利用等积法,即可求得CE 的长.【详解】解:连接AD 、AC ,作CE ⊥AD 于点E ,∵小正方形的边长都为1,∵224225+=223332+=22112+=∵((2225322=+,即AD 2=AC 2+CD 2∴△ACD 是直角三角形,∠ACD =90°, ∴22AC CD AD CE ⋅⋅=, 即32225=22CE ⨯⨯, 解得,CE =355, 即点C 到线段AB 所在直线的距离是355, 故答案为:355.【点睛】本题考查勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.16.如图,已知在平面直角坐标系中,点A 在x 轴正半轴上,点B 在第一象限内,反比例函数y =k x的图象经过△OAB 的顶点B 和边AB 的中点C ,如果△OAB 的面积为6,那么k 的值是_____.【答案】4【解析】【分析】过B 作BD ⊥OA 于点D ,设点B (m ,n ),根据△OAB 的面积为6,可以求得A 点坐标,而点C 是AB 的中点,即可表示出C 点坐标,再将点B 、C 坐标同时代入反比例函数解析式,即可求解.【详解】解:过B 作BD ⊥OA 于D ,∵点B在反比例函数kyx=的图象上,∴设B(m,n),∵△OAB的面积为6,∴12 OAn=,∴ (12n,),∵点C是AB的中点,∴ (122mnn+,2n),∵点C在反比例函数kyx=的图象上,∴12=22mn nmnn+⋅,∴4mn=,∴4k=.故答案为.【点睛】本题目考查反比例函数,难度一般,正确作出辅助线,设出点B的坐标,是顺利解题的关键.17.定义:对于函数y=f(x),如果当a≤x≤b时,m≤y≤n,且满足n﹣m=k(b﹣a)(k是常数),那么称此函数为”k级函数”.如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得k=3,所以函数y=﹣3x为”3级函数”.如果一次函数y=2x﹣1(1≤x≤5)为”k级函数”,那么k的值是_____.【答案】2【解析】【分析】先根据一次函数的性质求出对应的y的取值范围,再根据k级函数的定义解答即可.【详解】解:∵一次函数y=2x﹣1,1≤x≤5,∴1≤y≤9,∵一次函数y=2x﹣1(1≤x≤5)为”k级函数”,∴9-1=k(5-1),解得:k=2;故答案为:2.【点睛】本题是新定义试题,主要考查了对”k级函数”的理解和一次函数的性质,正确理解”k级函数”的概念、熟练掌握一次函数的性质是解题关键.18.如图,已知在平行四边形ABCD中,AB=10,BC=15,tan∠A=43,点P是边AD上一点,联结PB,将线段PB绕着点P逆时针旋转90°得到线段PQ,如果点Q恰好落在平行四边形ABCD的边上,那么AP 的值是_____.【答案】6或10【解析】【分析】分情况解答:当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x,通过证明△PBE≌△QPF,得出PE=QF=x,DF=x﹣1,由tan∠FDQ=tan A=43=FQDF,即可得出AP的值;当点Q落在AD上时,得出∠APB=∠BPQ=90°,由tan A=43,即可得出AP的值;当点Q落在直线BC上时,作BE⊥AD于E,PF⊥BC于F.则四边形BEPF是矩形.由tan A=BEAE=43,可得出△BPQ是等腰直角三角形,此时求出BQ不满足题意,舍去.【详解】解:如图1中,当点Q落在CD上时,作BE⊥AD于E,QF⊥AD交AD的延长线于F.设PE=x.在Rt△AEB中,∵tan A=BEAE=43,AB=10,∴BE=8,AE=6,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠EBP +∠BPE =∠BPE +∠FPQ =90°,∴∠EBP =∠FPQ ,∵PB =PQ ,∠PEB =∠PFQ =90°,∴△PBE ≌△QPF (AAS ),∴PE =QF =x ,EB =PF =8,∴DF =AE +PE +PF ﹣AD =x ﹣1,∵CD ∥AB ,∴∠FDQ =∠A ,∴tan ∠FDQ =tan A =43=FQ DF , ∴1x x =43, ∴x =4,∴PE =4,∴AP =6+4=10;如图2,当点Q 落在AD 上时,∵将线段PB 绕着点P 逆时针旋转90°得到线段PQ ,∴∠BPQ =90°,∴∠APB =∠BPQ =90°,在Rt △APB 中,∵tan A =AP BP =43,AB =10, ∴AP =6;如图3中,当点Q 落在直线BC 上时,作BE ⊥AD 于E ,PF ⊥BC 于F .则四边形BEPF 是矩形.在Rt △AEB 中,∵tan A =BE AE =43,AB =10, ∴BE =8,AE =6,∴PF =BE =8, ∵△BPQ 是等腰直角三角形,PF ⊥BQ ,∴PF =BF =FQ =8,∴PB =PQ =,BQPB =16>15(不合题意舍去),综上所述,AP 的值是6或10,故答案为:6或10.【点睛】本题主要考查旋转的性质,由正切求边长,正确画出图形,分情况解答是解题的关键.三.解答题(共7小题)19.先化简,再求值:(1222a a ++-)÷2322a a a++,其中a. 【答案】2a a -,32+【解析】【分析】 先根据分式的混合运算法则化简,再把a 的值代入化简后的式子计算即可.【详解】解:原式=()()()()22232222a a a a a a a -+++÷+-+ =()()()2322232a a a a a a ++⨯+-+ =2a a -. 当a【点睛】本题考查了分式的化简求值和二次根式的除法运算,属于基本题型,熟练掌握分式的混合运算法则和分母有理化方法是解题关键.20.解方程组: 22212320x y x xy y +=⎧⎨-+=⎩【答案】1144x y =⎧⎨=⎩,2263x y =⎧⎨=⎩【解析】【分析】首先把第二个方程左边分解因式,即可转化为两个一次方程,分别与第一个方程组成方程组,即可求解.【详解】解:由(2)得(x−y)(x−2y)=0.∴x−y=0或x−2y=0,原方程组可化为212x yx y+=⎧⎨-=⎩,21220x yx y+=⎧⎨-=⎩,解这两个方程组,得原方程组的解为:114 4x y =⎧⎨=⎩,2263xy=⎧⎨=⎩.【点睛】本题主要考查了高次方程组的解法,解题的基本思想是降次,掌握降次的方法是解高次方程的关键.21.如图,有一拱桥的桥拱是圆弧形,已知桥拱的水面跨度AB(弧所对的弦的长)为8米,拱高CD(弧的中点到弦的距离)为2米.(1)求桥拱所在圆的半径长;(2)如果水面AB上升到EF时,从点E测得桥顶D的仰角为α,且cotα=3,求水面上升的高度.【答案】(1)桥拱所在圆的半径长为5米;(2)水面上升的高度为1米【解析】【分析】(1)根据点D是AB中点,DC AB⊥知C为AB中点,联结OA,设半径OA=OD=R,OC=OD﹣DC=R﹣2,在Rt△ACO中,由勾股定理求出半径.(2) 设OD与EF相交于点G,联结OE,由EF∥AB,OD⊥AB,得到OD⊥EF,进而找出EG=3DG,设水面上升的高度为x米,即CG=x,则DG=2﹣x,在Rt△EGO中根据勾股定理求出x即可.【详解】解:(1)∵点D是AB中点,DC AB⊥,∴AC=BC,DC经过圆心,设拱桥的桥拱弧AB所在圆的圆心为O,∵AB=8,∴AC=BC=4,联结OA ,设半径OA =OD =R ,OC =OD ﹣DC =R ﹣2,∵OD ⊥AB ,∴∠ACO =90°,在Rt △ACO 中,∵OA 2=AC 2+OC 2,∴R 2=(R ﹣2)2+42,解之得R =5.答:桥拱所在圆的半径长为5米.(2)设OD 与EF 相交于点G ,联结OE ,∵EF ∥AB ,OD ⊥AB ,∴OD ⊥EF ,∴∠EGD =∠EGO =90°,在Rt △EGD 中,cot 3EG DG α== , ∴EG =3DG ,设水面上升的高度为x 米,即CG =x ,则DG =2﹣x ,∴EG =6﹣3x ,在Rt △EGO 中,∵EG 2+OG 2=OE 2,∴(6﹣3x )2+(3+x )2=52,化简得 x 2﹣3x +2=0,解得 x 1=2(舍去),x 2=1,答:水面上升的高度为1米.【点睛】此题是关于圆的综合性试题,包含的知识点有解直角三角形,勾股定理,解一元二次方程等,有一定难度.22.某社区为了加强居民对新型冠状病毒肺炎防护知识的了解,鼓励社区居民在线参与作答《2020年新型冠状病毒肺炎的防护全国统一考试(全国卷)》试卷(满分100分),社区管理员随机从该社区抽取40名居民的答卷,并对他们的成绩(单位:分)进行整理、分析,过程如下:收集数据85 65 95 100 90 95 85 65 75 85 100 90 70 90 100 80 80 100 95 75 80 100 80 95 65 100 90 95 85 80 100 75 60 90 7080 95 75 100 90整理数据(每组数据可含最低值,不含最高值)分组(分) 频数频率60~70 4 0.170~80 a b80~90 10 0.2590~100 c d100~110 8 0.2分析数据(1)填空:a=,b=,c=,d=;(2)补全频率分布直方图;(3)由此估计该社区居民在线答卷成绩在(分)范围内的人数最多;(4)如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为人.【答案】(1)6,0.15,12,0.3;(2)见解析;(3):90~100;(4)400【解析】【分析】(1)根据数据找出a,c再求出相应的b,d.(2)根据(1)画图即可.(3)从直方图中直接找出频率最高者即为所求.(4)总数乘以频率即可.【详解】解:(1)由题意可知:第二组的频数a=6,第四组的频数c=12,∴第二组的频率为:6÷40=0.15,第四组的频率为:12÷40=0.3.故答案为:6,0.15,12,0.3;(2)如下图即为补全的频率分布直方图;(3)由此估计该社区居民在线答卷成绩在90~100(分)范围内的人数最多.故答案为:90~100;(4)800×(0.3+0.2)=400(人).答:如果该社区共有800人参与答卷,那么可估计该社区成绩在90分及以上约为400人.故答案为:400.【点睛】此题考查数据的收集,包含频率的计算,画直方图等,难度一般.23.如图,已知在正方形ABCD中,对角线AC与BD交于点O,点M在线段OD上,联结AM并延长交边DC于点E,点N在线段OC上,且ON=OM,联结DN与线段AE交于点H,联结EN、MN.(1)如果EN∥BD,求证:四边形DMNE是菱形;(2)如果EN⊥DC,求证:AN2=NC•AC.【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据正方形性质及ON=OM,求出MN∥CD,进而得出四边形DMNE是平行四边形,在证明出△AOM ≌△DON 即可得到平行四边形DMNE 是菱形;(2)根据MN ∥CD 得到AN AM NC ME =,再由EN ⊥DC 得到EN ∥AD ,AC DC AN DE=,再由AB ∥DC ,得到AM AB ME DE =,即可得到AN AC NC AN=,即为所求. 【详解】证明:(1)如图1,∵四边形ABCD 是正方形,∴OA =OB =OC =OD ,AC ⊥BD ,∵ON =OM ,∴ON OM OC OD= , ∴MN ∥CD ,又∵EN ∥BD ,∴四边形DMNE 是平行四边形,在△AOM 和△DON 中,∵∠AOM =∠DON =90°,OA =OD ,OM =ON ,∴△AOM ≌△DON (SAS ),∴∠OMA =∠OND ,∵∠OAM+∠OMA =90°,∴∠OAM+∠OND =90°∴∠AHN =90°.∴DN ⊥ME ,∴平行四边形DMNE 是菱形;(2)如图2,∵MN∥CD,∴AN AM NC ME=,∵四边形ABCD是正方形,∴AB∥DC,AB=DC,∠ADC=90°,∴AD⊥DC,又∵EN⊥DC,∴EN∥AD,∴AC DC AN DE=,∵AB∥DC,∴AM AB ME DE=,∴AN AC NC AN=,∴AN2=NC•AC.【点睛】此题考查正方形相关知识,主要是利用平行线分线段成比例求解,难度较大.24.如图,已知在平面直角坐标系xOy中,抛物线y=ax2+bx+4经过点A(﹣3,0)和点B(3,2),与y轴相交于点C.(1)求这条抛物线的表达式;(2)点P是抛物线在第一象限内一点,联结AP,如果点C关于直线AP的对称点D恰好落在x轴上,求直线AP的截距;(3)在(2)小题的条件下,如果点E是y轴正半轴上一点,点F是直线AP上一点.当△EAO与△EAF全等时,求点E的纵坐标.【答案】(1)211433y x x =-++;(2)32;(3335+或5 6 【解析】【分析】(1)把(3,0)A -和点(3,2)B 代入抛物线的解析式,列方程组,可得结论;(2)如图1,根据对称的性质得5AD AC ==,可得2OD =,设OH a =,则4HC HD a ==-,在Rt HOD ∆中,根据勾股定理得222HD OH OD =+,列方程可得结论;(3)分两种情况:先说明AOE ∆是直角三角形,所以EAF ∆也是直角三角形,根据90EFA ∠=︒,画图,由勾股定理列方程可解答.【详解】解:(1)抛物线24y ax bx =++过点(3,0)A -和点(3,2)B , 93409342a b a b -+=⎧⎨++=⎩, 解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩, 211433y x x =-++; (2)如图1,连接AC ,DH ,点关于直线AP 的对称点,AD AC =∴,211433y x x =-++与轴交于点(0,4)C ,与轴交于点(3,0)A -, 5AC ∴=,5AD ∴=,点(2,0)D ,设直线AP 与轴交于点,则HC HD =,设OH a =,则4HC HD a ==-,在Rt HOD ∆中,222HD OH OD =+,222(4)2a a ∴-=+, 32a =, 直线AP 的截距为32; (3)点是轴正半轴上一点,AOE ∴∆是直角三角形,且90AOE ∠=︒当EAO ∆与EAF ∆全等时,存在两种情况:①如图2,当90EFA AOE ∠=∠=︒,EFA AOE ∆≅∆,EF OA ∴=,AHO EHF ∠=∠,90AOH EFH ∠=∠=︒,()AOH EFH AAS ∴∆≅∆,AH EH ∴=,由(2)知:32OH =, 32EH AH OE ∴==-, Rt AHO ∆中,222AH AO OH =+,22233()3()22OE ∴-=+, 解得:3352OE +=或3352-(舍), 点的纵坐标是3352+; ②如图3,当90EFA AOE ∠=∠=︒,EFA EOA ∆≅∆,3AF AO ∴==,EF OE =, Rt AHO ∆中,223353()2AH =+= 353FH ∴=-,32EH OE =-, Rt EFH ∆中,由勾股定理得:222EH FH EF =+,222335()(3)2OE OE ∴-=-+, 解得:356OE =,点的纵坐标是356;335+或356. 【点睛】本题是一道二次函数综合题,解答本题的关键是掌握二次函数的性质,对称的性质:对称轴是对称点连接的垂直平分线,三角形全等的性质和判定,当三角形全等不确定边的对应关系时,先确定三角形的特殊性,如直角三角形或等腰三角形等条件,再进一步分情况讨论.25.如图,已知在△ABC 中,∠ACB =90°,AC =4,BC =8,点P 是射线AC 上一点(不与点A 、C 重合),过P 作PM ⊥AB ,垂足为点M ,以M 为圆心,MA 长为半径的⊙M 与边AB 相交的另一个交点为点N ,点Q 是边BC 上一点,且CQ =2CP ,联结NQ .(1)如果⊙M 与直线BC 相切,求⊙M 的半径长;(2)如果点P 在线段AC 上,设线段AP =x ,线段NQ =y ,求y 关于x 的函数解析式及定义域;(3)如果以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,求线段AP 的长.【答案】(1)55-;(2)2221220y x x =-+0<x <4);(3)52或112. 【解析】【分析】 (1)先根据勾股定理求得5AB =,设⊙M 的半径长为R ,则45BM R =,过M 作MH ⊥BC ,垂足为点H ,根据相似三角形的对应边成比例得到MB MH AB AC =,最后根据⊙M 与直线BC 相切,即MA =MH ,即可求解;(2)设AP =x ,得到CP =4﹣x ,CQ =8﹣2x ,BQ =2x ,过Q 作QG ⊥AB ,垂足为点G ,根据三角函数可得4525BG QG x x ==,,根据PM ⊥AB ,5cosA AM AC AP AB ===52565MA AN NG 45x x x ===,,,最后在Rt △QNG 中,根据勾股定理即可求解; (3)当点P 在线段AC 上,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO ,则MO ⊥EN ,根据以NQ 为直径的⊙O 与⊙M 的公共弦所在直线恰好经过点P ,PM ⊥AB ,MA =MN ,得到PN =P A ,∠P AN=∠ANE ,再根据∠ACB =90°,得到∠P AN +∠B =90°,∠NMO =∠B ,连接AQ ,根据 M 、O 分别是线段AN 、NQ 的中点,得到MO ∥AQ ,∠NMO =∠BAQ ,∠BAQ =∠B , QA =QB ,在Rt △QAC 中,根据勾股定理得,QA 2=AC 2+QC 2即可求解;当点P 在线段AC 的延长112上,即11x 2=. 【详解】(1)解:如图1,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=8,∴22AB4845=+=设⊙M半径长为R,则BM45R=-过M作MH⊥BC,垂足为点H,∴MH∥AC,∵MH∥AC,∴△BHM∽△BCA,∴MB MH AB AC=∵⊙M与直线BC相切,∴MA=MH,∴454 45R R-=∴R55=-,即M的半径长为55-;(2)如图2,∵AP =x ,∴CP =4﹣x ,∵CQ =2CP ,∴CQ =8﹣2x ,∴BQ =BC ﹣CQ =8﹣(8﹣2x )=2x ,过Q 作QG ⊥AB ,垂足为点G , ∵cos BG BC B BQ AB==, ∴2BG x =,∴BG 5x =同理: QG 5x =∵PM ⊥AB ,∴∠AMP =90°,∴cosA AM AC AP AB ===∵AP =x ,∴MA AN x x ==,∴NG 5x = 在Rt △QNG 中,根据勾股定理得,QN 2=NG 2+QG 2,∴222y ⎛⎫⎫=+ ⎪⎪⎝⎭⎭∴y =0<x <4);(3)当点P 在线段AC 上,如图3,设以NQ 为直径的⊙O 与⊙M 的另一个交点为点E ,连接EN ,MO , 则MO ⊥EN ,∴∠NMO+∠ANE=90°,∵以NQ为直径的⊙O与⊙M的公共弦所在直线恰好经过点P,即P、E、N在同一直线上,又∵PM⊥AB,MA=MN,∴PN=P A,∴∠P AN=∠ANE,∵∠ACB=90°,∴∠P AN+∠B=90°,∴∠NMO=∠B,连接AQ,∵M、O分别是线段AN、NQ的中点,∴MO∥AQ,∴∠NMO=∠BAQ,∴∠BAQ=∠B,∴QA=QB,在Rt△QAC中,根据勾股定理得,QA2=AC2+QC2,∴(2x)2=42+(8﹣2x)2,∴5 x2 =同理:当点P在线段AC的延长112上,11x2=即线段AP的长为52或112.【点睛】此题考查圆的综合题,涉及到相似三角形的判定和性质、解直角三角形,还涉及到了分类讨论的思想,熟练掌握各知识点的融会贯通是解题关键.。
中考数学模拟试卷(附带答案)学校:___________班级:___________姓名:___________考号:___________一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)如图所示的几何体中主视图是()A.B.C.D.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×1035.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣26.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.210.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=b=c=(2)你认为服装店应选择哪个供应商供应服装?为什么?19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BE AC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为(2)当男女相遇时求此时男女同学距离终点的距离.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.参考答案与试题解析一选择题(本题共10小题每小题3分共30分在每小题给出的四个选项中只有1个选项正确)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据绝对值的定义求解.【解答】解:|﹣6|=6.故选:B.【点评】本题考查了绝对值的定义掌握一个正数的绝对值是它本身一个负数的绝对值是它的相反数0的绝对值是0是解题的关键.2.(3分)如图所示的几何体中主视图是()A.B.C.D.【分析】找到从正面看所得到的图形得出主视图即可.【解答】解:如图所示的几何体中主视图是B选项故选:B.【点评】此题主要考查了几何体的三视图关键是掌握主视图和左视图所看的位置.3.(3分)如图直线AB∥CD∠ABE=45°∠D=20°则∠E的度数为()A.20°B.25°C.30°D.35°【分析】由平行线的性质可得∠ABE=∠BCD从而求出∠DCE再根据三角形的内角和即可求解.【解答】解:∵AB∥CD∴∠ABE=∠BCD=45°∴∠DCE=135°由三角形的内角和可得∠E=180°﹣135°﹣20°=25°.故选:B.【点评】本题考查平行线的性质和三角形的内角和定理熟练掌握性质是解题关键.4.(3分)某种离心机的最大离心力为17000g.数据17000g用科学记数法表示为()A.0.17×104B.1.7×105C.1.7×104D.17×103【分析】用科学记数法表示较大的数时一般形式为a×10n其中1≤|a|<10 n为整数且n比原来的整数位数少1 据此判断即可.【解答】解:17000=1.7×104.故选:C.【点评】此题主要考查了科学记数法﹣表示较大的数一般形式为a×10n其中1≤|a|<10 确定a与n的值是解题的关键.5.(3分)下列计算正确的是()A.=B.2+3=5C.=4D.(2﹣2)=6﹣2【分析】先根据零指数幂二次根式的加法法则二次根式的性质二次根式的乘法法则进行计算再得出选项即可.【解答】解:A.()0=1 故本选项不符合题意B.2+3=5故本选项不符合题意C.=2故本选项不符合题意D.(2﹣2)=﹣2=6﹣2故本选项符合题意故选:D.【点评】本题考查了二次根式的混合运算和零指数幂能灵活运用二次根式的运算法则进行计算是解此题的关键.6.(3分)将方程+3=去分母两边同乘(x﹣1)后的式子为()A.1+3=3x(1﹣x)B.1+3(x﹣1)=﹣3xC.x﹣1+3=﹣3x D.1+3(x﹣1)=3x【分析】分式方程变形后去分母得到结果即可做出判断.【解答】解:分式方程去分母得:1+3(x﹣1)=﹣3x.故选:B.【点评】此题考查了解分式方程解分式方程的基本思想是“转化思想”把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(3分)已知蓄电池两端电压U为定值电流I与R成反比例函数关系.当I=4A时R =10Ω则当I=5A时R的值为()A.6ΩB.8ΩC.10ΩD.12Ω【分析】设I=则U=IR=40 得出R=计算即可.【解答】解:设I=则U=IR=40∴R===8故选:B.【点评】本题考查反比例函数的应用解题的关键是掌握欧姆定律.8.(3分)圆心角为90°半径为3的扇形弧长为()A.2πB.3πC.πD.π【分析】根据弧长公式计算即可.【解答】解:l==π∴该扇形的弧长为π.故选:C.【点评】本题考查弧长的计算关键是掌握弧长的计算公式.9.(3分)已知抛物线y=x2﹣2x﹣1 则当0≤x≤3时函数的最大值为()A.﹣2B.﹣1C.0D.2【分析】根据抛物线的解析式求得对称轴为直线x=1 根据二次函数的性质即可得到结论.【解答】解:∵y=x2﹣2x﹣1=(x﹣1)2﹣2∴对称轴为直线x=1∵a=1>0∴抛物线的开口向上∴当0≤x<1时y随x的增大而减小∴当x=0时y=﹣1当1≤x≤3时y随x的增大而增大∴当x=3时y=9﹣6﹣1=2∴当0≤x≤3时函数的最大值为2故选:D.【点评】本题考查了二次函数的性质二次函数的最值熟练掌握二次函数的性质是解题的关键.10.(3分)某小学开展课后服务其中在体育类活动中开设了四种运动项目:乒乓球排球篮球足球.为了解学生最喜欢哪种运动项目随机选取100名学生进行问卷调查(每位学生仅选一种)并将调查结果绘制成如下的扇形统计图.下列说法错误的是()A.本次调查的样本容量为100B.最喜欢篮球的人数占被调查人数的30%C.最喜欢足球的学生为40人D.“排球”对应扇形的圆心角为10°【分析】利用扇形图可得喜欢排球的占10% 喜欢篮球的人数占被调查人数的30% 最喜欢足球的学生为100×40%=40人用360°×喜欢排球的所占百分比可得圆心角.【解答】解:A本次调查的样本容量为100 故此选项不合题意B最喜欢篮球的人数占被调查人数的30% 故此选项不合题意C最喜欢足球的学生为100×40%=40(人)故此选项不合题意D根据扇形图可得喜欢排球的占10% “排球”对应扇形的圆心角为360°×10%=36°故此选项符合题意故选:D.【点评】本题考查的是扇形统计图读懂统计图从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.二填空题(本题共6小题每小题3分共18分)11.(3分)9>﹣3x的解集为x>﹣3.【分析】按照解一元一次不等式的步骤进行计算即可解答.【解答】解:9>﹣3x3x>﹣9x>﹣3故答案为:x>﹣3.【点评】本题考查了解一元一次不等式熟练掌握解一元一次不等式的步骤是解题的关键.12.(3分)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球记下标号后放回并再次摸出一个球记下标号后放回.则两次标号之和为3的概率为.【分析】根据题意画出相应的树状图然后即可求得两次标号之和为3的概率.【解答】解:树状图如图所示由上可得一共存在4种等可能性其中两次标号之和为3的可能性有2种∴两次标号之和为3的概率为=故答案为:.【点评】本题考查列表法与树状图法解答本题的关键是明确题意画出相应的树状图求出相应的概率.13.(3分)如图在菱形ABCD中AC BD为菱形的对角线∠DBC=60°BD=10 点F为BC中点则EF的长为5.【分析】由四边形ABCD是菱形可得BC=DC AC⊥BD∠BEC=90°又∠DBC=60°知△BDC是等边三角形BC=BD=10 而点F为BC中点故EF=BC=5.【解答】解:∵四边形ABCD是菱形∴BC=DC AC⊥BD∴∠BEC=90°∵∠DBC=60°∴△BDC是等边三角形∴BC=BD=10∵点F为BC中点∴EF=BC=5故答案为:5.【点评】本题考查菱形的性质及应用涉及等边三角形的判定与性质解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.14.(3分)如图在数轴上OB=1 过O作直线l⊥OB于点O在直线l上截取OA=2 且A在OC上方.连接AB以点B为圆心AB为半径作弧交直线OB于点C则C点的横坐标为1+.【分析】在Rt△AOB中利用勾股定理求出AB=则AB=BC=进而求得OC =1+据此即可求解.【解答】解:∵OA⊥OB∴∠AOB=90°在Rt△AOB中AB===∵以点B为圆心AB为半径作弧交直线OB于点C∴AB=BC=∴OC=OB+BC=1+∴点C的横坐标为1+.故答案为:1+【点评】本题主要考查勾股定理实数与数轴利用勾股定理正确求出AB的长是解题关键.15.(3分)我国的《九章算术》中记载道:“今有共买物人出八盈三人出七不足四.问有几人.”大意是:今有人合伙购物每人出8元钱会多3钱每人出7元钱又差4钱问人数有多少.设有x人则可列方程为:8x﹣3=7x+4.【分析】根据货物的价格不变即可得出关于x的一元一次方程此题得解.【解答】解:依题意得:8x﹣3=7x+4.故答案为:8x﹣3=7x+4.【点评】本题考查了由实际问题抽象出一元一次方程找准等量关系正确列出一元一次方程是解题的关键.16.(3分)如图在正方形ABCD中AB=3 延长BC至E使CE=2 连接AE.CF平分∠DCE交AE于F连接DF则DF的长为.【分析】过点F作FM⊥CE于M作FN⊥CD于点N首先证四边形CMFN为正方形再设CM=a则FM=FN=CM=CN=a BE=5 EM=2﹣a然后证△EFM和△EAB相似由相似三角形的性质求出a进而在Rt△AFN中由勾股定理即可求出DF.【解答】解:过点F作FM⊥CE于M作FN⊥CD于点N∵四边形ABCD为正方形AB=3∴∠ACB=90°BC=AB=CD=3∵FM⊥CE FN⊥CD∠ACB=∠B=90°∴四边形CMFN为矩形又∵CF平分∠DCE FM⊥CE FN⊥CD∴FM=FN∴四边形CMFN为正方形∴FM=FN=CM=CN设CM=a则FM=FN=CM=CN=a∵CE=2∴BE=BC+CE=5 EM=CE﹣CM=2﹣a∵∠B=90°FM⊥CE∴FM∥AB∴△EFM∽△EAB∴FM:AB=EM:BE即:a:3=(2﹣a):5解得:∴∴在Rt△AFN中由勾股定理得:.故答案为:.【点评】此题主要考查了正方形的判定及性质相似三角形的判定和性质勾股定理等解答此题的关键是熟练掌握相似三角形的判定方法理解相似三角形的对应边成比例.三解答题(本题共4小题其中17题9分18 19 20题各10分共39分)17.(9分)计算:(+)÷.【分析】先利用异分母分式加减法法则计算括号里再算括号外然后进行计算即可解答.【解答】解:原式=[+]•=•=.【点评】本题考查了分式的混合运算准确熟练地进行计算是解题的关键.18.(10分)某服装店的某件衣服最近销售火爆.现有A B两家供应商到服装店推销服装两家服装价格相同品质相近.服装店决定通过检查材料的纯度来确定选购哪家的服装.检查人员从两家提供的材料样品中分别随机抽取15块相同的材料通过特殊操作检验出其纯度(单位:%)并对数据进行整理描述和分析.部分信息如下:Ⅰ.A供应商供应材料的纯度(单位:%)如下:A72737475767879频数1153311Ⅱ.B供应商供应材料的纯度(单位:%)如下:72ㅤ75ㅤ72ㅤ75ㅤ78ㅤ77ㅤ73ㅤ75ㅤ76ㅤ77ㅤ71ㅤ78ㅤ79ㅤ72ㅤ75Ⅲ.A B两供应商供应材料纯度的平均数中位数众数和方差如下:平均数中位数众数方差A757574 3.07B a75b c根据以上信息回答下列问题:(1)表格中的a=75b=75c=6(2)你认为服装店应选择哪个供应商供应服装?为什么?【分析】(1)根据平均数众数和方差的计算公式分别进行解答即可(2)根据方差的定义方差越小数据越稳定即可得出答案.【解答】解:(1)B供应商供应材料纯度的平均数为a=×(72+75+72+75+78+77+73+75+76+77+71+78+79+72+75)=7575出现的次数最多故众数b=75方差c=×[3×(72﹣75)2+4×(75﹣75)2+2×(78﹣75)2+2×(77﹣75)2+(73﹣75)2+(76﹣75)2+(71﹣75)2+(79﹣75)2]=6故答案为:75 75 6(2)选A供应商供应服装理由如下:∵A B平均值一样B的方差比A的大A更稳定∴选A供应商供应服装.【点评】本题考查了方差平均数中位数众数熟悉相关统计量的计算公式和意义是解题的关键.19.(10分)如图在△ABC和△ADE中延长BC交DE于F.BC=DE AC=AE∠ACF+∠AED=180°.求证:AB=AD.【分析】由“SAS”可证△ABC≌△ADE可得结论.【解答】证明:∵∠ACB+∠ACF=∠ACF+∠AED=180°∴∠ACB=∠AED在△ABC和△ADE中∴△ABC≌△ADE(SAS)∴AB=AD.【点评】本题考查了全等三角形的判定和性质证明三角形全等是解题的关键.20.(10分)为了让学生养成热爱图书的习惯某学校抽出一部分资金用于购买书籍.已知2020年该学校用于购买图书的费用为5000元2022年用于购买图书的费用是7200元求2020﹣2022年买书资金的平均增长率.【分析】设2020﹣2022年买书资金的平均增长率为x利用2022年用于购买图书的费用=2020年用于购买图书的费用×(1+2020﹣2022年买书资金的平均增长率)2可列出关于x的一元二次方程解之取其符合题意的值即可得出结论.【解答】解:设2020﹣2022年买书资金的平均增长率为x根据题意得:5000(1+x)2=7200解得:x1=0.2=20% x2=﹣2.2(不符合题意舍去).答:2020﹣2022年买书资金的平均增长率为20%.【点评】本题考查了一元二次方程的应用找准等量关系正确列出一元二次方程是解题的关键.四解答题(本题共3小题其中21题9分22 23题各10分共29分)21.(9分)如图所示是消防员攀爬云梯到小明家的场景.已知AE⊥BE BC⊥BE CD∥BEAC=10.4m BC=1.26m点A关于点C的仰角为70°则楼AE的高度为多少m?(结果保留整数.参考数据:sin70°≈0.94 cos70°≈0.34 tan70°≈2.75)【分析】延长CD交AE于H于是得到CH=BE EH=BC=1.26m解直角三角形即可得到结论.【解答】解:延长CD交AE于H则CH=BE EH=BC=1.26m在Rt△ACH中AC=10.4m∠ACH=70°∴AH=AC•sin70°=10.4×0.94≈9.78(m)∴AE=AH+CH=9.78+1.26≈11(m)答:楼AE的高度约为11m.【点评】本题考查了解直角三角形的应用﹣仰角俯角问题正确地作出辅助线是解题的关键.22.(10分)为了增强学生身体素质学校要求男女同学练习跑步.开始时男生跑了50m女生跑了80m然后男生女生都开始匀速跑步.已知男生的跑步速度为4.5m/s当到达终点时男女均停止跑步女生从开始匀速跑步到停止跑步共用时120s.已知x轴表示从开始匀速跑步到停止跑步的时间y轴代表跑过的路程则:(1)男女跑步的总路程为1000m(2)当男女相遇时求此时男女同学距离终点的距离.【分析】(1)根据男女同学跑步的路程相等即可求解(2)求出女生跑步的速度列方程求解即可.【解答】解:(1)男生匀速跑步的路程为4.5×100=450(m)450+50=500(m)则男女跑步的总路程为500×2=1000(m)故答案为:1000m(2)设从开始匀速跑步到男女相遇时的时间为xs女生跑步的速度为(500﹣80)÷120=3.5(m/s)根据题意得:80+3.5x=50+4.5x解得x=30∴此时男女同学距离终点的距离为4.5×(100﹣30)=315(m)答:此时男女同学距离终点的距离为315m.【点评】此题主要考查了一元一次方程的应用关键是正确理解题意找出题目中的等量关系然后设出未知数列出方程.23.(10分)如图1 在⊙O中AB为⊙O的直径点C为⊙O上一点AD为∠CAB的平分线交⊙O于点D连接OD交BC于点E.(1)求∠BED的度数(2)如图2 过点A作⊙O的切线交BC延长线于点F过点D作DG∥AF交AB于点G.若AD=2DE=4 求DG的长.【分析】(1)根据圆周角定理证得两直线平行再根据平行线的性质即可得到结论(2)由勾股定理得到边的关系求出线段的长再利用等面积法求解即可.【解答】解:(1)∵AB为⊙O的直径∴∠ACB=90°∵AD为∠CAB的平分线∴∠BAC=2∠BAD∵OA=OD∴∠BAD=∠ODA∴∠BOD=∠BAD+∠ODA=2∠BAD∴∠BOD=∠BAC∴OD∥AC∴∠OEB=∠ACB=90°∴∠BED=90°(2)连接BD设OA=OB=OD=r则OE=r﹣4 AC=2OE=2r﹣8 AB=2r∵AB为⊙O的直径∴∠ADB=90°在Rt△ADB中BD2=AB2﹣AD2由(1)得∠BED=90°∴∠BED=∠BEO=90°∴BE2=OB2﹣OE2BE2=BD2﹣DE2∴BD2=AB2﹣AD2=BE2+DE2=OB2﹣OE2+DE2∴=r2﹣(r﹣4)2+42解得r=7或r=﹣5(不合题意舍去)∴AB=2r=14∴∵AF是⊙O的切线∴AF⊥AB∵DG⊥AF∴DG⊥AB∴∴.【点评】本题考查了圆周角定理勾股定理切线的性质解一元二次方程熟练掌握圆周角定理和勾股定理是解题的关键.五解答题(本题共3小题其中24 25题各11分26题12分共34分)24.(11分)如图1 在平面直角坐标系xOy中直线y=x与直线BC相交于点A.P(t0)为线段OB上一动点(不与点B重合)过点P作PD⊥x轴交直线BC于点D△OAB 与△DPB的重叠面积为S S关于t的函数图象如图2所示.(1)OB的长为4△OAB的面积为(2)求S关于t的函数解析式并直接写出自变量t的取值范围.【分析】(1)由t=0时P与O重合得S=t=4时P与B重合得OB=4 (2)设A(a a)由×4a=得a=A()分两种情况:当0≤t≤时设OA交PD于E可得PE=PO=t S△POE=t2故S=﹣S△POE=﹣t2当<t<4时求出直线AB解析式为y=﹣x+2 可得C(0 2)由tan∠CBO====得DP=PB=(4﹣t)=2﹣t故S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=t2﹣2t+4.【解答】解:(1)t=0时P与O重合此时S=S△ABO=t=4时S=0 P与B重合∴OB=4 B(4 0)故答案为:4(2)∵A在直线y=x上∴∠AOB=45°设A(a a)∴S△ABO=OB•a即×4a=∴a=∴A()当0≤t≤时设OA交PD于E如图:∵∠AOB=45°PD⊥OB∴△PEO是等腰直角三角形∴PE=PO=t∴S△POE=t2∴S=﹣S△POE=﹣t2当<t<4时如图:由A()B(4 0)得直线AB解析式为y=﹣x+2 当x=0时y=2∴C(0 2)∴OC=2∵tan∠CBO====∴DP=PB=(4﹣t)=2﹣t∴S=S△DPB=DP•PB=(2﹣t)×(4﹣t)=(4﹣t)2=t2﹣2t+4综上所述S=.【点评】本题考查动点问题的函数图象涉及锐角三角函数待定系数法等腰直角三角形等知识解题的关键是从函数图象中获取有用的信息.25.(11分)综合与实践问题情境:数学活动课上王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质.已知AB=AC∠A>90°点E为AC上一动点将△ABE以BE为对称轴翻折.同学们经过思考后进行如下探究:独立思考:小明:“当点D落在BC上时∠EDC=2∠ACB.”小红:“若点E为AC中点给出AC与DC的长就可求出BE的长.”实践探究:奋进小组的同学们经过探究后提出问题1 请你回答:问题1:在等腰△ABC中AB=AC∠A>90°△BDE由△ABE翻折得到.(1)如图1 当点D落在BC上时求证:∠EDC=2∠ACB(2)如图2 若点E为AC中点AC=4 CD=3 求BE的长.问题解决:小明经过探究发现:若将问题1中的等腰三角形换成∠A<90°的等腰三角形可以将问题进一步拓展.问题2:如图3 在等腰△ABC中∠A<90°AB=AC=BD=4 2∠D=∠ABD.若CD=1 则求BC的长.【分析】问题1:(1)由等腰三角形的性质可得∠ABC=∠ACB由折叠的性质和三角形内角和定理可得∠A=∠BDE=180°﹣2∠C由邻补角的性质可得结论(2)由三角形中位线定理可得CD=2EF由勾股定理可求AF BF即可求解问题2:先证四边形CGMD是矩形由勾股定理可求AD由等腰三角形的性质可求MD CG即可求解.【解答】问题1:(1)证明:∵AB=AC∴∠ABC=∠ACB∵△BDE由△ABE翻折得到∴∠A=∠BDE=180°﹣2∠C∵∠EDC+∠BDE=180°∴∠EDC=2∠ACB(2)解:如图连接AD交BE于点F∵△BDE由△ABE翻折得到∴AE=DE AF=DF∴CD=2EF=3∴EF=∵点E是AC的中点∴AE=EC=AC=2在Rt△AEF中AF===在Rt△ABF中BF===∴BE=BF+EF=问题2:解:连接AD过点B作BM⊥AD于M过点C作CG⊥BM于G∵AB=BD BM⊥AD∴AM=DM∠ABM=∠DBM=∠ABD∵2∠BDC=∠ABD∴∠BDC=∠DBM∴BM∥CD∴CD⊥AD又∵CG⊥BM∴四边形CGMD是矩形∴CD=GM在Rt△ACD中CD=1 AD=4 AD===∴AM=MD=CG=MD=在Rt△BDM中BM===∴BG=BM﹣GM=BM﹣CD==在Rt△BCG中BC===.【点评】本题是几何变换综合题考查了等腰三角形的性质折叠的性质勾股定理矩形的性质和判定灵活运用这些性质解决问题是解题的关键.26.(12分)如图在平面直角坐标系中抛物线C1:y=x2上有两点A B其中点A的横坐标为﹣2 点B的横坐标为1 抛物线C2:y=﹣x2+bx+c过点A B.过A作AC∥x 轴交抛物线C1另一点为点C.以AC AC长为边向上构造矩形ACDE.(1)求抛物线C2的解析式(2)将矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.①求n关于m的函数关系式并直接写出自变量m的取值范围②直线A′E′交抛物线C1于点P交抛物线C2于点Q.当点E′为线段PQ的中点时求m的值③抛物线C2与边E′D′A′C′分别相交于点M N点M N在抛物线C2的对称轴同侧当MN=时求点C′的坐标.【分析】(1)根据题意得出点A(﹣2 4)B(1 1)利用待定系数法求解析式即可求解.(2)①根据平移的性质得出C′(2﹣m4﹣n)根据点C的对应点C′落在抛物线C1上可得(2﹣m)2=4﹣n即可求解.②根据题意得出P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)求得中点坐标根据题意即可求解.③作辅助线利用勾股定理求得MG=设出N点M点坐标将M点代入y=﹣x2﹣2x+4 求得N点坐标进而根据点C的对应点C′落在抛物线C1上即可求解.【解答】(1)根据题意点A的横坐标为﹣2 点B的横坐标为1 代入抛物线C1:y=x2∴当x=﹣2时y=(﹣2)2=4 则A(﹣2 4)当x=1时y=1 则B(1 1)将点A(﹣2 4)B(1 1)代入抛物线C2:y=﹣x2+bx+c∴解得∴抛物线C2的解析式为y=﹣x2﹣2x+4.(2)①∵AC∥x轴交抛物线另一点为C当y=4时x=±2∴C(2 4)∵矩形ACDE向左平移m个单位向下平移n个单位得到矩形A′C′D′E′点C的对应点C′落在抛物线C1上.∴C′(2﹣m4﹣n)(2﹣m)2=4﹣n整理得n=﹣m2+4m∵m>0 n>0∴0<m<4∴n=﹣m2+4m(0<m<4)②如图∵A(﹣2 4)C(2 4)∴AC=4∵∴E(﹣2 6)由①可得A′(﹣2﹣m m2﹣4m+4)E′(﹣2﹣m m2﹣4m+6)∴P Q的横坐标为﹣2﹣m分别代入C1C2∴P(﹣2﹣m m2+4m+4)Q(﹣2﹣m﹣m2﹣2m+4)∴∴PQ的中点坐标为(﹣2﹣m m+4)∵点E′为线段PQ的中点∴m2﹣4m+6=m+4解得m=或m=(大于4 舍去).③如图连接MN过点N作NG⊥E′D′于点G则NG=2∵∴设N(a﹣a2﹣2a+4)则M(a﹣﹣a2﹣2a+6)将M点代入y=﹣x2﹣2x+4得解得a=当a=∴将y =代入y=x2解得∴或.【点评】本题考查了二次函数的综合应用解题的关键是作辅助线掌握二次函数的性质.第31 页共31 页。
2023年黑龙江省哈尔滨市中考模拟数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.12-的倒数是( ) A . B . C .12- D .12 2.下列运算正确的是( )A .236a a a ⋅=B .352()a a =C .235a a a ÷=D .44()a a -= 3.下列图形中,是中心对称图形但不是轴对称图形的是( )A .B .C .D . 4.已知反比例函数k y x =的图象经过点()12P --,,则这个函数的图象位于( ) A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 5.如图是由几个相同的小正方体搭成的一个几何体,它的俯视图是( )A .B .C .D . 6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是( )A .500sinα米B .500sin a 米C .500cosα米D .500cos a 米 7.某水果园2019年水果产量为50吨,2021年水果产量为75吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .275(1)50x -=B .250(1)75x -=C .250(1)75x +=D .275(1)50x += 8.如图,A 、D 是⊙O 上的两个点,BC 是直径,若⊙D=35°,则⊙OAC 的度数是( )A .35°B .55°C .65°D .70°9.如图,,AB CD AE FD ∥∥,AE ,FD 分别交BC 于点G ,H ,则下列结论中错误的是( )A .DH CH FH BH =B .GE CG DF CB =C .AF HG CE CG =D .=FH BF AG FA 10.小明和小强两名同学同时进行800米耐力跑,小明和小强所跑的路程S (米)与所用时间t (秒)之间的函数图像分别为线段OA 和折线OBCD ,下列说法正确的是( ).A .小明的速度随时间的增大而增大B .小强的平均速度比小明的平均速度大C .在起跑后180秒后,小强的速度为5米/秒D .在起跑后50秒时,小明在小强的前面二、填空题11.根据Worldometer 实时统计数据,截至北京时间2022年5月16日,美国累计确诊新冠肺炎病例约为84000000例,令人触目惊心.同时也为我们伟大的祖国在抗疫上取得的成就而骄傲.把84000000用科学记数法表示为____________.12.在函数x y x 3=+中,自变量x 的取值范围是_____. 13.把22ab ab a -+分解因式的结果是_________.14.计算____________. 15.不等式组21343x x +≤⎧⎨>-⎩的解集为____________. 16.抛物线22(1)3y x =--的顶点坐标为____________.17.在围棋盒中有x 颗白色棋子和6颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋的概率是25,则盒中有白色棋子____________颗. 18.圆心角为60︒的扇形的面积为32π,则扇形的半径为____________. 19.如图,已知矩形ABCD 中,点E 为AD 的中点,F 为CD 中点,4AB =,6AD =,点H 为BC 上一点且EH 为FH 的长为____________.20.如图,四边形ABCD .连接AC 、BD ,AB AD =,3CAD BAC ∠=∠,90CBD ∠=︒,若:5:8AB BD =,若AC =CD 的长为____________.三、解答题21.先化简,再求代数式2122()3x x y x xy x--÷--的值,其中x=2+tan60°,y=4sin30°. 22.图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A 、B 在小正方形的顶点上,请在图1、图2中各画一个三角形,满足以下要求:(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,使其面积为5;(2)在图2中,画平行四边形ABEF,点E、F在小正方形的顶点上,且使其面积为7.并直接写出AE的长.23.2022年3月中旬起,哈尔滨市又一次经历了疫情的考验,同学们不得不在线上进行了很长一段时间的学习,在线上上课期间,学校提倡同学们在空余时间多读书来充实自己.某学校为了解学生的疫情期间的课外阅读情况,张老师随机抽查部分学生,并对其疫情期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图,已知抽查的学生在疫情期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:(1)求被抽查学生人数;(2)通过计算,将条形统计图补充完整;(3)若规定:疫情阅读3本及3本以上课外书者为良好,据此估计该校1500名学生中,达到良好程度的有多少名学生?24.如图,四边形ABCD为平行四边形,点O为BD的中点,过点O作EF BD,交AD于点F,交BC于点E.(1)如图1,求证:四边形FBED 为菱形(2)如图2,当90A ∠=︒,ABF BDE ∠=∠长的线段.25.某商店购进A 、B 两种商品,B 商品每件进价比A 商品每件进价多1元,若60元购进A 商品的件数与72元购进B 商品的件数相同.(1)求A 、B 商品每件进价分别是多少元?(2)若该商店购进A 、B 两种商品共140件,A 种商品每件售价8元,B 种商品每件售价10元,全部商品售出后,获利不少于460元,求最多购进A 商品多少件?26.已知,BF 为O 直径,弦AB 交弦CD 于点E ,连接AD 、CF 、BC ,连接CG ,AD CF =.(1)如图1,求证:AB CD ⊥;(2)如图2,点G 为BE 上一点,连接CG ,若2CGB F CBF ∠-∠=∠,求证:AE EG =;(3)如图3,连接BD ,BD CG =,过点A 作O 的切线交CF 的延长线于点H ,过点B作BK BC ⊥,作CK BF ∥交BK 于点K ,连接DK ,若1tan 2BCG ∠=,AH =DK 的长.27.如图1,在平面直角坐标系内,点O 为坐标原点,直线4y x =-+交x 轴于C ,交y 轴于A ,点B 与点C 关于y 轴对称.(1)求直线AB 的解析式:(2)如图2,点E 为AC 上一点,以BE 为斜边作等腰直角三角形BEF ,FE FB =,90BFE∠=︒,连接AF,设AF的长为m,EC的长为d,求d与m之间的函数关系式(不要求写出自变量的取值范围)(3)如图3,点G为y轴负半轴上一点,连接,EG交x轴于点H,EG BF=,连接FH交BE于点Q,点I为FQ上一点,且BF BI=,若45AFEH=,求IQ的长参考答案:1.A【解析】【分析】根据倒数的概念求解即可.【详解】的倒数为-2.根据乘积等于1的两数互为倒数,可直接得到-12故选A.2.D【解析】【分析】根据同底数幂乘除法、幂的乘方、积的乘方运算法则,分别进行判断,即可得到答案.【详解】A.235⋅=,故此选项计算错误,不符合题意;a a aB.()326a a=,故此选项计算错误,不符合题意;C.231a a a,故此选项计算错误,不符合题意;()44a a-=,故此选项计算正确,符合题意.故选:D.【点睛】本题考查了整式的运算,熟练掌握同底数幂乘法、幂的乘方、积的乘方、同底数幂除法法则是解题的关键.3.A【解析】【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,也是中心对称图形.故选:A.【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.4.B【解析】【分析】直接根据P的位置和反比例函数关于原点成中心对称,即可得出答案.【详解】解法一:⊙P(-1,-2)在第三象限,⊙反比例函数过第三象限⊙反比例函数图形关于原点对称⊙反比例函数kyx=位于一、三象限故选:B.解法二:将P(-1,-2)代入kyx=得2k=,⊙20k=>,⊙反比例函数kyx=位于一、三象限,故选:B.【点睛】本题考查反比例函数图象,理解k的符号与反比例函数图象的位置是解题的关键.5.D【解析】【分析】根据俯视图是从上面看到的图形解答即可.【详解】从上面看,左边和中间都是2个正方形,右上角是1个正方形, 故选D .【点睛】本题考查了三视图的知识,关键是找准俯视图所看的方向.6.A【解析】【详解】sin 500h α= , 500sin h α∴= .故选A.7.C【解析】【分析】2021年的产量=2019年的产量×(1+年平均增长率)2,把相关数值代入即可.【详解】解:2020年的产量为50(1+x ),2021年的产量为50(1+x )(1+x )=50(1+x )2,即所列的方程为50(1+x )2=75.故选:C .【点睛】考查列一元二次方程;得到2021年产量的等量关系是解决本题的关键. 8.B【解析】【详解】解:⊙⊙D=35°,⊙⊙AOC=2⊙D=70°,⊙⊙OAC=(180°-⊙AOC)÷2=110°÷2=55°.故选B.9.D【解析】【分析】根据平行线分线段成比例和相似三角形的性质与判定,进行逐一判断即可.【详解】解:⊙AB∥CD,⊙DH CH FH BH=,⊙A选项正确,不符合题目要求;⊙AE∥DF,⊙⊙CGE=⊙CHD,⊙CEG=⊙D,⊙⊙CEG⊙⊙CDH,⊙GE CG DH CH=,⊙EG DH CG CH=,⊙AB∥CD,⊙CH DH CB DF=,⊙DH DF CH CB=,⊙GE DF CG CB=,⊙GE CG DF CB=,⊙B选项正确,不符合题目要求;⊙AB∥CD,AE∥DF,⊙四边形AEDF是平行四边形,⊙AF=DE,⊙AE∥DF,⊙DE GH CE GC=,⊙AF HG CE CG=; ⊙C 选项正确,不符合题目要求;⊙AE∥DF ,⊙⊙BFH ⊙⊙BAG , ⊙FH BF AG AB=, ⊙AB >F A , ⊙FH BF AG FA≠ ⊙D 选项不正确,符合题目要求.故选D .【点睛】本题考查了平行线分线段成比例定理,相似三角形的性质和判定的应用,能根据定理得出比例式是解此题的关键.10.C【解析】【分析】根据函数图像对各个选项分别进行判断,选项主要判断的是速度,要把图像中路程和时间的关系换算成速度再判断.【详解】A.小明的函数图像是OA ,是一条直线,所以小明是匀速跑动,速度不随时间变化,与题意不符,故此选项错误;B.跑相同的路程800米时,小强用时220秒,小明用时180秒,小强用时更长,所以小强的平均速度比小明的平均速度要小,与题意不符,故此选项错误;C.从图像可知,小强在起跑180秒后在图像CD 上,此期间为匀速跑动,速度为8006005220180-=-(米/秒),符合题意,故此选项正确; D.从图像可知,起跑50秒时,小明的图像在小强的图像下面,即:小明在小强的后面,与题意不符,故此选项错误.故选 C .【点睛】此题考查了一次函数的应用,解题关键是要利用数形结合,找出所求问题需要的条件,要明确理解每个选项的题意.11.78.410⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:84000000=78.410⨯.故答案为:78.410⨯.【点睛】本题考查科学计数法,科学计数法是将一个数写成10n a ⨯ 的形式,其中110a ≤<是易错点.12.x ≠-3【解析】【详解】解:求函数自变量的取值范围,就是求函数解析式有意义的条件,根据分式分母不为0的条件,要使x x 3+在实数范围内有意义,必须x +3≠0, ⊙x ≠-3.故答案为:x ≠-3.13.2(1)a b -【解析】【分析】先提取公因式,然后利用完全平方公式因式分解即可.【详解】解:22ab ab a -+=()221-+a b b=2(1)a b -故答案为:2(1)a b -.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.14.【解析】【分析】首先分母有理化,然后再进行减法运算即可.【详解】解:====故答案为:【点睛】此题主要考查了二次根式的加减与分母有理化,熟练掌握分母有理化的运算是解题的关键.15.11x -<【解析】【分析】分别求出各不等式的解集,再求出其公共解集即可.【详解】解:21343x x +≤⎧⎨>-⎩①② 由⊙得,1x ≤,由⊙得,1x ->故此不等式组的解集为:11x -<.故答案为:11x -<.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(1,3)-【解析】【分析】根据二次函数顶点式2()y a x h k =-+的顶点坐标为(,)h k 即可求出.【详解】⊙二次函数2()y a x h k =-+的顶点坐标为(,)h k ,⊙抛物线22(1)3y x =--的顶点为(1,-3).故答案为:(1,-3).【点睛】本题考查了二次函数的顶点式,需熟练理解二次函数顶点式2()y a x h k =-+的顶点坐标为(,)h k .17.4【解析】【分析】根据概率计算公式可知摸出白色棋子的概率等于白色棋子的数量除以总棋子数,由此列出分式方程求解即可.【详解】 解:由题意得:265x x =+, 解得4x =,经检验4x =是原方程的解,⊙盒中有白色棋子4颗,故答案为:4.【点睛】本题主要考查了概率计算公式,解分式方程,正确理解题意列出方程求解是解题的关键. 18.3【解析】【分析】根据扇形面积公式S扇=2360n rπ(n为圆心角度数),代入圆心角,已知面积求半径即可.【详解】⊙扇形面积公式S扇=2360n rπ(n为圆心角度数),⊙S扇=222603 36036062 n R r rππππ===,⊙2369 2rππ⨯==,⊙3r==.故答案为:3.【点睛】本题考查了扇形面积,要能熟练掌握扇形面积公式并进行相关计算.19【解析】【分析】分情况讨论,第一种情况,过点E作EM⊙BC于点M,当H点在M点左侧时,连接HF、HE,利用勾股定理即可求解;第二种情况,过点E作EM⊙BC于点M,当H点在M点右侧时,连接HF、HE,同理可求出HF,问题得解.【详解】如图,第一种情况,过点E作EM⊙BC于点M,当H点在M点左侧时,连接HF、HE,在矩形ABCD中,AD=BC=6,AB=DC=4,⊙E点为AD中点,F点为DC中点,⊙AE=ED=3,DF=FC=2,⊙EM⊙BC,⊙可知四边形AEMB是矩形,⊙EMB=90°,⊙BM =AE =3,ME =DC =4,即MC =BC -BM =6-3=3,⊙Rt ⊙EMH 中,EH =⊙2HM ==,⊙HC =MH +MC =2+3=5,⊙R t⊙HFC 中,⊙HF =第二种情况,过点E 作EM ⊙BC 于点M ,当H 点在M 点右侧时,连接HF 、HE ,如图,同理HM =2,则有HC =MC -HM =3=2=1,⊙Rt ⊙HFC 中,HF.【点睛】本题考查了矩形的判定与性质、勾股定理等知识,注重分类讨论的思想是解答本题的关键.20【解析】【分析】过点A 作AE ⊙BD 于点E ,AC 、BD 交于点F ,从而证明AE BC ∥,得出BCA CAE ∠=∠,根据等腰三角形的性质和3CAD BAC ∠=∠,得出EAF BAC ∠=∠,即可得出BAC BCA ∠=∠,证明BC BA =,根据:5:8AB BD =,得出:5:4AB BE =,设5AB a =,则4BE a =,根据勾股定理算出AE =3a ,根据平行线分线段成比例定理,得出35AF EF AE CF BF BC ===,求出58CF =⨯5582BF BE a ==,根据勾股定理列出关于a 的方程,解方程即可得出a 的值,最后求出CD 即可.【详解】解:过点A 作AE ⊙BD 于点E ,AC 、BD 交于点F ,如图所示:⊙90AEB CBD ∠=∠=︒,⊙AE BC ∥,⊙BCA CAE ∠=∠,AB AD =,AE BD ⊥,⊙BAE DAE ∠=∠,12BE DE BD ==, ⊙3CAD BAC ∠=∠,⊙设BAC x ∠=,则3CAD x ∠=,⊙34DAB x x x ∠=+=, ⊙1422BAE x x ∠=⨯=, EAF BAC x ∴∠=∠=,⊙BAC BCA ∠=∠,⊙BC BA =,⊙:5:8AB BD =,:5:4AB BE ∴=,设5AB a =,则4BE a =,则3AE a ==,3355AE a AB a ∴==, 35AE BC ∴=, AE BC ∥,⊙~AEF CBF ⊙35AF EF AE CF BF BC ===,⊙AF CF AC +==⊙58CF =⨯= ⊙4BF EF BE a +==, ⊙5582BF BE a ==, ⊙5BC AB a ==,222CF BC BF =+,⊙()222552a a ⎛⎫=+ ⎪⎝⎭, 解得:1a =或1a =-(舍去),⊙5BC =,8BD =,⊙CD【点睛】本题主要考查了等腰三角形的判定和性质,勾股定理,相似三角形的判定和性质,平行线的判定和性质,作出辅助线,根据角度之间的关系,得出AB =BC ,是解题的关键. 21【解析】【分析】首先将括号里面的分式进行通分,然后将除法改成乘法进行约分化简,最后将x 和y 根据三角函数的计算法则求出x 和y 的值,最后代入进行计算.【详解】解:原式=23()2x xx x y x-⋅--=3x y-y=4×12=2⊙原式【点睛】本题考查分式的化简求值.22.(1)见解析(2)图见解析,AE=【解析】【分析】(1)先确定90A∠=︒,求出AB,根据面积公式及AB的长即可求得AC,进而可求解.(2)根据平行四边形的性质,确定EF,再利用面积即可求解.(1)解:如图所示,在Rt ABC在,90A∠=︒,AC==AB=11522ABCS AB AC∴=⋅=⨯,ABC∴即为所求.(2)如图所示,AB EF=AF=BE,AB EF AF BE∴==,∴四边形ABEF是平行四边形,1135122322722ABEF S =⨯-⨯⨯⨯-⨯⨯⨯=,AE ==, ∴平行四边形ABEF 即为所求,AE =【点睛】本题考查了作图—复杂作图、三角形面积、平行四边形面积、勾股定理,解题的关键是利用数形结合思想解决问题.23.(1)50人(2)见解析(3)1080名【解析】【分析】(1)通过条形图可知阅读量为2本的人数是10人,用人数除以其占比即可求解;(2)用总人数减去阅读量为1本、2本、3本、5本的人数,即可求出阅读量为4本的人数,据此画条形图即可;(3)先求出样本中阅读量在3本及以上人数的占比,在与全校总人数相乘即可求解.(1)1020%50÷=(人),即调查总人数为50人;(2)阅读量为4本的人数:5041015615----=(人),补全条形统计图如图所示,(3)151561*********++⨯=(人), 即全校阅读量在3本及以上达到良好的人数估计有1080人.【点睛】本题考查了条形统计图、用样本估计总体的知识,注意数形结合是解答本题的关键. 24.(1)证明见解析(2)OB ,OD ,AB ,CD【解析】【分析】(1)先根据平行四边形的性质可得AD BC ∥,再根据三角形全等的判定定理证出BOE DOF ≅△△,根据全等三角形的性质可得BE DF =,然后根据平行四边形的判定可得四边形FBED 为平行四边形,最后根据菱形的判定即可得证;(2)先根据矩形的判定与性质可得,90AB CD ABC =∠=︒,再根据菱形的性质可得,DBF DBC DBF BDE ∠=∠∠=∠,从而可得30ABF DBF DBC ∠=∠=∠=︒,然后分别在Rt BOF △和Rt ABF 中,解直角三角形即可得.(1) 证明:四边形ABCD 为平行四边形,AD BC ∴,,OBE ODF OEB OFD ∴∠=∠∠=∠,点O 为BD 的中点,OB OD ∴=,在BOE △和DOF △中,OBE ODF OEB OFD OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,()BOE DOF AAS ∴≅,BE DF ∴=,∴四边形FBED 为平行四边形,又EF BD ⊥,∴四边形FBED 为菱形.(2) 解:四边形ABCD 为平行四边形,且90A ∠=︒,∴四边形ABCD 为矩形,AB CD =,90ABC ∴∠=︒,由(1)已证:四边形FBED 为菱形,BF DE ∴∥,DBF DBC ∠=∠,DBF BDE ∴∠=∠,ABF BDE ∠=∠,1303ABF DBF DBC ABC ∴∠=∠=∠=∠=︒,在Rt BOF △中,tan OF OB DBF==∠,2BF OF =,OD ∴=,在Rt ABF 中,cos 2cos30AB BF ABF OF =⋅∠=⋅︒=,CD ∴,长的线段有OB ,OD ,AB ,CD .【点睛】本题考查了菱形的判定与性质、矩形的判定与性质、解直角三角形等知识点,熟练掌握特殊四边形的判定与性质是解题关键.25.(1)A 种进价每个为5元,则B 每个进价为6元(2)100件【解析】【分析】(1)设购进A 商品每件进价x 元,B 商品每件进价x +1元.等量关系:60元购进A 商品的件数与72元购进B 商品的件数相同.据此列出方程,并解答;(2)设购进A 种m 件,则购进B 种()140m -件,根据购进A 、B 两种商品降价前后共获利不少于460元列出不等式解答即可.(1)解:设A 种进价每个为x 元,则B 每个为(1)x +元, 由题意列得:60721x x =+, 解得:5x =经检验5x =是原分式方程的解,答:A 种进价每个为5元,则B 每个进价为6元.(2)设购进A 种m 件,则购进B 种()140m -件,根据题意得(85)(106)(140)460m m -+--,解得100m ,答:最多购进A 商品100件.【点睛】本题考查了一元一次不等式的应用和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的不等或等量关系.26.(1)见解析(2)见解析(3)【解析】【分析】(1)连接DB ,先利用BF 为直径,证得90BCF ∠=︒ ,则90F FBC ∠+∠=︒,再利用弧、弦与圆周角的关系,得到FBC ABD ∠=∠,CFB BDC ∠=∠,即可得90CDB ABD ∠+∠=︒,求得90BED ∠=︒即可得答案.(2)连接AC ,设CBF α∠=,证明ECG CGB CEG α∠=∠-∠=,ACD FBC GCE α∠=∠==∠,再加上CE CE =,可证ACE GCE △△≌,即可求得AE GE =;(3)先证得BED CEG △△≌,得求出45NGB NBG ∠=∠=︒,则NG NB =,即可求得13GE CE = ,再证得1tan tan 2FBA BCG ∠=∠=,再通过解直角三角形,求得6AF AM MF =+=,12AB =, =AD BDCFBK 为平行四边形,BK CF AD ===1tan tan2DBL FBA ∠=∠=,则BD =DL =BL =得KL BL BK =+=(1)BF 为直径90BCF ∴∠=︒90F FBC ∴∠+∠=︒CF AD =⊙CF AD =FBC ABD ∴∠=∠CFB ∠与BDC ∠同对弧BCCFB BDC ∴∠=∠90CDB ABD ∴∠+∠=︒18090BED CDB ABD ∴∠=︒-∠-∠=︒AB CD ∴⊥(2)连接AC设CBF α∠=,则90CFB α∠=︒-2CGB F CBF ∠-∠=∠90CGB α∴∠=︒+由(1)可知AB CD ⊥90CEG ∴∠=︒ECG CGB CEG α∴∠=∠-∠=AD CF =∵CF AD ∴=弧弧ACD FBC GCE α∴∠=∠==∠90CEA CEG ∠=∠=︒,CE CE =ACE GCE ∴△△≌AE GE ∴=(3)连接OA ,F A ,AC ,过点H 作HM FA ⊥于点M ,过点G 作GN BC ⊥于点N ,过点D 作DL KB ⊥交KB 的延长线于点L .⊙ACE GCE △△≌⊙⊙CAB =⊙EGC⊙⊙CAB =⊙EDB ,⊙⊙EGC =⊙EDB又⊙⊙CEG =⊙BED =90°,BD =CG⊙BED CEG △△≌EB EC ∴=45EBC ECB ∴∠=∠=︒GN BC ⊥45NGB NBG ∴∠=∠=︒NG NB ∴=设NB NG k ==1tan 2BCG ∠=2CN k ∴=,BG =3BC k ∴=CE BE ∴==,EG 13GE CE ∴= AE EG =AG BG ∴=180HFA AFC ∠+∠=︒ ,180CBA AFC ∠+∠=︒45HFA CBA ∴∠=∠=︒45ECG BCG ∠+∠=︒,45FBA CBF ∠+∠=︒,ECG CBF ∠=∠BCG FBA ∴∠=∠1tan tan 2FBA BCG ∴∠=∠= OA OF =OAF OFA ∴∠=∠ HA 切O 于点A⊙=HAF FBA ∠∠(弦切角定理)1tan tan 2HAF FBA ∴∠=∠=⊙sin HAF ∠=⊙5sin 25HM HAF AH =∠=,4tan HM AM HAM ==∠ ⊙2FM HM ==⊙6AF AM MF =+=212AB AF ∴==⊙162AG BG AB === ⊙132AE AG ==,9BE =⊙=AD BD =⊙BK BC ⊥,90FCB ∠=︒⊙FCB CBH ∠=∠又⊙//FC BF⊙四边形CFBK 为平行四边形BK CF AD ∴===⊙FC AD =⊙FBC ABD ∠=∠⊙45FBC FBA ∠+∠=︒,45ABD DBL ∠+∠=︒⊙DBL FBA ∠=∠ ⊙1tan tan 2DBL FBA ∠=∠=⊙BD =⊙解Rt BDL 得DL =BL =⊙KL BL BK =+=⊙利用勾股定理得:DK =【点睛】本题主要考查的是圆的综合应用,解答本题主要应用了切线的性质、圆周角定理、特殊锐角三角函数值,平行四边形的判定和性质,能构造直角三角形是解题的关键. 27.(1)4y x =+ (2)d =【解析】【分析】(1)先求解A ,B 的坐标,再利用待定系数法求解一次函数的解析式即可;(2)过点F 作FH FA ⊥交AB 于点H ,记,AB EF 的交点为P ,证明FAE FHB △△≌,可得BH AE =,,FH AF 从而可得结论;(3)过点E 作EL y ⊥轴于点L ,过点B 作BK FH ⊥于点K ,过点E 作EN x ⊥轴于点N ,交F A 的延长线于点M .证明FME GLE △△≌,MFE HEN ∠=∠,由(2)问可知EC =,又CE =, 可得AF EN =,结合45AF EH = ,证明4an 3t FEM ∠=,设4AF EN m ==,EM EL a AM ===,可得344tan MF a m FEM ME a +∠=== ,可得12a m =,164FM m MN ===,可得14m = ,再求解FQ =2222,FB FK BH KH 求解517,17FK 从而可得答案. (1)解: 直线4y x =-+交x 轴于C ,交y 轴于A , 当0,y = 则4,x = 当0,x = 则4,y = 4,0,0,4C A ,点B 与点C 关于y 轴对称.4,0,B设AB 为,y kx b =+4,40b k b 解得:1,4k b 所以AB 为: 4.yx (2)过点F 作FH FA ⊥交AB 于点H ,记,AB EF 的交点为P ,0,4,4,0,4,0,A B C,OA OB OC ∴==45,OAB OBA OAC OCA ∴ 90BAC ∠=︒, 90,BAC BFE,FPB APE ,FBP FEA 90,BAC BFE ∴ 90,BFH HFE HFE AFE ,BFH EFA ∴ FAE FHB △△≌,BH AE ∴=,,FH AFAB BH AC AE ∴-=-,2,AHAF AH CE ∴=, 2,CE AFd ∴=(3)过点E 作EL y ⊥轴于点L ,过点B 作BK FH ⊥于点K ,过点E 作EN x ⊥轴于点N ,交F A 的延长线于点M .由(2)问可知45,BAFBAO 则AF y ⊥轴, ∴ FA BC ∥ ,,FA EN则45CAO MAE ∠=∠=︒,,EL EM AM ∴==而,,EG BF BF EF 则,EF EG = 90,M GLE∴ FME GLE △△≌,FEM GEL ∴∠=∠,90FEL FEM ∠+∠=︒,90GEL FEL ∴∠+∠=︒,90FEG ∴∠=︒,90HEN FEM ∴∠+∠=︒,90EFM FEM ∠+∠=︒,MFE HEN ∴∠=∠,由(2)问可知EC =,又CE =, AF EN ∴=, 45AF EH = , 45EN EH ∴=, 4sin 5EHN ∴∠= , 4tan ,3EHN4tan 3FEM ∴∠=, 设4AF EN m ==,EM EL a AM ===, 344tan MF a m FEM ME a+∴∠=== , 12a m ∴=,164FM m MN ∴===,14m ∴= , 1AF ∴=,3,EM∴ 5FE =, 过点Q 作QR EF ⊥于R , 31,4,1,,3,4AF AO EN HNON AM 91,4,3,1,,0,4F E H 同理可得:BE 为14,77y x FH 为1636,1313y x答案第25页,共25页 1477,16361313yx y x 解得:85,45x y 84,,55Q FQ ∴ 2241045,BI BF 229514017,44FH由勾股定理可得:2222,FB FK BH KH 2222951754,44FK FK517,17FK,,BF BI BK FH∴FK IK==2IQ ∴= 【点睛】本题考查的是利用待定系数法求解一次函数的解析式,全等三角形的判定与性质,等腰直角三角形的性质,勾股定理的应用,锐角三角函数的应用,本题的综合程度高,属于中考压轴题.。
苏教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________ 一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.122.计算2(2)--的结果是( )A. 2B. ﹣2C. ﹣4D. 43.2018年苏州市GDP(国内生产总值)约为1860 000 000 000元.该数据可用科学记数法表示为( )A. 1860×109B. 186×1010C. 18.6×1011D. 1.86×10124.一组数据5,4,2,5,6中位数是( )A 5 B. 4 C. 2 D. 65.若2x﹣3y2=3,则1﹣x+32y2的值是( )A. ﹣2B. ﹣12C.32D. 46.对于二次函数,下列说法正确的是( )A. 当x>0,y随x的增大而增大B. 当x=2时,y有最大值-3C. 图像的顶点坐标为(-2,-7)D. 图像与x轴有两个交点7.如图,D是△ABC的边AB的延长线上一点,DE∥BC,若∠A=32°,∠D=56°.则∠C的度数是( )A. 16°B. 20°C. 24°D. 28°8.如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于点D,E,连接AD,若△ABD的周长C△ABD =16cm,AB=5cm,则线段BC的长度等于( )A. 8cmB. 9 cmC. 10 cmD. 11 cm9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为( )A 6 B. 8 C. 10 D. 1210.如图,正方形ABCD的边长为1,点P为BC上任意一点(可与点B或C重合),分别过B、C、D作射线AP的垂线,垂足分别是B′、C′、D′,则BB′+CC′+DD′的最小值是( )A. 1B. 2C. 3D. 5二.填空题(共8小题)11.因式分解:2x2﹣8=_____.12.函数y=23xx中,自变量x的取值范围是____.13.已知关于x的一元二次方程ax2+x+a2﹣2a=0的一个根是x=0,则系数a=_____.14.如图,直线y=kx+b(k>0)与x轴交点为(﹣2,0),则关于x的不等式kx+b<0的解集是_____.15.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________16.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为__________.17.如图,已知抛物线y=ax2+bx+4与x轴、y轴正半轴分别交于点A、B、D,且点B的坐标为(4,0),点C在抛物线上,且与点D的纵坐标相等,点E在x轴上,且BE=AB,连接CE,取CE的中点F,则BF 的长为___.18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A 落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=_____.三.解答题(共10小题)19.计算:31)0﹣|2820.解不等式组523(1)21162x x x x +≥-⎧⎪-⎨->⎪⎩,并写出该不等式组的所有整数解. 21.先化简再求值:2221a a a a +++÷(1a a -﹣2311a a --),其中a =3+1. 22.2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时? 23.如图,平行四边形ABCD 中,O 是对角线BD 的中点,过点O 的直线EF 分别交DA ,BC 的延长线于E ,F .(1)求证:AE =CF ;(2)若AE =BC ,试探究线段OC 与线段DF 之间的关系,并说明理由.24.某学校为了了解九年级学生”一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生”一分钟跳绳”测试的成绩按A ,B ,C ,D 四个等级进行了统计,并绘制了如下两幅不完整的统计图.(1)本次随机调查抽样的样本容量为 ;(2)D 等级所对扇形的圆心角为 °,并将条形统计图补充完整;(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级”一分钟跳绳”测试成绩为A 等级的学生有 人;(4)现有测试成绩为A 等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率. 25.如图,在平面直角坐标系中,矩形ABCD 的顶点,B C 在轴的正半轴上,8,6AB BC ==.对角线,AC BD相交于点,反比例函数(0)k y x x=>的图像经过点,分别与,AB CD 交于点,F G .(1)若8OC =,求的值;(2)连接EG ,若2BF BE -=,求CEG 的面积.26.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH ⊥AC ,垂足为点H ,连接DE ,交AB 于点F .(1)求证:DH 是⊙O 的切线;(2)若⊙O 的半径为4,①当AE =FE 时,求AD 的长(结果保留π);②当6sin 4B = 时,求线段AF 长.27.如图,二次函数y =ax 2+2ax +c (a <0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,顶点为D ,一次函数y =mx ﹣3的图象与y 轴交于E 点,与二次函数的对称轴交于F 点,且tan ∠FDC =43.(1)求a 的值;(2)若四边形DCEF 为平行四边形,求二次函数表达式.(3)在(2)的条件下设点M是线段OC上一点,连接AM,点P从点A出发,先以1个单位长度/s的速度沿线段AM到达点M,再以10个单位长度/s的速度沿MC到达点C,求点P到达点C所用最短时间为s(直接写出答案).28.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒cm;当t=秒时,四边形PQCM是平行四边形?在图2中反映这一情况的点是(并写出此点的坐标);(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.答案与解析一.选择题(共10小题)1.12-的倒数是( )A. B. C.12- D.12【答案】A【解析】【分析】根据倒数的概念求解即可.【详解】根据乘积等于1的两数互为倒数,可直接得到-12的倒数为.故选A2.计算2(2)--( )A. 2B. ﹣2C. ﹣4D. 4【答案】B【解析】【分析】2a得到原式=-|-2|,然后利用绝对值的意义去绝对值即可.【详解】原式=﹣|﹣2|=﹣2.故选:B.2a.3.2018年苏州市GDP(国内生产总值)约为1860 000 000 000元.该数据可用科学记数法表示为( )A. 1860×109B. 186×1010C. 18.6×1011D. 1.86×1012【答案】D【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】将1860 000 000 000用科学记数法表示为:1.86×1012.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.一组数据5,4,2,5,6的中位数是( )A. 5B. 4C. 2D. 6【答案】A【解析】试题分析:将题目中数据按照从小到大排列是:2,4,5,5,6,故这组数据的中位数是5,故选A.考点:中位数;统计与概率.5.若2x﹣3y2=3,则1﹣x+32y2的值是( )A. ﹣2B. ﹣12C.32D. 4【答案】B 【解析】【分析】将已知等式变形为x-32y2=32,再代入到原式=1-(x-32y2)计算可得.【详解】∵2x﹣3y2=3,∴x﹣32y2=32,则原式=1﹣(x﹣32y2)=1﹣3 2=﹣12,故选:B.【点睛】此题考查代数式的求值,解题的关键是掌握整体代入思想的运用.6.对于二次函数,下列说法正确的是( )A. 当x>0,y随x的增大而增大B. 当x=2时,y有最大值-3C. 图像的顶点坐标为(-2,-7)D. 图像与x轴有两个交点【解析】 【详解】二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误;当x=2时,取得最大值,最大值为-3,选项B 正确;顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误,故答案选B.考点:二次函数的性质.7.如图,D 是△ABC 的边AB 的延长线上一点,DE ∥BC ,若∠A =32°,∠D =56°.则∠C 的度数是( )A. 16°B. 20°C. 24°D. 28°【答案】C【解析】【分析】 根据平行线的性质求出∠DBC ,根据三角形外角性质得出即可.【详解】∵DE ∥BC ,∠D =56°,∴∠DBC =56°,∵∠A =32°,∴∠C =56°﹣32°=24°,故选:C .【点睛】此题考查三角形外角性质和平行线的性质,能熟练地运用性质进行推理是解此题的关键. 8.如图,在△ABC 中,DE 是AC 的垂直平分线,分别交BC ,AC 于点D ,E ,连接AD ,若△ABD 的周长C △ABD =16cm ,AB =5cm ,则线段BC 的长度等于( )A. 8cmB. 9 cmC. 10 cmD. 11 cm【答案】D【解析】【分析】根据线段垂直平分线性质求出AD=DC,得出△ABD周长=AB+BC即可.【详解】∵AC的垂直平分线分别交BC、AC于点D、E,∴AD=DC,∴△ABD的周长为AB+AD+BD=AB+DC+BD=AB+BC,∵C△ABD=16cm,AB=5cm,∴BC=11cm,故选:D.【点睛】此题考查线段垂直平分线性质的应用,解题关键是根据线段垂直平分线上的点到线段两个端点的距离相等解答.9.如图,菱形ABCD的对角线AC,BD交于点O,AC=4,BD=16,将△ABO沿点A到点C的方向平移,得到△A'B'O'.当点A'与点C重合时,点A与点B'之间的距离为( )A. 6B. 8C. 10D. 12【答案】C【解析】【分析】由菱形的性质得出AC⊥BD, AO=OC=12AC=2,OB=OD=12BD=8,由平移的性质得出'2''8,''90O C OA O B OB CO B====∠=︒,,得出''6AO AC O C=+=,由勾股定理即可得出答案. 【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=OC=12AC=2,OB=OD=12BD=8,∵△ABO沿点A到点C的方向平移,得到△A'B'O',点A'与点C重合,∴O 'C =OA =2,O 'B '=OB =8,∠CO 'B '=90°,∴AO '=AC +O 'C =6, ∴2222'8610AB O B AO '''=+=+=;故选:C .【点睛】本题考查了菱形的性质、平移的性质、勾股定理;熟练掌握菱形的性质和平移的性质是解题的关键. 10.如图,正方形ABCD 的边长为1,点P 为BC 上任意一点(可与点B 或C 重合),分别过B 、C 、D 作射线AP 的垂线,垂足分别是B ′、C ′、D ′,则BB ′+CC ′+DD ′的最小值是( )A. 1B. 2C. 3D. 5【答案】B 【解析】【详解】解:连接AC ,DP .∵四边形ABCD 是正方形,正方形ABCD 的边长为1,∴AB=CD ,S 正方形ABCD =1,∵S △ADP =12S 正方形ABCD =12,S △ABP +S △ACP =S △ABC =12S 正方形ABCD =12,∴S △ADP +S △ABP +S △ACP =1,∴12AP•BB′+12AP•CC′+12AP•DD′=12AP•(BB′+CC′+DD′)=1,则BB′+CC′+DD′=2AP ,∵2,∴当P 与C 2.故选B二.填空题(共8小题)11.因式分解:2x2﹣8=_____.【答案】2(x+2)(x﹣2).【解析】【分析】观察原式,找到公因式2,提出即可得出答案.【详解】2x2﹣8=2(x+2)(x﹣2).故答案为:2(x+2)(x﹣2).【点睛】此题考查提公因式法和公式法分解因式,解题关键在于掌握运算法则.12.函数y中,自变量x的取值范围是____.【答案】x≤23且x≠0.【解析】【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【详解】解:由题意得,2﹣3x≥0且x≠0,解得,x≤23且x≠0.故答案为x≤23且x≠0.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.13.已知关于x的一元二次方程ax2+x+a2﹣2a=0的一个根是x=0,则系数a=_____.【答案】2.【解析】【分析】把x=0代入一元二次方程ax2+x+a2-2a=0得a2-2a=0,解得a1=0,a2=2,然后根据一元二次方程的定义确定a 的值.【详解】把x=0代入一元二次方程ax2+x+a2﹣2a=0得a2﹣2a=0,解得a1=0,a2=2,而a≠0,所以a的值为2.故答案为2.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是_____.【答案】x<﹣2【解析】【分析】根据一次函数的性质得出y随x的增大而增大,当x<﹣2时,y<0,即可求出答案.【详解】解:∵直线y=kx+b(k>0)与x轴的交点为(﹣2,0),∴y随x的增大而增大,当x<﹣2时,y<0,即kx+b<0.故答案为x<﹣2.【点睛】本题主要考查对一次函数与一元一次不等式,一次函数的性质等知识点的理解和掌握,能熟练地运用性质进行说理是解此题的关键.15.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方形,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为_________【答案】8 27【解析】【分析】先得到小正方体的个数,然后再得到恰有三个面涂有红色的小正方体个数,再利用概率公式进行计算即可【详解】小正方体个数为3×3×3=27个由图直接数出恰有三个面涂有红色的小正方体的个数为8个,所以取得的小正方体恰有三个面涂有红色的概率为827,故填827【点睛】本题主要考查概率公式计算,本题关键在于找出恰有三个面涂有红色的小正方体的个数16.如图,扇形OAB中,∠AOB=90°.P为弧AB上的一点,过点P作PC⊥OA,垂足为C,PC与AB交于点D.若PD=2,CD=1,则该扇形的半径长为__________.【答案】5【解析】分析】连接OP,利用等腰三角形的性质可得出∠OAB=45°,结合PC⊥OA可得出△ACD为等腰直角三角形,进而可得出AC=1,设该扇形的半径长为r,则OC=r−1,在Rt△POC中,利用勾股定理可得出关于r的方程,解之即可得出结论.【详解】解:连接OP,如图所示.∵OA=OB,∠AOB=90°,∴∠OAB=45°,∵PC⊥OA,∴△ACD为等腰直角三角形,∴AC=CD=1.设该扇形的半径长为r,则OC=r−1,在Rt△POC中,∠PCO=90°,PC=PD+CD=3,∴OP2=OC2+PC2,即r2=(r−1)2+9,解得:r=5.故答案为5.【点睛】本题考查了勾股定理、等腰直角三角形的性质以及圆的基本性质,利用勾股定理,得出关于扇形半径的方程是解题的关键.17.如图,已知抛物线y=ax2+bx+4与x轴、y轴正半轴分别交于点A、B、D,且点B的坐标为(4,0),点C在抛物线上,且与点D的纵坐标相等,点E在x轴上,且BE=AB,连接CE,取CE的中点F,则BF的长为___.【答案】22【解析】【分析】根据题意A、B关于对称轴对称,C、D关于对称轴对称得到AC=BD=42,连结AC,由中位线定理得AC=2BF,求出AC长即可得解.【详解】解:∵点C在抛物线上,且与点D的纵坐标相等,D(0,4),B(4,0),∴BD=2244=42,∵A、B关于对称轴对称,C、D关于对称轴对称,∴AC=BD=42,连AC,BE=AB,CE的中点是F,∴BF=12AC=22故答案为:2【点睛】本题考查二次函数图象上点的坐标特征及中位线定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用二次函数的性质解答.18.如图,在矩形ABCD中,AB=5,BC=3,将矩形ABCD绕点B按顺时针方向旋转得到矩形GBEF,点A 落在矩形ABCD的边CD上,连结CE,CF,若∠CEF=α,则tanα=_____.【答案】13.【解析】【分析】过C点作MN⊥BG,交BG于M,交EF于N,由旋转性质可得∠ABC=∠GBE=90°,BA=BG=5,BC=BE=3,由勾股定理可求CG=4,由锐角三角函数可求CM的长,即可求BM的长,由题意可证四边形BENM是矩形,可求EN,CN的长,即可求解.【详解】过C点作MN⊥BG,交BG于M,交EF于N,由旋转变换的性质可知,∠ABC=∠GBE=90°,BA=BG=5,BC=BE=3,由勾股定理得,CG22BG BC-259-=4,∵sin∠GBC=GC CM BG BC=,∴45CMBC =∴CM=125,∴BM22BC CM-=9 5∵MN⊥BG,∠GBE=∠BEF=90°,∴四边形BENM是矩形,∴MN=BE=3,BM=EN=95,∴CN=3﹣125=35,∴tanα=CNEN=3595=13故答案为:13.【点睛】此题考查翻转变换的性质,锐角三角函数,矩形的性质,掌握勾股定理、矩形的性质、旋转变换的性质是解题的关键.三.解答题(共10小题)19.计算:1)0﹣|【答案】.【解析】【分析】根据零指数幂和绝对值的意义计算;【详解】原式=1=【点睛】此题考查二次根式的混合运算,解题关键在于先把二次根式化为最简二次根式,然后合并同类二次根式即可.20.解不等式组523(1)21162x xxx+≥-⎧⎪-⎨->⎪⎩,并写出该不等式组的所有整数解.【答案】x=﹣2或﹣1或0或1.【解析】【分析】分别求出每一个不等式的解集,根据口诀”大小小大中间找”确定不等式组的解集,再在解集内确定其整数解即可.【详解】由5x+2≥3(x﹣1),得x≥﹣2.5,由21162xx-->,得x<2,∴﹣2.5≤x <2,∵x 为整数,∴x =﹣2或﹣1或0或1.【点睛】此题考查解一元一次不等式组和不等式组的整数解,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.21.先化简再求值:2221a a a a +++÷(1a a -﹣2311a a --),其中a +1.【答案】1a a -. 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得. 【详解】原式=2(1)(1)a a a ++÷[2(1)(1)a a a a ++-﹣31(1)(1)a a a -+-] =1a a +÷2(1)(1)(1)a a a -+- =1a a +•11a a +- =1a a -,当a 时,33+. 【点睛】此题考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.22.2018年8月中国铁路总公司宣布,京津高铁将再次提速,担任此次运营任务是最新的复兴号动车组,提速后车速是之前的1.5倍,100千米缩短了10分钟,问提速前后的速度分别是多少千米每小时?【答案】提速前的速度为200千米/小时,提速后的速度为350千米/小时,【解析】【分析】设列车提速前的速度为x 千米每小时和列车提速后的速度为1.5千米每小时,根据关键语句”100千米缩短了10分钟”可列方程,解方程即可.【详解】设提速前后的速度分别为x 千米每小时和1.5x 千米每小时,根据题意得:100100101.560x x-=解得:x=200,经检验:x=200是原方程的根,∴1.5x=300,答:提速前后的速度分别是200千米每小时和300千米每小时.【点睛】考查了分式方程的应用,解题关键是弄懂题意,找出等量关系,列出方程.23.如图,平行四边形ABCD中,O是对角线BD的中点,过点O的直线EF分别交DA,BC的延长线于E,F.(1)求证:AE=CF;(2)若AE=BC,试探究线段OC与线段DF之间的关系,并说明理由.【答案】(1)见解析;(2)OC∥DF,且OC=12DF,理由见解析.【解析】【分析】(1)由平行四边形的性质得出AD∥BC,AD=BC,得出∠ADB=∠CBD,证明△BOF≌△DOE,得出DE=BF,即可得出结论;(2)证出CF=BC,得出OC是△BDF的中位线,由三角形中位线定理即可得出结论.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADB=∠CBD,∵O是对角线BD的中点,∴OB=OD,在△BOF和△DOE中,CBD ADB OB ODBOF DOE ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOF≌△DOE(ASA),∴DE=BF,∴DE-AD=BF﹣BC,∴AE=CF;(2)解:OC∥DF,且OC=12DF,理由如下:∵AE=BC,AE=CF,∴CF=BC,∵OB=OD,∴OC是△BDF的中位线,∴OC∥DF,且OC=12 DF.【点睛】此题考查平行四边形的性质、全等三角形的判定与性质、三角形中位线定理等知识;熟练掌握平行四边形的性质,证明三角形全等是解题的关键.24.某学校为了了解九年级学生”一分钟跳绳”体育测试项目情况,随机抽取了九年级部分学生组成测试小组进行调查测试,并对这部分学生”一分钟跳绳”测试的成绩按A,B,C,D四个等级进行了统计,并绘制了如下两幅不完整的统计图.(1)本次随机调查抽样的样本容量为;(2)D等级所对扇形的圆心角为°,并将条形统计图补充完整;(3)如果该学校九年级共有400名学生,那么根据以上样本统计全校九年级”一分钟跳绳”测试成绩为A等级的学生有人;(4)现有测试成绩为A等级,且表现比较突出的两男两女共4名学生,计划从这4名学生中随机抽取2名同学作平时训练经验交流,请用列表法或画树状图的方法,求所选两位同学恰好是1男1女的概率.【答案】(1)80;(2)18;补全图形见解析;(3)120;(4)选出的2人恰好是1男1女的概率为23.【解析】【分析】(1)由C等级人数及其对应的百分比可得样本容量;(2)用360°乘以样本中D等级人数所占比例,再用总人数乘以B等级百分比可得其人数,从而补全图形;(3)总人数乘以样本中A等级人数所占比例即可得;(4)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出的2人恰好是1男1女的情况,再利用概率公式求解即可求得答案.【详解】(1)本次随机调查抽样的样本容量为20÷25%=80, 故答案为:80;(2)D 等级所对扇形的圆心角为360°×480=18°, B 等级的人数为80×40%=32,补全图形如下:故答案为:18;(3)根据以上样本估计全校九年级”一分钟跳绳”测试成绩为A 等级的学生有400×2480=120(人), 故答案为:120;(4)画树状图得:∵共有12种等可能的结果,选出的2人恰好是1男1女的有8种情况,∴选出的2人恰好是1男1女的概率为812=23. 【点睛】此题考查列表法或树状图法求概率,条形统计图与扇形统计图.解题关键在于掌握:概率=所求情况数与总情况数之比.25.如图,在平面直角坐标系中,矩形ABCD 的顶点,B C 在轴的正半轴上,8,6AB BC ==.对角线,AC BD相交于点,反比例函数(0)k y x x=>的图像经过点,分别与,AB CD 交于点,F G .(1)若8OC=,求的值;(2)连接EG,若2BF BE-=,求CEG的面积.【答案】(1)k=20;(2)△CEG的面积为215.【解析】【分析】(1)先利用矩形的性质和线段中点坐标公式得到E(5,4),然后把E点坐标代入kyx=可求得k的值;(2)利用勾股定理计算出AC=10,则BE=EC=5,所以BF=7,设OB=t,则F(t,7),E(t+3,4),利用反比例函数图象上点的坐标得到7t=4(t+3),解得t=4,从而得到反比例函数解析式为y=28x,然后确定G点坐标,最后利用三角形面积公式计算△CEG的面积.【详解】(1)∵在矩形ABCD的顶点B,AB=8,BC=6,而OC=8,∴B(2,0),A(2,8),C(8,0),∵对角线AC,BD相交于点E,∴点E为AC的中点,∴E(5,4),把E(5,4)代入y=kx得k=5×4=20;(2)∵AC2268+=10,∴BE=EC=5,∵BF﹣BE=2,∴BF=7,设OB=t,则F(t,7),E(t+3,4),∵反比例函数y=kx(x>0)的图象经过点E、F,∴7t=4(t+3),解得t=4,∴k=7t=28,∴反比例函数解析式为y=28x,当x=10时,y=2814 105=,∴G(10,145),∴△CEG的面积=114213255⨯⨯=.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx(k≠0)图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.26.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D 作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求AD的长(结果保留π);②当6sin4B=时,求线段AF的长.【答案】(1)详见解析;(2)①85π;②43【解析】【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)①根据等腰三角形的性质的∠EAF=∠EAF,设∠B=∠C=α,得到∠EAF=∠EFA=2α,根据三角形的内角和得到∠B=36°,求得∠AOD=72°,根据弧长公式即可得到结论;②连接AD,根据圆周角定理得到∠ADB=∠ADC=90°,解直角三角形得到AD=6的性质得到AH=3,于是得到结论.【详解】证明:(1)连接OD,如图,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EF A=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴AD的长=7248 1805ππ⋅⨯=;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵sin 4B =,∴84AD =,∴AD =∵AD ⊥BC ,DH ⊥AC ,∴△ADH ∽△ACD , ∴AH AD AD AC=,=, ∴AH =3,∴CH =5,∵∠B =∠C ,∠E =∠B ,∴∠E =∠C ,∴DE =DC ,∵DH ⊥AC ,∴EH =CH =5,∴AE =2,∵OD ∥AC ,∴∠EAF =∠FOD ,∠E =∠FDO ,∴△AEF ∽△ODF , ∴AF AE OF OD=, ∴AF 24AF 4=-, ∴AF =43. 【点睛】本题考查了等腰三角形的性质和判定、切线的性质和判定、三角形相似的性质和判定、圆周角定理,正确的作出辅助线是解题的关键.27.如图,二次函数y =ax 2+2ax +c (a <0)的图象与x 轴交于A 、B 两点,与y 轴交于C 点,顶点为D ,一次函数y=mx﹣3的图象与y轴交于E点,与二次函数的对称轴交于F点,且tan∠FDC=43.(1)求a的值;(2)若四边形DCEF为平行四边形,求二次函数表达式.(3)在(2)的条件下设点M是线段OC上一点,连接AM,点P从点A出发,先以1个单位长度/s的速度沿线段AM到达点M,10个单位长度/s的速度沿MC到达点C,求点P到达点C所用最短时间为s(直接写出答案).【答案】(1)a=﹣34;(2)y=﹣34x2﹣32x+6;(3)9105.【解析】【分析】(1)过点C作CG⊥DF交于点G,求出C与D点坐标,可得CG=1,DG=-a,再由tan∠FDC=43,即可求a值;(2)由点的坐标分别求出CE=3+c,DF=c+34+m+3,再由平行四边形的性质可得3+c=c+34+m+3,可以确定y=-34x-3,求出A点坐标,将A点坐标代入y=-34x2-32x+c,即可求出c的值;(3)连接BC,过点A作AH⊥BC交于点H,AH与CO的交点为所求M;由题意可知运动时间为10;在Rt△CMH中,MH=CMsin∠10,则有AM+10=AM+MH=AH;再在Rt△ABH中,AB=6,sin∠COB=21010求出AH=ABsin∠COB=6×10910,即为所求.【详解】(1)过点C作CG⊥DF交于点G,∵C(0,c),D(﹣1,c﹣a),∴CG=1,DG=﹣a,∵tan∠FDC=43,∴43=1a,∴a=﹣34;(2)∵a=﹣34,∴D(﹣1,c+34 ),∵E(0,﹣3),F(﹣1,﹣m﹣3),∴CE=3+c,DF=c+34+m+3,∵四边形DCEF为平行四边形,∴3+c=c+34+m+3,∴m=﹣34,∴y=﹣34x﹣3,∴A(﹣4,0),将A(﹣4,0)代入y=﹣34x2﹣32x+c,可得c=6,∴y=﹣34x2﹣32x+6;(3)连接BC,过点A作AH⊥BC交于点H,AH与CO交点为所求M; 由题意可知运动时间为AM;∵y =﹣34x 2﹣32x +6,可求B (2,0), 在Rt △BCO 中,OB =2,OC =6,∴BC =210,∴sin ∠BCO =2210=110, 在Rt △CMH 中,MH =CM sin ∠BCO =10CM , ∴AM +10CM =AM +MH =AH ; 在Rt △ABH 中,AB =6,sin ∠COB =6210=310, ∴AH =AB sin ∠COB =6×310=9105, ∴点P 到达点C 所用最短时间为9105s , 故答案为9105;【点睛】此题考查二次函数的性质,熟练掌握二次函数的图象及性质,将时间最短借助直角三角形三角形函数值转化为边最短解题是关键.28.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲,线段BP的长度记作y乙,y甲和y乙关于时间t的函数变化情况如图所示.(1)由图2可知,点M的运动速度是每秒cm;当t=秒时,四边形PQCM是平行四边形?在图2中反映这一情况的点是(并写出此点的坐标);(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.【答案】(1)2,103,E(103,103);(2)y=25t2﹣8t+40;(3)存在,t=2017s时,点M在线段PC的垂直平分线上.【解析】【分析】(1)先由图2判断出点M的速度为2cm/s,PQ的运动速度为1cm/s,再由四边形PQCM为平行四边形,根据平行四边形的性质得到对边平行,进而得到AP=AM,列出关于t的方程,求出方程的解得到满足题意t的值;(2)根据PQ∥AC可得△PBQ∽△ABC,根据相似三角形的形状必然相同可知△BPQ也为等腰三角形,即BP=PQ=t,再用含t的代数式就可以表示出BF,进而得到梯形的高PE=DF=8-t,又点M的运动速度和时间可知点M走过的路程AM=2t,所以梯形的下底CM=10-2t.最后根据梯形的面积公式即可得到y与t的关系式;(3)假设存在,则根据垂直平分线上的点到线段两端点的距离相等即可得到MP=MC,过点M作MH垂直AB,由一对公共角的相等和一对直角的相等即可得到△AHM∽△ADB,由相似得到对应边成比例进而用含t的代数式表示出AH和HM的长,再由AP的长减AH的长表示出PH的长,从而在直角三角形PHM中根据勾股定理表示出MP的平方,再由AC的长减AM的长表示出MC的平方,根据两者的相等列出关于t的方程进而求出t的值.【详解】(1)由图2得,点M的运动速度为2cm/s,PQ的运动速度为1cm/s,∵四边形PQCM是平行四边形,则PM∥QC,∴AP:AB=AM:AC,∵AB=AC,∴AP=AM,即10﹣t=2t,解得:t=103,∴当t=103时,四边形PQCM是平行四边形,此时,图2中反映这一情况的点是E(103,103)故答案为:2,103,E(103,103).(2)∵PQ∥AC,∴△PBQ∽△ABC,∴△PBQ为等腰三角形,PQ=PB=t,∴BF BPBD BA=,即810BF t=解得:BF=45t,∴FD=BD﹣BF=8﹣45t,又∵MC=AC﹣AM=10﹣2t,∴y=12(PQ+MC)•FD=12(t+10﹣2t)(8﹣45t)=25t2﹣8t+40.(3)假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC,过M作MH⊥AB,交AB与H,如图所示:∵∠A=∠A,∠AHM=∠ADB=90°,∴△AHM∽△ADB,∴HM AH AM BD AD AB==又∵AD=6,∴2 8610 HM AH t==∴HM=85t,AH=65t,∴HP=10﹣t﹣65t=10﹣115t,在Rt△HMP中,MP2=(85t)2+(10﹣115t)2=375t2﹣44t+100,又∵MC2=(10﹣2t)2=100﹣40t+4t2,∵MP2=MC2,∴375t2﹣44t+100=100﹣40t+4t2,解得t1=2017,t2=0(舍去),∴t=2017s时,点M在线段PC的垂直平分线上.【点睛】此题考查四边形综合题,平行四边形的性质,三角形相似的判定与性质,垂直平分线的性质以及勾股定理的应用.第二问的解题关键是根据相似三角形的高之比等于对应边之比得出比例,进而求出关系式.。
中考数学一模试卷一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4 3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.56.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm28.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是.10.(3分)写分解因式a2﹣8ab+16b2的结果.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=度.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.18.(6分)化简:19.(6分)解不等式组:20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.中考数学一模试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣2【解答】解:∵(﹣2)×(﹣)=1,∴﹣2的倒数是﹣.故选:A.2.(3分)下列计算正确的是()A.2+=2B.a+a2=a3C.2a•3a=6a D.x6÷x2=x4【解答】解:A、2+和2不相等,故本选项不符合题意;B、a和a2不能合并,故本选项不符合题意;C、2a•3a=6a2,故本选项不符合题意;D、x6÷x2=x4,故本选项符合题意;故选:D.3.(3分)下列水平放置的几何体中,俯视图是三角形的()A.B.C.D.【解答】解:俯视图是三角形的是选项D,故选:D.4.(3分)商店某天销售了14件衬衫,其领口尺寸统计如下表:领口尺寸(cm)3839404142件数15332则这14件衬衫领口尺寸的众数和中位数分别是()A.39cm、40cm B.39cm、39.5cmC.39cm、39cm D.40cm、40cm【解答】解:同一尺寸最多的是39cm,共有5件,所以众数是39cm,14件衬衫按照尺寸从小到大排列,第7,8件的尺寸都是40cm,所以中位数是(40+40)=40cm.故选:A.5.(3分)如图,过反比例函数y=(x>0)的图象上一点A作AB⊥x轴于点B,连接AO,若S△AOB=2,则k的值为()A.2B.3C.4D.5【解答】解:∵点A是反比例函数y=图象上一点,且AB⊥x轴于点B,∴S△AOB=|k|=2,解得:k=±4.∵反比例函数在第一象限有图象,∴k=4.故选:C.6.(3分)抛物线y=﹣(x+1)2+3的顶点坐标是()A.(1,3)B.(﹣1,3)C.(﹣1,﹣3)D.(1,﹣3)【解答】解:抛物线y=﹣(x+1)2+3的顶点坐标是(﹣1,3).故选:B.7.(3分)用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L 的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为()A.60πcm2B.πcm2C.πcm2D.72πcm2【解答】解:连接OB,作BH⊥OA于H,如图,∵圆锥的母线AB与⊙O相切于点B,∴OB⊥AB,在Rt△AOB中,OA=18﹣5=13,OB=5,∴AB==12,∵OA•BH=OB•AB,∴BH==,∵圆锥形纸帽的底面圆的半径为BH=,母线长为12,∴形纸帽的表面=×2π××12=π(cm2).故选:C.8.(3分)如图,在矩形ABCD中,AB=5,BC=7,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A’恰好在∠BCD的平分线上时,CA’的长为()A.3或4B.3或4C.3或4D.4或3【解答】解:如图所示,过点A′作A′M⊥BC于点M.∵点A的对应点A′恰落在∠BCD的平分线上,∴设CM=A′M=x,则BM=7﹣x,又由折叠的性质知AB=A′B=5,∴在直角△A′MB中,由勾股定理得到:A′M2=A′B2﹣BM2=25﹣(7﹣x)2,∴25﹣(7﹣x)2=x2,∴x=3或x=4,∵在等腰Rt△A′CM中,CA′=A′M,∴CA′=3或4.故选:B.二、填空题(本大题共有8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)9.(3分)函数中自变量x的取值范围是x≥﹣2.【解答】解:根据题意得:4+2x≥0,解得:x≥﹣2.故答案为:x≥﹣2.10.(3分)写分解因式a2﹣8ab+16b2的结果(a﹣4b)2.【解答】解:原式=(a﹣4b)2,故答案为:(a﹣4b)2.11.(3分)长城是我国第一批成功入选世界遗产的文化古迹,长城总长约6700000米,将6700000用科学记数法表示应为 6.7×106.【解答】解:6700000=6.7×106.故答案为:6.7×106.12.(3分)如图,AB是⊙O的直径,点C,D是圆上两点,∠AOC=100°,则∠D=40度.【解答】解:∵∠AOC=100°,∴∠BOC=180°﹣100°=80°,∴∠D=40°.13.(3分)如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,则∠2的度数为35°.【解答】解:∵AB⊥BC,∠1=55°,∴∠2=90°﹣55°=35°.∵a∥b,∴∠2=∠3=35°.故答案为:35°.14.(3分)钟表的轴心到分针针端的长为5cm,那么经过40分钟,分针针端转过的弧长是cm.【解答】解:圆心角的度数是:360°×=240°,弧长是=cm.15.(3分)如图,在平面直角坐标系中,将两个全等的矩形OABC和OA'B'C'按图示方式进行放置(其中OA在x轴正半轴上,点B'在y轴正半轴上),OA'与BC相交于点D,若点B坐标为(3,1),则经过点D的反比例函数解析式是y=.【解答】解:∵点B坐标为(3,1),∴AO=3,AB=CO=1,∵矩形OABC和OA′B′C′全等,∴OA′=OA=3,A′B′=AB=1,∵∠A′=∠DCO=90°,∠DOC=∠B′OA′,∴△CDO∽△A′B′O,∴=,即=,∴CD=,∴D(,1),设经过点D的反比例函数解析式为y=,∴k=×1=,∴经过点D的反比例函数解析式为:y=,故答案为:y=.16.(3分)如图,⊙O的半径为1,正方形ABCD顶点B坐标为(5,0),顶点D在⊙O上运动,则正方形面积最大时,正方形与⊙O重叠部分的面积是+1.【解答】解:如图所示,当点D运动到(﹣1,0)时,BD最长,此时,正方形面积最大,∠CDO=45°,∴∠CDO=45°,又∵∠FDO=45°,∴CD经过点F,同理可得,AD经过点E,∴正方形与⊙O重叠部分的面积是△DEF的面积与半圆面积的和,即×2×1+×π×12=1+,故答案为:+1.三、解答题(本大题共11小题,共102分.请在答题卡上指定区域内作答,解答时写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣2)2﹣.【解答】解:原式=4﹣5﹣5=﹣6.18.(6分)化简:【解答】解:原式=•=•=.19.(6分)解不等式组:【解答】解:,解不等式①,得x≥﹣4,解不等式②,得x>﹣,故不等式的解集为x>﹣.20.(8分)“校园安全”受到全社会的广泛关注,某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图,请根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有60人,扇形统计图中“基本了解”部分所对应扇形的圆心角为90度;(2)请补全条形统计图;(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数.【解答】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∴扇形统计图中“基本了解”部分所对应扇形的圆心角为:×360°=90°;故答案为:60,90;(2)60﹣15﹣30﹣10=5;补全条形统计图得:(3)根据题意得:900×=300(人),则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人.21.(8分)小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是.(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)【解答】解:(1)∵第一道单选题有3个选项,∴如果小明第一题不使用“求助”,那么小明答对第一道题的概率是:;故答案为:;(2)分别用A,B,C表示第一道单选题的3个选项,a,b,c表示剩下的第二道单选题的3个选项,画树状图得:∵共有9种等可能的结果,小明顺利通关的只有1种情况,∴小明顺利通关的概率为:;(3)∵如果在第一题使用“求助”小明顺利通关的概率为:;如果在第二题使用“求助”小明顺利通关的概率为:;∴建议小明在第一题使用“求助”.22.(10分)已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,BE=DF.(1)求证:AE=AF;(2)若AE垂直平分BC,AF垂直平分CD,求证:△AEF为等边三角形.【解答】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠D,又∵BE=DF,∴△ABE≌△ADF,∴AE=AF;(2)连接AC,∵AE垂直平分BC,AF垂直平分CD,∴AB=AC=AD.∵AB=BC=CD=DA,∴△ABC和△ACD都是等边三角形.∴∠CAE=∠BAE=30°,∠CAF=∠DAF=30°.∴∠EAF=∠CAE+∠CAF=60°又∵AE=AF,∴△AEF是等边三角形.23.(10分)一艘小船从码头A出发,沿北偏东53°方向航行,航行一段时间到达小岛B 处后,又沿着北偏西22°方向航行了10海里到达C处,这时从码头测得小船在码头北偏东23°的方向上,求此时小船与码头之间的距离(≈1.4,≈1.7,结果保留整数).【解答】解:∵∠BAC=53°﹣23°=30°,∴∠C=23°+22°=45°.过点B作BD⊥AC,垂足为D,则CD=BD.∵BC=10,∴CD=BC•cos45°=10×≈7.0,∴AD==5÷=5×=5×≈5×1.4×1.7≈11.9.∴AC=AD+CD=11.9+7.0=18.9≈19.答:小船到码头的距离约为19海里.24.(10分)某店代理某品牌商品的销售.已知该品牌商品进价每件40元,日销售y(件)与销售价x(元/件)之间的关系如图所示(实线),付员工的工资每人每天100元,每天还应支付其它费用150元.(1)求日销售y(件)与销售价x(元/件)之间的函数关系式;(2)该店员工人共3人,若某天收支恰好平衡(收入=支出),求当天的销售价是多少?【解答】解:(1)当40≤x≤58时,设y与x之间的函数关系式为y=kx+b(k≠0),将(40,60),(58,24)代入y=kx+b,得:,解得:,∴当40≤x≤58时,y与x之间的函数关系式为y=2x+140;当理可得,当58<x≤71时,y与x之间的函数关系式为y=﹣x+82.综上所述:y与x之间的函数关系式为y=.(2)设当天的销售价为x元时,可出现收支平衡.当40≤x≤58时,依题意,得:(x﹣40)(﹣2x+140)=100×3+150,解得:x1=x2=55;当57<x≤71时,依题意,得:(x﹣40)(﹣x+82)=100×3+150,此方程无解.答:当天的销售价为55元时,可出现收支平衡.25.(12分)如图,A、F、B、C是⊙O上的四个点,连接OF交AB于点E,AO∥BC,AB ∥OC,∠AOF=30°,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD 于点H.(1)判断四边形ABCO的形状并说明理由;(2)求证:CD是⊙O的切线;(3)若DH=4,求EF的长.【解答】(1)解:四边形ABCO是菱形,理由如下:∵AO∥BC,AB∥OC,∴四边形ABCO是平行四边形,∵OA=OC,∴平行四边形ABCO是菱形;(2)证明:连接OB,∵四边形ABCO是菱形,∴OC=BC,∵OB=OC,∴OB=OC=BC,∴△BOC为等边三角形,同理,△BOA为等边三角形,∴∠AOB=60°,∠BOC=60°,∴∠AOC=120°,∵∠AOF=30°,∴∠COF=90°,∵CD∥OF,∴∠OCD=180°﹣90°=90°,∴CD是⊙O的切线;(3)解:∵CD∥OF,AB∥OC,∠OCD=90°,∴四边形OCDE为矩形,∴DE=OC,∠AEO=90°,∵∠AOF=30°,∴AE=OA=OC=DE,∵CD∥OF,∴==,∴EF=.26.(12分)如图,在平面直角坐标系xOy中,直线y=x+m与坐标轴y轴交于点A,与x 轴交于点B,过A,B两点的抛物线y=x2+nx﹣8,点D为线段AB上一动点,过点D作CD垂直x轴于点C,交抛物线于点E.(1)求抛物线的解析式;(2)当DE=12时,求四边形CAEB的面积;(3)是否存在点D,使得△DEB和△DAC相似?若存在,求出点D的坐标,若不存在,请说明理由.【解答】解:(1)∵直线y=x+m与抛物线y=x2+nx﹣8都经过A点,∴m=﹣8,∵直线y=x+m经过x轴上的B点,∴点B(8,0),又∵抛物线y=x2+nx﹣8经过B点,∴n=﹣7,∴抛物线为:y=x2﹣7x﹣8;(2)设点C为:(x,0),则点D为(x,x﹣8),点E为(x,x2﹣7x﹣8),∵DE=12,∴(x﹣8)﹣(x2﹣7x﹣8)=12,解得:x1=2,x2=6,当x=2时,x2﹣7x﹣8=﹣18,∴CE=18,四边形CAEB的面积=OB×CE=72,当x=6时,x2﹣7x﹣8=﹣14,∴CE=14,四边形CAEB的面积=OB×CE=56;(3)存在,当AC∥BE时,△DEB∽△DCA,过点A作AF⊥CE于点F,=,即=,∴x2+x﹣8=0,解得:x1=,x2=(舍去),当=时,△DEB∽△DAC,即=,∴x2﹣6x=0,解得:x1=6,x2=0(舍去),综上所述:当x=或x=6时,△DEB和△DAC相似,则x﹣8=或﹣2,此时点D的坐标为:(,)或(6,﹣2).27.(14分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现:如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是DE∥AC;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是S1=S2.(2)猜想论证:当△DEC绕点C旋转到如图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是角平分线上一点,BD=CD=6,DE∥AB交BC于点E(如图4),若在射线BA上存在点F,使S△DCF=S△BDE,请求出相应的BF的长.【解答】解:(1)①如图1中,由旋转可知:CA=CD,∵∠ACB=90°,∠B=30°,∴∠CAD=60°,∴△ADC是等边三角形,∴∠DCA=60°,∵∠ECD=90°,∠DEC=30°,∴∠CDE=60°,∴∠EDC=∠DCA,∴DE∥AC,②∵AB=2AC,AD=AC,∴AD=BD,∴S△BDC=S△ADC,∵DE∥AC,∴S△ADC=S△ACE,∴S1=S2.故答案为:DE∥AC,S1=S2.(2)如图3中,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,,∴△ACN≌△DCM(AAS),∴AN=DM,∴S△BDC=S△AEC.(3)如图4中,作DF∥BC交AB于F.延长CD交AB于H.∵DF∥BE,DE∥BF,∴四边形DEBF是平行四边形,∴S△BDF=S△BDE,S△BDF=S△DFC,∴S△DFC=S△BDE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,∵BD=CD=6,∴∠DBC=∠DCB=30°,∵∠DEC=∠ABC=60°,∴∠CDE=90°,∴DE=CD•tan30°=6×=2,∴BF=DE=2,∵DE∥AB,∴∠BHC=∠EDC=90°,∴CH⊥AB,作点F关于CH的对称点F′,连接DF′,易知S△DFC=S△DF′C,在Rt△DFH中,FH=HF′=DF•sin30°=,∴BF′=4,综上所述,满足条件的BF的值为2或4.。
2024学年江西省南昌市十四校中考数学模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知:如图四边形OACB 是菱形,OB 在X 轴的正半轴上,sin ∠AOB=.反比例函数y=在第一象限图象经过点A ,与BC 交于点F .S △AOF =,则k=( )A .15B .13C .12D .52.若kb <0,则一次函数y kx b =+的图象一定经过( )A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限3.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,D E ,则E 为BC 的中点,已知50BAC ∠=,则C ∠=( )A .55B .60C .65D .704.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A ′O ′B ′=∠AOB 的依据是( )A .SASB .SSSC .AASD .ASA5.如图,在以O 为原点的直角坐标系中,矩形OABC 的两边OC 、OA 分别在x 轴、y 轴的正半轴上,反比例函数k y x=(x >0)与AB 相交于点D ,与BC 相交于点E ,若BD=3AD ,且△ODE 的面积是9,则k 的值是( )A .92B .74C .245D .126.计算--|-3|的结果是( )A .-1B .-5C .1D .57.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm 宽为bcm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是( )A .4acmB .4()a b cm -C .2()a b cm +D .4bcm8.如图,平行四边形ABCD 中,E ,F 分别在CD 、BC 的延长线上,AE ∥BD ,EF ⊥BC ,tan ∠ABC=34,EF=,则AB 的长为( )A .533B .536C .1D .1729.已知关于x 的方程x 2﹣4x+c+1=0有两个相等的实数根,则常数c 的值为( )A .﹣1B .0C .1D .310.如图是某几何体的三视图及相关数据,则该几何体的全面积是( )A .15πB .24πC .20πD .10π11.下列一元二次方程中,有两个不相等实数根的是( )A.x2+6x+9=0 B.x2=x C.x2+3=2x D.(x﹣1)2+1=012.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC与△BDA 相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,反比例函数y=kx(x<0)的图象经过点A(﹣2,2),过点A作AB⊥y轴,垂足为B,在y轴的正半轴上取一点P(0,t),过点P作直线OA的垂线l,以直线l为对称轴,点B经轴对称变换得到的点B'在此反比例函数的图象上,则t的值是()A.1+5B.4+2C.42-D.-1+514.一个扇形的弧长是83π,它的面积是163π,这个扇形的圆心角度数是_____.15.在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是_____.16.为了节约用水,某市改进居民用水设施,在2017年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为________.17.分解因式:a3-12a2+36a=______.18.如图,A、B是双曲线y=kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若D为OB的中点,△ADO的面积为3,则k 的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)程大位是珠算发明家,他的名著《直指算法统宗》详述了传统的珠算规则,确立了算盘用书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁.意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人?20.(6分)已知,抛物线y =14x 2﹣x +34与x 轴分别交于A 、B 两点(A 点在B 点的左侧),交y 轴于点F . (1)A 点坐标为 ;B 点坐标为 ;F 点坐标为 ;(2)如图1,C 为第一象限抛物线上一点,连接AC ,BF 交于点M ,若BM =FM ,在直线AC 下方的抛物线上是否存在点P ,使S △ACP =4,若存在,请求出点P 的坐标,若不存在,请说明理由;(3)如图2,D 、E 是对称轴右侧第一象限抛物线上的两点,直线AD 、AE 分别交y 轴于M 、N 两点,若OM •ON =14,求证:直线DE 必经过一定点.21.(6分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.22.(8分)我们常用的数是十进制数,如32104657410610510710=⨯+⨯+⨯+⨯,数要用10个数码(又叫数字):0、1、2、3、4、5、6、7、8、9,在电子计算机中用的二进制,只要两个数码:0和1,如二进制中210110121202=⨯+⨯+⨯等于十进制的数6,543110*********=⨯+⨯+⨯210120212+⨯+⨯+⨯等于十进制的数53.那么二进制中的数101011等于十进制中的哪个数?23.(8分)一件上衣,每件原价500元,第一次降价后,销售甚慢,于是再次进行大幅降价,第二次降价的百分率是第一次降价的百分率的2倍,结果这批上衣以每件240元的价格迅速售出,求两次降价的百分率各是多少.24.(10分)在一个不透明的布袋中装两个红球和一个白球,这些球除颜色外均相同(1)搅匀后从袋中任意摸出1个球,摸出红球的概率是 .(2)甲、乙、丙三人依次从袋中摸出一个球,记录颜色后不放回,试求出乙摸到白球的概率25.(10分)某超市开展早市促销活动,为早到的顾客准备一份简易早餐,餐品为四样A :菜包、B :面包、C :鸡蛋、D :油条.超市约定:随机发放,早餐一人一份,一份两样,一样一个.(1)按约定,“某顾客在该天早餐得到两个鸡蛋”是 事件(填“随机”、“必然”或“不可能”);(2)请用列表或画树状图的方法,求出某顾客该天早餐刚好得到菜包和油条的概率.26.(12分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?27.(12分)问题探究(1)如图①,在矩形ABCD 中,AB=3,BC=4,如果BC 边上存在点P ,使△APD 为等腰三角形,那么请画出满足条件的一个等腰三角形△APD ,并求出此时BP 的长;(2)如图②,在△ABC 中,∠ABC=60°,BC=12,AD 是BC 边上的高,E 、F 分别为边AB 、AC 的中点,当AD=6时,BC 边上存在一点Q ,使∠EQF=90°,求此时BQ 的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE ,山庄保卫人员想在线段CD 上选一点M 安装监控装置,用来监视边AB ,现只要使∠AMB 大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m ,AE=400m ,ED=285m ,CD=340m ,问在线段CD 上是否存在点M ,使∠AMB=60°?若存在,请求出符合条件的DM 的长,若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解题分析】过点A作AM⊥x轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出S△AOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值.【题目详解】过点A作AM⊥x轴于点M,如图所示.设OA=a=OB,则,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=,∴AM=OA•sin∠AOB=a,OM=a,∴点A的坐标为(a,a).∵四边形OACB是菱形,S△AOF=,∴OB×AM=,即×a×a=39,解得a=±,而a>0,∴a=,即A(,6),∵点A在反比例函数y=的图象上,∴k=×6=1.故选A.【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用S△AOF=S菱形OBCA.2、D【解题分析】根据k,b的取值范围确定图象在坐标平面内的位置关系,从而求解.【题目详解】∵kb<0,∴k、b异号。
中考数学模拟试卷(14)
一、填空题:
1、月球离地球约380000千M,这个数用科学记数法表示应记作________.
2、计算:a232)aba(=__________.
3、如图,△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,
AD,CE交于点H,请你添加一个适当的条件:
____________,使△AEH≌△CEB。
4、考查下列式子,归纳规律并填空:
1=(-1)2×1。
1-3=(-1)3×2。
1-3+5=(-1)4×3。
…………………
1-3+5-7+…+(-1)1n(2n-1)=______________(n≥1且为整数).
5、要使一个平行四边形成为正方形,则需添加的条件为____________(填上一个正确
的结论即可).
6、抛物线y=(k+1)x22k-9开口向下,且经过原点,则k=_____.
7、已知圆的直径为13㎝,圆心到直线L的距离为6㎝,那么直线L和这个圆的公共点的
个数为_________________.
8、在半径为1的⊙O中,弦AB=1,则弧AB的长为____________.
9、从一副扑克牌中随机抽出一张牌,得到大王或小王的概率是__________.
10、 如图:为了测量河对岸旗杆AB的高度,在点C处测得顶端A的仰角为30°,沿CB方
向前进20m达到D处,在D点测得旗杆顶端A的仰角为45°,则旗杆AB的高度为
__________m.(精确到0.1m)
二、选择题:
1、化简)2(2得( )
A、4 B、-2 C、2 D 、-4
2、中华人民共和国国旗上的五角星,它的五个锐角的度数和是( )
A、500B、100 0 C、180 0 D、 200
0
3、随着通讯市场竞争的日益激烈,某通讯公司的手机市话收费标准按原标准每分钟降
低了a元后,再次下调了25%,现在的收费标准是每分钟b元,则原收费标准每分钟
为( )
H
E
DC
B
A
D
C
B
A
x
y
o
A、(ab45)元 B、(ab45)元 C、()43ab元 D、(ab34)元
4、用一批完全相同的正多边形木板铺地面,要求顶点聚在一起,且木板之间没有缝
隙,下列木板不符合要求的( )
A、正三角形木板 B、正方形木板 C、正五边形木板 D、 正六边形木板
5、下列图形中,既是轴对称图形又是中心对称图形的是( )
A、等腰三角形 B、直角三角形 C、平行四边形 D、 菱形
6、二次函数y=ax2+bx+c的图象如图所示,则下列结论正确的是( )
A.a>0,b>0,c>0 B.a<0,b<0,c
7、在课外活动课上,教师让同学们作一个对角线完全垂直的等腰梯
形形状的风筝,其面积为800平方M,则对角线所用的竹条至少需( )
A、402cm B 、40cm C、 80cm D、802cm
8、将正偶数按下表排成5列:
第一列 第二列 第三列 第四列 第五列
第一行 2 4 6 8
第二行 16 14 12 10
第三行 18 20 22 24
第四行 32 30 28 26
。。。 。。。 。。。
根据上面规律,2004应在( )
A、125行,3列 B、125行,2列 C、251行,2列 D、251行,3列
9、在△A BC中,∠C=900 tanA=1 ,那么cosB等于( )
A、3B、2 C、1 D、22
10、某校四个绿化小组一天植树棵数分别是10、10、x、8,已知这组数据的众数与平均
数相等,则这组数据的中位数是( )
A、8 B 、 9 C、10 D、12
三、白天,小明和小亮在阳光下散步,小亮对小明说:“咱俩的身高都是已知的。如果
量出此时我的影长,那么我就能求出你此时的影长。”晚上,他们二人有在路灯下散
步,小明想起白天的事,就对小亮说“如果量出此时我的影长,那么我就能求出你此
时的影长”。你认为小明、小亮的说法有道理吗?说说你的理由。
四、 如图是一个可折叠的钢丝床的示意图,这是展开后支撑起来放在地面上的情况,
如果折叠起来,床头部分被折到床面之上了(这里的A、B、C、D各点都是活动
的)。活动床头是根据三角形的稳定性和四边形的不稳定性设计而成的,其折叠过程
可用如图的变换反映出来,如果已知四边形ABCD中,AB=6,CD=15,那么BC、AD取
多长时,才能实现上述的折叠变化?
五、某医药研究所进行某一治疗病毒新药的开发,经过大量的服用实验后知:成年人按
规定的剂量服用后,每毫克血液中含药量y微克(1微克=10-3毫克)随时间x小时的
变化规律与某一个二次函数y=ax2+bx+c (a≠0)相吻合,并测得服用时(即时间为0
时)每毫升血液中含药量为0微克;服用后2小时每毫升血液中含药量为6微克,服
用后3小时,每毫升血液中含药量为7.5微克。
(1)求出含药量y(微克)与服药时间x(小时)的函数关系式;并画出0≤x≤8
内的函数的图象的示意图;
(2)求服药后几小时才能使每毫升血液中含药量最大?并求出血液中的最大含药
量;
(3)结合图象说明一次服药后的有效时间是多少小时?(有效时间为血液中含药量
不为0的总时间)
六、动手做一做:某校教具制作车间有等腰三角形正方形、平行四边形的塑料若干,数
学兴趣小组的同学利用其中7块恰好拼成一个矩形(如图1),后来又用它们拼出了
XYZ等字母模型(如图2、图3、图4),每个塑料板保持图1的标号不变,请你
参与:
(1)将图2中每块塑料板对应的标号填上去;
(2)图3中,点画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板,
并填上标号;(3)在图4中,找出7块塑料板,并填上标号。
图1 图2
图3 图4
1
2
3
4
5 6
7
七、探究题:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角
线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q。设A、P两点
间的距离为X,探究:
(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你得
到的结论。
(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解读
式,并写出函数自变量的取值范围;
(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指
出所有能使△PCQ成为等腰三角形的点Q的位置,并求出响应的X的值;如果不可能,
请说明理由。
答案
一、1、3.8×105千M 2、ab2 3、AH=CB等 4、(-1)1nn
5、对角线垂直且相等。 6、-3。 7、2个。 8、31。 9、271。 10、27.3
二、1、C 2、C 3、D 4、C 5、D 6、D 7、B 8、D 9、D 10、C
三. (注意变换过程中相应线段的长度不变,由第一个图知
222222
15)6(,ADBCADCDAC
。
由第四个图知,AB+AD==CD+BC,即6+AD=15+BC.解得AD=39,BC=30.
四、略
五 解:(1)设y=ax2+bx+c,则
2
2
2
026226337.5abcabcabc
解得:a=-12, b=4, c=0,
∴y=-21x2+4x(图象略)
(2)y=-21x2+4x=-21(x-4)2+8,
∴服药后4小时,才能使血液中含药量最大,这时每毫升血液中含有药液8微克。
(3)当y=0时,x1=0,x2=8,故一次服药后的有效时间为8小时.
六、
8 / 8
七.(1):过点P作MN∥BC,分别交AB与点M,交CD于N,则有△AMP和△CNP都是等腰三角
形,可证△QNP≌△PMB,得PQ=PB.
(2)图(2)由AP=x得
AM=PM=NQ=22x,CQ=CN-NQ=BM-AM=1-2x,
y=21(BC+CQ)= 21x2-2x+1(0≤x<22)
(3)三角形PCQ为等腰三角形.
①点P与点A重合时,点Q与点D重合,这时PQ=QC, 三角形PCQ为等腰三角形.
②点Q在DC的延长线上时且CP=CQ时,三角形PCQ为等腰三角形。求得x=1.