2020年高考数学二轮复习重点专题冲刺复习指导 专题5 解析几何
- 格式:doc
- 大小:1.42 MB
- 文档页数:14
第1讲 直线与圆A 级 基础通关一、选择题1.已知直线l :x cos α+y sin α=1(α∈R)与圆C :x 2+y 2=r 2(r >0)相交,则r 的取值范围是( )A .0<r ≤1B .0<r <1C .r ≥1D .r >1解析:圆心到直线的距离为d =1cos 2α+sin 2α=1,故r >1. 答案:D2.已知命题p :“m =-1”,命题q :“直线x -y =0与直线x +m 2y =0互相垂直”,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要解析:“直线x -y =0与直线x +m 2y =0互相垂直”的充要条件是1×1+(-1)·m 2=0⇔m =±1,所以命题p 是命题q 的充分不必要条件. 答案:A3.(2019·广东湛江一模)已知圆C :(x -3)2+(y -3)2=72,若直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点,则m =( )A .2或10B .4或8C .4或6D .2或4解析:圆C :(x -3)2+(y -3)3=72的圆心C 的坐标为(3,3),半径r =62, 因为直线x +y -m =0垂直于圆C 的一条直径,且经过这条直径的一个三等分点, 所以圆心到直线的距离为22,则有d =|6-m |1+1=22,解得m =2或m =10.答案:A4.直线ax -by =0与圆x 2+y 2-ax +by =0的位置关系是( ) A .相交 B .相切 C .相离D .不能确定解析:圆的方程化为标准方程得⎝ ⎛⎭⎪⎫x -a 22+⎝ ⎛⎭⎪⎫y +b 22=a 2+b 24.所以圆心坐标为⎝ ⎛⎭⎪⎫a 2,-b 2,半径r =a 2+b 22.所以圆心到直线ax -by =0的距离d =⎪⎪⎪⎪⎪⎪a 22+b 22a 2+b 2=a 2+b 22=r .所以直线与圆相切. 答案:B5.(2019·安徽十校联考)过点P (2,1)作直线l 与圆C :x 2+y 2-2x -4y +a =0交于A ,B 两点,若P 为弦AB 中点,则直线l 的方程( )A .y =-x +3B .y =2x -3C .y =-2x +3D .y =x -1解析:圆C 的标准方程(x -1)2+(y -2)2=5-a ,知圆心C (1,2),因为P (2,1)是弦AB 的中点,则PC ⊥l .所以k CP =1-22-1=-1,所以直线l 的斜率k =1.故直线l 的方程为y -1=x -2,即y =x -1. 答案:D6.(2019·广东天河一模)已知圆C 的方程为x 2-2x +y 2=0,直线l :kx -y +2-2k =0与圆C 交于A ,B 两点,则当△ABC 面积最大时,直线l 的斜率k 为( )A .1B .6C .1或7D .2或6解析:由x 2-2x +y 2=0,得(x -1)2+y 2=1,则圆的半径r =1,圆心C (1,0), 直线l :kx -y +2-2k =0与圆C 交于A ,B 两点, 当CA 与CB 垂直时,△ABC 面积最大,此时△ABC 为等腰直角三角形,圆心C 到直线AB 的距离d =22, 则有|2-k |1+k2=22,解得k =1或k =7. 答案:C 二、填空题7.已知a ∈R ,方程a 2x 2+(a +2)y 2+4x +8y +5a =0表示圆,则圆心坐标是________,半径是________.解析:由已知方程表示圆,则a 2=a +2, 解得a =2或a =-1.当a =2时,方程不满足表示圆的条件,故舍去. 当a =-1时,原方程为x 2+y 2+4x +8y -5=0, 化为标准方程为(x +2)2+(y +4)2=25, 表示以(-2,-4)为圆心,5为半径的圆. 答案:(-2,-4) 58.一个圆经过椭圆x 216+y 24=1的三个顶点,且圆心在x 轴的正半轴上,则该圆的标准方程为________.解析:由题意知,椭圆顶点的坐标为(0,2),(0,-2),(-4,0),(4,0).由圆心在x 轴的正半轴上知圆过顶点(0,2),(0,-2),(4,0).设圆的标准方程为(x -m )2+y 2=r 2, 则⎩⎪⎨⎪⎧m 2+4=r 2,(4-m )2=r 2.解得⎩⎪⎨⎪⎧m =32.r 2=254.所以该圆的标准方程为⎝ ⎛⎭⎪⎫x -322+y 2=254.答案:⎝ ⎛⎭⎪⎫x -322+y 2=2549.设抛物线y 2=4x 的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若∠FAC =120°,则圆的方程为_____________________________________________________.解析:由题意知该圆的半径为1,设圆心C (-1,a )(a >0),则A (0,a ).又F (1,0),所以AC →=(-1,0),AF →=(1,-a ).由题意知AC →与AF →的夹角为120°,得cos 120°=-11×1+a 2=-12,解得a = 3. 所以圆的方程为(x +1)2+(y -3)2=1. 答案:(x +1)2+(y -3)2=110.(2019·河北衡水二模)已知直线l 1过点P (3,0),直线l 1与l 2关于x 轴对称,且l 2过圆C :x 2+y 2-2x -2y +1=0的圆心,则圆心C 到直线l 1的距离为________.解析:由题意可知,圆C 的标准方程为(x -1)2+(y -1)2=1, 所以C (1,1),则l 2的斜率k CP =1-01-3=-12,因为l 1与l 2关于x 轴对称,所以直线l 1的斜率k =12,所以l 1:y =12(x -3),即x -2y -3=0,所以圆心C 到直线l 1的距离d =|1-2-3|1+4=455.答案:455B 级 能力提升11.(2018·江苏卷)在平面直角坐标系xOy 中,A 为直线l :y =2x 上在第一象限内的点,B (5,0),以AB 为直径的圆C 与直线l 交于另一点D .若AB →·CD →=0,则点A 的横坐标为________.解析:设A (a ,2a ),则a >0.又B (5,0),故以AB 为直径的圆的方程为(x -5)(x -a )+y (y -2a )=0. 由题意知C (a +52,a ).由⎩⎪⎨⎪⎧(x -5)(x -a )+y (y -2a )=0,y =2x , 解得⎩⎪⎨⎪⎧x =1,y =2,或⎩⎪⎨⎪⎧x =a ,y =2a .所以D (1,2). 又AB →·CD →=0,AB →=(5-a ,-2a ),CD →=(1-a +52,2-a ),所以(5-a ,-2a )·(1-a +52,2-a )=52a 2-5a -152=0, 解得a =3或a =-1. 又a >0,所以a =3. 答案:312.如图,在平面直角坐标系xOy 中,已知以M 为圆心的圆M :x 2+y 2-12x -14y +60=0及其上一点A (2,4).(1)设圆N 与x 轴相切,与圆M 外切,且圆心N 在直线x =6上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点,且|BC |=|OA |,求直线l 的方程. 解:圆M 的标准方程为(x -6)2+(y -7)2=25,所以圆心M (6,7),半径为5.(1)由圆心N 在直线x =6上,可设N (6,y 0). 因为圆N 与x 轴相切,与圆M 外切, 所以0<y 0<7,圆N 的半径为y 0, 从而7-y 0=5+y 0,解得y 0=1.因此,圆N 的标准方程为(x -6)2+(y -1)2=1. (2)因为直线l ∥OA ,所以直线l 的斜率为4-02-0=2.设直线l 的方程为y =2x +m , 即2x -y +m =0, 则圆心M 到直线l 的距离d =|2×6-7+m |5=|m +5|5. 因为|BC |=|OA |=22+42=25,又|MC |2=d 2+⎝ ⎛⎭⎪⎫|BC |22,即25=(m +5)25+5,解得m =5或m =-15.故直线l 的方程为2x -y +5=0或2x -y -15=0.第2讲 椭圆、双曲线、抛物线A 级 基础通关一、选择题1.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,则( )A .a 2=2b 2B .3a 2=4b 2C .a =2bD .3a =4b解析:由e =c a =12,则a =2c .又a 2=b 2+c 2,所以3a 2=4b 2. 答案:B2.(2019·天一联考)设双曲线C :x 28-y 2m=1的左右焦点分别为F 1、F 2,过点F 1的直线与双曲线C 交于M ,N 两点,其中M 在左支上,点N 在右支上,若∠F 2MN =∠F 2NM ,则|MN |=( )A .8B .4C .8 2D .4 2解析:由∠F 2MN =∠F 2NM ,知|F 2M |=|F 2N |, 又|MF 2|-|MF 1|=42,|NF 1|-|NF 2|=4 2. 两式相加,得|NF 1|-|MF 1|=82, 故|MN |=|NF 1|-|MF 1|=8 2. 答案:C3.已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,C 与过原点的直线相交于A ,B 两点,连接AF ,BF .若|AB |=10,|BF |=8,cos ∠ABF =45,则C 的离心率为( )A.35B.57C.45D.67解析:如图所示,在△AFB 中,|AB |=10,|BF |=8,cos ∠ABF =45,由余弦定理得|AF |2=|AB |2+|BF |2-2|AB ||BF | cos ∠ABF =100+64-2×10×8×45=36,所以|AF |=6,∠BFA =90°,设F ′为椭圆的右焦点,连接BF ′,AF ′. 根据对称性可得四边形AFBF ′是矩形.所以|BF ′|=6,|FF ′|=10,所以2a =8+6,2c =10,解得a =7,c =5,所以e =c a =57.答案:B4.(2019·长郡中学模拟)已知F 1,F 2是双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,若点F 2关于双曲线渐近线的对称点A 满足∠F 1AO =∠AOF 1(O 为坐标原点),则双曲线的渐近线方程为( )A .y =±3xB .y =±2xC .y =±2xD .y =±x解析:设F 2A 与渐近线y =b ax 交于点M ,且O ,M 分别为F 1F 2、F 2A 的中点, 故OM ∥F 1A ,则F 1A ⊥F 2A ,OA =OF 1=c .又∠F 1AO =∠AOF 1,所以△F 1OA 为正三角形, 所以∠MOF 2=π3,故双曲线的渐近线为y =±3x . 答案:A5.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3C .2D. 5解析:设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c ,0).由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设PQ 与OF 交于点M ,连接OP ,如图所示. 则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得2·⎝ ⎛⎭⎪⎫c 22=a 2,故c a=2,离心率e = 2. 答案:A 二、填空题6.(2019·江苏卷)在平面直角坐标系xOy 中,若双曲线x 2-y 2b2=1(b >0)经过点(3,4),则该双曲线的渐近线方程是________.解析:因为双曲线x 2-y 2b 2=1(b >0)经过点(3,4),则9-16b2=1(b >0),解得b =2,即双曲线方程为x 2-y 22=1,因此双曲线的渐近线方程为y =±2x . 答案:y =±2x7.(2019·珠海调研)已知直线l 是抛物线y 2=2px (p >0)的准线,半径为3的圆过抛物线顶点O 和焦点F ,且与直线l 相切,则抛物线的方程为________.解析:由已知圆心在OF 的中垂线上,故圆心到准线的距离为34p ,所以34p =3,所以p =4,故抛物线的方程为y 2=8x .答案:y 2=8x8.(2019·全国卷Ⅲ)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.解析:设F 1为椭圆的左焦点,分析可知点M 在以F 1为圆心,焦距为半径的圆上,即在圆(x +4)2+y 2=64上.因为点M 在椭圆x 236+y 220=1上,所以联立方程可得⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =±15.又因为点M 在第一象限,所以点M 的坐标为(3,15). 答案:(3,15) 三、解答题9.(2018·全国卷Ⅱ)设抛物线C :y 2=4x 的焦点为F ,过F 且斜率为k (k >0)的直线l 与C 交于A ,B 两点,|AB |=8.(1)求l 的方程;(2)求过点A ,B 且与C 的准线相切的圆的方程.解:(1)由题意得F (1,0),l 的方程为y =k (x -1)(k >0). 设A (x 1,y 1),B (x 2,y 2), 由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x得k 2x 2-(2k 2+4)x +k 2=0.Δ=16k 2+16>0,故x 1+x 2=2k 2+4k2.所以|AB |=|AF |+|BF |=(x 1+1)+(x 2+1)=4k 2+4k2.由题设知4k 2+4k2=8,解得k =-1(舍去),k =1.因此l 的方程为y =x -1.(2)由(1)得AB 的中点坐标为(3,2),所以AB 的垂直平分线方程为y -2=-(x -3),即y =-x +5.设所求圆的圆心坐标为(x 0,y 0),则⎩⎪⎨⎪⎧y 0=-x 0+5,(x 0+1)2=(y 0-x 0+1)22+16. 解得⎩⎪⎨⎪⎧x 0=3,y 0=2或⎩⎪⎨⎪⎧x 0=11,y 0=-6.因此所求圆的方程为(x -3)2+(y -2)2=16或(x -11)2+(y +6)2=144.10.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0. 证明:|FA →|,|FP →|,|FB →|成等差数列,并求该数列的公差. (1)证明:设A (x 1,y 1),B (x 2,y 2), 则x 214+y 213=1,x 224+y 223=1. 两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.①由题设得0<m <32,故k <-12.(2)解:由题意得F (1,0).设P (x 3,y 3),则 (x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0). 由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0.又点P 在C 上,所以m =34,从而P (1,-32),|FP →|=32,于是|FA →|=(x 1-1)2+y 21=(x 1-1)2+3(1-x 214)=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|,即|FA →|,|FP →|,|FB →|成等差数列.设该数列的公差为d ,则2|d |=||FB →|-|FA →||=12|x 1-x 2|=12(x 1+x 2)2-4x 1x 2 .②将m =34代入①得k =-1,所以l 的方程为y =-x +74,代入C 的方程,并整理得7x 2-14x +14=0.故x 1+x 2=2,x 1x 2=128,代入②解得|d |=32128.所以该数列的公差为32128或-32128.B 级 能力提升11.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1B.x 23+y 22=1C.x 24+y 23=1 D.x 25+y 24=1 解析:设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).连接F 1A ,令|F 2B |=m ,则|AF 2|=2m ,|BF 1|=3m .由椭圆的定义知,4m =2a , 得m =a2,故|F 2A |=a =|F 1A |,则点A 为椭圆C 的上顶点或下顶点.如图.不妨设A (0,-b ),由F 2(1,0),AF 2→=2F 2B →,得B ⎝ ⎛⎭⎪⎫32,b 2. 由点B 在椭圆上,得94a 2+b 24b2=1,得a 2=3,b 2=a 2-c 2=2,椭圆C 的方程为x 23+y 22=1.答案:B12.(2019·天津卷)设椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,上顶点为B .已知椭圆的短轴长为4,离心率为55.(1)求椭圆的方程;(2)设点P 在椭圆上,且异于椭圆的上、下顶点,点M 为直线PB 与x 轴的交点,点N 在y 轴的负半轴上,若|ON |=|OF |(O 为原点),且OP ⊥MN ,求直线PB 的斜率.解:(1)设椭圆的半焦距为c ,依题意2b =4,得b =2. 又e =c a =55,且a 2=b 2+c 2=4+c 2, 解之得a =5,c =1. 所以椭圆的方程为x 25+y 24=1.(2)由题意,设P (x P ,y P )(x P ≠0),M (x M ,0).设直线PB 的斜率为k (k ≠0),又B (0,2),则直线PB 的方程为y =kx +2,与椭圆方程联立⎩⎪⎨⎪⎧y =kx +2,x 25+y 24=1,整理得(4+5k 2)x2+20kx =0,可得x P =-20k4+5k2,代入y =kx +2得y P =8-10k24+5k2,进而直线OP 的斜率为y P x P =4-5k 2-10k.在y =kx +2中,令y =0,得x M =-2k.由题意得N (0,-1),所以直线MN 的斜率为-k2.由OP ⊥MN ,得4-5k 2-10k ·⎝ ⎛⎭⎪⎫-k 2=-1,化简得k 2=245,从而k =±2305.所以,直线PB 的斜率为2305或-2305.第3讲 圆锥曲线中的热点问题A 级 基础通关一、选择题1.(2017·全国卷Ⅰ改编)椭圆C :x 23+y 2m=1的焦点在x 轴上,点A ,B 是长轴的两端点,若曲线C 上存在点M 满足∠AMB =120°,则实数m 的取值范围是( )A .(3,+∞)B .[1,3)C .(0,3)D .(0,1]解析:依题意,当0<m <3时,焦点在x 轴上, 要在曲线C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°,即3m≥3,解得0<m ≤1.答案:D2.(2018·全国卷Ⅱ)已知F 1,F 2是椭圆C 的两个焦点,P 是C 上一点,若PF 1⊥PF 2,且∠PF 2F 1=60°,则C 的离心率为( )A .1-32B .2- 3C.3-12D.3-1解析:在△F 1PF 2中,PF 1⊥PF 2,∠PF 2F 1=60°. 由|F 1F 2|=2c ,得|PF 2|=c ,|PF 1|=3c .由椭圆定义知|PF 1|+|PF 2|=2a ,即(3+1)c =2a . 故椭圆的离心率e =c a=3-1. 答案:D3.若点P 为抛物线y =2x 2上的动点,F 为抛物线的焦点,则|PF |的最小值为( ) A .2B.12C.14D.18解析:根据题意,抛物线y =2x 2上,设P 到准线的距离为d ,则有|PF |=d ,抛物线的方程为y =2x 2,即x 2=12y ,其准线方程为y =-18,所以当点P 在抛物线的顶点时,d 有最小值18,即|PF |min =18. 答案:D4.(2019·天津卷)已知抛物线y 2=4x 的焦点为F ,准线为l .若l 与双曲线x 2a 2-y 2b2=1(a>0,b >0)的两条渐近线分别交于点A 和点B ,且|AB |=4|OF |(O 为原点),则双曲线的离心率为( )A. 2B. 3C .2 D. 5解析:由已知易得,抛物线y 2=4x 的焦点为F (1,0),准线l :x =-1,所以|OF |=1. 又双曲线的两条渐近线的方程为y =±b ax ,不妨设点A ⎝⎛⎭⎪⎫-1,b a ,B ⎝⎛⎭⎪⎫-1,-b a ,所以|AB |=2b a =4|OF |=4,所以b a=2,即b =2a ,所以b 2=4a 2.又因为c 2=a 2+b 2,所以c 2=5a 2,所以e =c a= 5. 答案:D5.(2019·安徽六安一中模拟)点P 在椭圆C 1:x 24+y 23=1上,C 1的右焦点为F 2,点Q 在圆C 2:x 2+y 2+6x -8y +21=0上,则|PQ |-|PF 2|的最小值为( )A .42-4B .4-4 2C .6-2 5D .25-6解析:设椭圆的左焦点为F 1(-1,0).则|PQ |-|PF 2|=|PQ |-(2a -|PF 1|)=|PQ |+|PF 1|-4, 故要求|PQ |-|PF 2|的最小值. 即求|PQ |+|PF 1|的最小值.又圆C 2的半径r =2,圆心C 2(-3,4),所以(|PQ |+|PF 1|)min =|C 2F 1|-r =22+(-4)2-2=25-2.故|PQ |-|PF 2|的最小值为25-6. 答案:D 二、填空题6.(2019·广东六校联考)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点为F 1、F 2,在双曲线上存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,则此双曲线的离心率e 的取值范围是________.解析:由于O 是F 1F 2的中点,得PO →=12(PF 1→+PF 2→).因为双曲线上的存在点P 满足2|PF 1→+PF 2→|≤|F 1F 2→|,则4|PO →|≤2c .由于|PO →|≥a ,知4a ≤2c ,所以e ≥2. 答案:[2,+∞)7.已知抛物线y 2=4x ,过焦点F 的直线与抛物线交于A ,B 两点,过A ,B 分别作x 轴,y 轴垂线,垂足分别为C ,D ,则|AC |+|BD |的最小值为________.解析:不妨设A (x 1,y 1)(y 1>0),B (x 2,y 2)(y 2<0).则|AC |+|BD |=x 2+y 1=y 224+y 1.又y 1y 2=-p 2=-4,所以|AC |+|BD |=y 224-4y 2(y 2<0).设g (x )=x 24-4x ,g ′(x )=x 3+82x2,令g ′(x )<0,得x <-2, 令g ′(x )>0,得-2<x <0.所以g (x )在(-∞,-2)上递减,在(-2,0)上递增.所以当x =-2,即y 2=-2时,|AC |+|BD |取最小值为3. 答案:38.(2019·浙江卷)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.解析:如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此OM =2. 在△FF ′P 中,OM 12PF ′, 所以PF ′=4.根据椭圆的定义,得PF +PF ′=6, 所以PF =2. 又因为FF ′=4, 所以在Rt △MFF ′中,tan ∠PFF ′=MF ′MF =FF ′2-MF 2MF=15,故直线PF 的斜率是15. 答案:15 三、解答题9.已知曲线C :y 2=4x ,曲线M :(x -1)2+y 2=4(x ≥1),直线l 与曲线C 交于A ,B 两点,O 为坐标原点.(1)若OA →·OB →=-4,求证:直线l 恒过定点;(2)若直线l 与曲线M 相切,求PA →·PB →(点P 坐标为(1,0))的最大值. (1)证明:设l :x =my +n ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧x =my +n ,y 2=4x ,得y 2-4my -4n =0. 所以y 1+y 2=4m ,y 1y 2=-4n . 所以x 1+x 2=4m 2+2n ,x 1x 2=n 2.由OA →·OB →=-4,得x 1x 2+y 1y 2=n 2-4n =-4,解得n =2. 所以直线l 方程为x =my +2, 所以直线l 恒过定点(2,0).(2)解:因为直线l 与曲线M :(x -1)2+y 2=4(x ≥1)相切, 所以|1-n |1+m2=2,且n ≥3,整理得4m 2=n 2-2n -3(n ≥3).①又点P 坐标为(1,0),所以由已知及①,得 PA →·PB →=(x 1-1,y 1)·(x 2-1,y 2) =(x 1-1)(x 2-1)+y 1y 2 =x 1x 2-(x 1+x 2)+1+y 1y 2 =n 2-4m 2-2n +1-4n =n 2-4m 2-6n +1=4-4n . 又y =4-4n (n ≥3)是减函数,所以当n =3时,y =4-4n 取得最大值-8. 故PA →·PB →的最大值为-8.10.(2019·惠州调研)已知椭圆C :y 2a 2+x 2b 2=1(a >b >0)的离心率为12,短轴长为2 3.(1)求椭圆C 的方程;(2)设过点A (0,4)的直线l 与椭圆C 交于M 、N 两点,F 是椭圆C 的上焦点.问:是否存在直线l ,使得S △MAF =S △MNF ?若存在,求出直线l 的方程;若不存在,请说明理由.解:(1)由题意知c a =12,b =3,且a 2=b 2+c 2,解之得a 2=4,b 2=3.所以椭圆C 的方程为y 24+x 23=1.(2)存在.理由如下:由题意可知l 的斜率一定存在,设l 为y =kx +4,M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +4,y 24+x 23=1,⇒(3k 2+4)x 2+24kx +36=0,所以⎩⎪⎨⎪⎧Δ=(24k )2-144(3k 2+4)>0, ①x 1+x 2=-24k 3k 2+4, ②x 1x 2=363k 2+4, ③由S MAF =S △MNF ,知M 为线段AN 的中点, 所以x 2=2x 1,④ 将④代入②得x 1=-8k 3k 2+4;④代入③得x 21=183k 2+4. 从而可得k 2=365,且满足①式,所以k =±655.因此存在直线l 为6x -5y +45=0或6x +5y -45=0满足题意.B 级 能力提升11.(2019·华南师大检测)已知椭圆D 的中心在原点,焦点在x 轴上,焦距为2,且长轴长是短轴长的2倍.(1)求椭圆D 的标准方程;(2)设P (2,0),过椭圆D 左焦点F 的直线l 交D 于A 、B 两点,若对满足条件的任意直线,不等式PA →·PB →=λ(λ∈R)恒成立,求λ的最小值.解:(1)依题意,c =1,a =2b , 又a 2=b 2+c 2,得2b 2=b 2+1, 所以b 2=1,a 2=2.所以椭圆D 的标准方程为x 22+y 2=1.(2)设A (x 1,y 1),B (x 2,y 2),则PA →·PB →=(x 1-2,y 1)·(x 2-2,y 2)=(x 1-2)(x 2-2)+y 1y 2,当直线l 垂直于x 轴时,x 1=x 2=-1,y 1=-y 2且y 21=12,此时PA →=(-3,y 1),PB →=(-3,y 2)=(-3,-y 1),所以PA →·PB →=(-3)2-y 21=172.当直线l 不垂直于x 轴时,设直线l :y =k (x +1),由⎩⎪⎨⎪⎧y =k (x +1),x 2+2y 2=2,整理得(1+2k 2)x 2+4k 2x +2k 2-2=0, 所以x 1+x 2=-4k 21+2k 2,x 1x 2=2k 2-21+2k2,所以PA →·PB →=x 1x 2-2(x 1+x 2)+4+k 2(x 1+1)(x 2+1)=(1+k 2)x 1x 2+(k 2-2)(x 1+x 2)+4+k 2=(1+k 2)2k 2-21+2k 2-(k 2-2)·4k 21+2k 2+4+k 2=17k 2+22k 2+1=172-132(2k 2+1)<172. 要使不等式PA →·PB →≤λ(λ∈R)恒成立,只需λ≥(PA →·PB →)max ,故λ的最小值为172.12.设椭圆M :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为A (-1,0),B (1,0),C 为椭圆M 上的点,且∠ACB =π3,S △ABC =33. (1)求椭圆M 的标准方程;(2)设过椭圆M 右焦点且斜率为k 的动直线与椭圆M 相交于E ,F 两点,探究在x 轴上是否存在定点D ,使得DE →·DF →为定值?若存在,试求出定值和点D 的坐标;若不存在,请说明理由.解:(1)在△ABC 中,由余弦定理得AB 2=CA 2+CB 2-2CA ·CB ·cos C =(CA +CB )2-3CA ·CB =4.又S △ABC =12CA ·CB ·sin C =34CA ·CB =33,所以CA ·CB =43,代入上式得CA +CB =22,所以椭圆长轴2a =22,焦距2c =AB =2,所以b =1. 所以椭圆M 的标准方程为x 22+y 2=1.(2)设直线方程y =k (x -1),E (x 1,y 1),F (x 2,y 2),联立⎩⎪⎨⎪⎧x 22+y 2=1,y =k (x -1),消去y 得(1+2k 2)x 2-4k 2x +2k 2-2=0,Δ=8k 2+8>0, 所以x 1+x 2=4k 21+2k 2,x 1x 2=2k 2-21+2k2.假设x 轴上存在定点D (x 0,0)使得DE →·DF →为定值.所以DE →·DF →=(x 1-x 0,y 1)·(x 2-x 0,y 2) =x 1x 2-x 0(x 1+x 2)+x 20+y 1y 2=x 1x 2-x 0(x 1+x 2)+x 20+k 2(x 1-1)(x 2-1) =(1+k 2)x 1x 2-(x 0+k 2)(x 1+x 2)+x 20+k 2=(2x 20-4x 0+1)k 2+(x 20-2)1+2k2要使DE →·DF →为定值,则DE →·DF →的值与k 无关, 所以2x 20-4x 0+1=2(x 20-2),解得x 0=54,此时DE →·DF →=-716为定值,定点为⎝ ⎛⎭⎪⎫54,0.满分示范课——解析几何解析几何部分知识点多,运算量大,能力要求高,在高考试题中大都是在压轴题的位置出现,是考生“未考先怕”的题型之一,不是怕解题无思路,而是怕解题过程中繁杂的运算.在遵循“设——列——解”程序化运算的基础上,应突出解析几何“设”的重要性,以克服平时重思路方法、轻运算技巧的顽疾,突破如何避繁就简这一瓶颈.【典例】 (满分12分)(2018·全国卷Ⅰ)设椭圆C :x 22+y 2=1的右焦点为F ,过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时,求直线AM 的方程; (2)设O 为坐标原点,证明:∠OMA =∠OMB .[规范解答] (1)由已知得F (1,0),l 的方程为x =1. 把x =1代入椭圆方程x 22+y 2=1,得点A 的坐标为⎝ ⎛⎭⎪⎫1,22或⎝ ⎛⎭⎪⎫1,-22. 又M (2,0),所以AM 的方程为y =-22x +2或y =22x - 2. (2)当l 与x 轴重合时,∠OMA =∠OMB =0°.当l 与x 轴垂直时,OM 为AB 的垂直平分线,所以∠OMA =∠OMB .当l 与x 轴不重合也不垂直时,设l 的方程为y =k (x -1)(k ≠0),A (x 1,y 1),B (x 2,y 2), 则x 1<2,x 2<2,直线MA ,MB 的斜率之和为k MA +k MB =y 1x 1-2+y 2x 2-2.由y 1=k (x 1-1),y 2=k (x 2-1)得k MA +k MB =2kx 1x 2-3k (x 1+x 2)+4k(x 1-2)(x 2-2).将y =k (x -1)代入x 22+y 2=1得(2k 2+1)x 2-4k 2x +2k 2-2=0. 所以x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1.则2kx 1x 2-3k (x 1+x 2)+4k =4k 3-4k -12k 3+8k 3+4k2k 2+1=0. 从而k MA +k MB =0,故MA ,MB 的倾斜角互补. 所以∠OMA =∠OMB . 综上,∠OMA =∠OMB .高考状元满分心得1.得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问求出点A 的坐标,第(2)问求k MA +k MB =0,判定MA ,MB 的倾斜角互补. 2.得关键分:解题过程中不可忽视关键点,有则给分,无则没分.如第(1)问中求出直线AM 的方程,第(2)问讨论直线与坐标轴是否垂直,将直线y =k (x -1)与x 22+y 2=1联立得(2k2+1)x 2-4k 2x +2k 2-2=0.3.得计算分:解题过程中计算准确是满分的根本保证.如第(1)问求对点M 坐标与直线AM 的方程;第(2)问中正确运算出x 1+x 2=4k 22k 2+1,x 1x 2=2k 2-22k 2+1,求出k MA +k MB =0,否则将导致失分.[解题程序] 第一步:由椭圆方程,求焦点F 及直线l . 第二步:求点A 的坐标,进而得直线AM 的方程. 第三步:讨论直线的斜率为0或不存在时, 验证∠OMA =∠OMB .第四步:联立方程,用k 表示x 1+x 2与x 1x 2. 第五步:计算k MA +k MB =0,进而得∠OMA =∠OMB . 第六步:反思总结,规范解题步骤. [跟踪训练]1.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的短轴长等于23,椭圆上的点到右焦点F 最远距离为3.(1)求椭圆C 的方程;(2)设O 为坐标原点,过F 的直线与C 交于A 、B 两点(A 、B 不在x 轴上),若OE →=OA →+OB →,且E 在椭圆上,求四边形AOBE 面积.解:(1)由题意,2b =23,知b = 3.又a +c =3,a 2=b 2+c 2=3+c 2,所以可得a =2,且c =1.因此椭圆C 的方程为x 24+y 23=1. (2)F (1,0).直线AB 的斜率不为0,设直线AB 的方程:x =my +1,A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧x =my +1,x 24+y 23=1,得(3m 2+4)y 2+6my -9=0. 由根与系数的关系,得⎩⎪⎨⎪⎧Δ>0,y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4. 故AB 的中点为N ⎝ ⎛⎭⎪⎫43m 2+4,-3m 3m 2+4. 又OA →+OB →=2ON →=OE →,故E 的坐标为⎝⎛⎭⎪⎫83m 2+4,-6m 3m 2+4. 因为E 点在椭圆上,所以14×⎝ ⎛⎭⎪⎫83m 2+42+13×⎝ ⎛⎭⎪⎫-6m 3m 2+42=1, 化简得9m 4+12m 2=0,故m 2=0,此时直线AB :x =1,S 四边形AOBE =2S △AOE =2×⎝ ⎛⎭⎪⎫12×2×32=3. 2.(2019·长沙模拟一中)设椭圆C :y 2a 2+x 2b 2=1(a >b >0),定义椭圆C 的“相关圆”E 的方程为x 2+y 2=a 2b 2a 2+b 2.若抛物线x 2=4y 的焦点与椭圆C 的一个焦点重合,且椭圆C 短轴的一个端点和其两个焦点构成直角三角形.(1)求椭圆C 的方程和“相关圆”E 的方程;(2)过“相关圆”E 上任意一点P 的直线l :y =kx +m 与椭圆C 交于A ,B 两点.O 为坐标原点,若OA ⊥OB ,证明原点O 到直线AB 的距离是定值,并求m 的取值范围.解:(1)因为抛物线x 2=4y 的焦点为(0,1).依题意椭圆C 的一个焦点为(0,1),知c =1,又椭圆C 短轴的一个端点和其两个焦点构成直角三角形,则b =c =1. 故椭圆C 的方程为y 22+x 2=1,“相关圆”E 的方程为x 2+y 2=23.(2)设A (x 1,y 1),B (x 2,y 2),联立方程组⎩⎪⎨⎪⎧y =kx +m,y 22+x 2=1,得(2+k 2)x 2+2kmx +m 2-2=0,Δ=4k 2m 2-4(2+k 2)(m 2-2)=8(k 2-m 2+2)>0,即k 2-m 2+2>0,⎩⎪⎨⎪⎧x 1+x 2=-2kmk 2+2,x 1x 2=m 2-2k 2+2,y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2=k 2(m 2-2)k 2+2-2k 2m 2k 2+2+m 2=2m 2-2k2k 2+2.由条件OA ⊥OB 得,OA →·OB →=0,即3m 2-2k 2-2=0,所以原点O 到直线l 的距离d =|m |1+k 2=m 21+k 2,由3m 2-2k 2-2=0得d =63为定值.由Δ>0,即k 2-m 2+2>0,所以3m 2-22-m 2+2>0,即m 2+2>0,恒成立. 又k 2=3m 2-22≥0,即3m 2≥2,所以m 2≥23,即m ≥63或m ≤-63,综上,m ≥63或m ≤-63.。
后记答题模板【范例赏析】后记答题模板(本讲对应学生用书第48~49页) 范例赏析典例如图,已知A,B分别为曲线C:22xa+y2=1(y≥0,a>0)与x轴的左、右两个交点,直线l过点B,且与x轴垂直,S为l上异于点B的一点,连接AS交曲线C 于点T.(1)若曲线C为半圆,点T为圆弧AB的三等分点,试求出点S的坐标.(2)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在a,使得O,M,S三点共线?若存在,求出a的值;若不存在,请说明理由.(典例)【规范解答】(1)当曲线C为半圆时,a=1,由点T为圆弧AB的三等分点,得∠BOT=60°或120°.2分①当∠BOT=60°时,∠SAB=30°.又AB=2,故在△SAB中,有SB=AB·tan 30°=23,所以S231⎛⎝⎭,. 4分②当∠BOT=120°时,同理可求得点S 的坐标为(1,).综上,点S 的坐标为S1⎛ ⎝⎭或S (1,2). 6分(2)切入点一:从点“T ”入手设点T (a cos θ,sin θ)(sin θ≥0),则直线AT 的方程为y=sin cos a a θθ+(x+a ), 8分令x=a ,得点S 2sin cos 1a θθ⎛⎫ ⎪+⎝⎭,,所以k OS =2sin (cos 1)a θθ+.又B (a ,0),所以k TB =sin cos -a a θθ. 10分假设存在a (a>0),使得O ,M ,S 三点共线,由于点M 在以SB 为直径的圆上,故BT ⊥OS.所以k OS ·k TB =sin cos -a a θθ·2sin (cos 1)a θθ+=-1,解得a 2=2.又因为a>0,所以. 15分经检验,当时,O ,M ,S 三点共线.故存在,使得O ,M ,S 三点共线. 16分切入点二:从点“S ”入手设点S (a ,m ),则直线SA 的方程为y=2m a (x+a ),联立方程组2221()2x y a m y x a a ⎧+=⎪⎪⎨⎪=+⎪⎩,,化简得(m 2+4)x 2+2m 2ax+m 2a 2-4a 2=0.8分设点T (x T ,y T ),因为A (-a ,0),所以x T ·(-a )=2222-44m a a m +,得x T =224-4a m am +,y T =244m m +,所以k TB =-2ma . 10分假设存在a (a>0),使得O ,M ,S 三点共线,由于点M 在以SB 为直径的圆上,故BT ⊥OS.12分又因为k OS =m a ,所以k OS ·k TB =m a ·2-ma ⎛⎫⎪⎝⎭=-1,解得a 2=2.又因为a>0,所以a=2.15分经检验,当a=2时,O ,M ,S 三点共线.故存在a=2,使得O ,M ,S 三点共线. 16分切入点三:从直线AS 的斜率入手 假设存在a (a>0),使得O ,M ,S 三点共线. 由于点M 在以SB 为直径的圆上,故BT ⊥OS.8分显然,直线AS 的斜率k 存在且k>0,可设直线AS 的方程为y=k (x+a ).由2221()x y a y k x a ⎧+=⎪⎨⎪=+⎩,,得(1+a 2k 2)x 2+2a 3k 2x+a 4k 2-a 2=0. 10分设点T (x T ,y T ),所以x T ·(-a )=42222-1a k a a k +.故x T =3222-1a a k a k +,从而y T =k (x T +a )=2221ak a k +,亦即T 322222-211a a k ak a k a k ⎛⎫ ⎪++⎝⎭,. 12分方法一:因为B (a ,0),所以BT u u u r =322222-2211a k aka k a k ⎛⎫⎪++⎝⎭,.由()x a y k x a =⎧⎨=+⎩,,得S (a ,2ak ),所以OS u u u r =(a ,2ak ).由BT ⊥OS ,可得BT u u u r ·OS u uu r =422222-241a k a k a k ++=0,即-2a 4k 2+4a 2k 2=0. 因为k>0,a>0,所以2. 15分经检验,当2时,O ,M ,S 三点共线.故存在2,使得O ,M ,S 三点共线. 16分方法二:因为B (a ,0),所以k BT =-TT y x a =-21a k ,故k SM =a 2k.由()x a y k x a =⎧⎨=+⎩,,得S (a ,2ak ),所以直线SM 的方程为y-2ak=a 2k (x-a ).O ,M ,S 三点共线当且仅当O 在直线SM 上,即-2ak=a 2k (-a ).因为k>0,a>0,所以2. 15分经检验,当2时,O ,M ,S 三点共线.故存在2,使得O ,M ,S 三点共线. 16分【总结提升】解题几何中的多动点问题,一直是学生难以逾越的障碍,究其原因:“多且动”,大有牵一发而动全身的感觉,各个点都丝丝相连,环环相扣.而恰恰正是点多且动,反而给我们一个启发,多且动的点中肯定有一个“核心点”,正是这个点牵动了其他点,使其他点始终围绕这个“核心点”运动.例题正是这类问题,其中点M 即为“核心点”,只要把握好这个“核心点”在圆上具有的性质,以其他的点或线为切入点,就可从多途径入手,让每个动点都可“一显身手”,以达到多解的目的.【拓展训练】拓 展 训 练变式 (2015·盐城二模)如图,在平面直角坐标系xOy 中,椭圆E :22x a+22y b =1(a>b>0)的离心率为2,直线l :y=12x 与椭圆E 相交于A ,B 两点,AB=25,C ,D 是椭圆E 上异于A ,B 两点,且直线AC ,BD 相交于点M ,直线AD ,BC 相交于点N.(1)求a ,b 的值;(2)求证:直线MN 的斜率为定值.(变式)【解答】(1)因为e=c a =2,所以c 2=12a 2,即a 2-b 2=12a 2,所以a 2=2b 2,故椭圆E 的方程为222x b +22y b =1.由题意,不妨设点A 在第一象限,点B 在第三象限.由22221212y x x y b b ⎧=⎪⎪⎨⎪+=⎪⎩,,解得A233⎫⎪⎪⎝⎭,. 又AB=5,所以5,即43b 2+13b 2=5,解得b 2=3.故a=6,3.(2)由(1)知椭圆E 的方程为26x +23y =1,从而A (2,1),B (-2,-1).①当CA ,CB ,DA ,DB 的斜率都存在时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =00-1-2y x ·0012y x ++=2020-1-4y x =202031--16-4x x ⎛⎫ ⎪⎝⎭=20202-2-4x x =-12,所以k CB =-112k .同理k DB =-212k .于是直线AD 的方程为y-1=k 2(x-2),直线BC 的方程为y+1=-112k (x+2).由1211-(2)2-1(-2)y x k y k x ⎧+=+⎪⎨⎪=⎩,,解得12112122124-4-221-2-41.21k k k x k k k k k y k k ⎧=⎪+⎪⎨+⎪=⎪+⎩,从而点N 的坐标为12112212124-4-2-2-412121k k k k k k k k k k ⎛⎫+ ⎪++⎝⎭,. 用k 2代k 1,k 1代k 2得点M 的坐标为12212112124-4-2-2-412121k k k k k k k k k k +++,.所以k MN =12212112121211221212-2-41-2-41-21214-4-24-4-2-2121k k k k k k k k k k k k k k k k k k k k ++++++=12214(-)4(-)k k k k =-1.即直线MN 的斜率为定值-1.②当CA ,CB ,DA ,DB 中,有直线的斜率不存在时,根据题设要求,至多有一条直线斜率不存在,故不妨设直线CA 的斜率不存在,从而C (2,-1).仍然设DA 的斜率为k 2,由①知k DB =-212k .此时CA :x=2,DB :y+1=-212k (x+2),它们的交点坐标为M 222-1-k ⎛⎫⎪⎝⎭,.由BC :y=-1,AD :y-1=k 2(x-2),它们交点N 222--1k ⎛⎫⎪⎝⎭,,从而k MN =-1也成立. 由①②可知,直线MN 的斜率为定值-1.。
【2019最新】精选高考数学二轮复习专题五解析几何第3讲圆锥曲线中的定点定值最值与范围问题练习一、选择题1.在平面直角坐标系xOy 中,经过点(0,)且斜率为k 的直线l 与椭圆+y2=1有两个不同的交点,则k 的取值范围为( )A.B.⎝ ⎛⎭⎪⎫22,+∞C.D.∪⎝ ⎛⎭⎪⎫22,+∞ 解析 由已知可得直线l 的方程为y =kx +,与椭圆的方程联立,整理得x2+2kx +1=0,因为直线l 与椭圆有两个不同的交点,所以Δ=8k2-4=4k2-2>0,解得k <-或k >,即k 的取值范围为∪.答案 D2.F1,F2是椭圆+y2=1的左、右焦点,点P 在椭圆上运动,则·的最大值是( )A.-2B.1C.2D.4解析 设P(x ,y),依题意得点F1(-,0),F2(,0),·=(--x)(-x)+y2=x2+y2-3=x2-2,注意到-2≤x2-2≤1,因此·的最大值是1.答案 B3.已知椭圆+=1(0<b <2)的左、右焦点分别为F1,F2,过F1的直线l 交椭圆于A ,B 两点,若|BF2|+|AF2|的最大值为5,则b 的值是( )A.1B. C. D.3解析 由椭圆的方程,可知长半轴长a =2;由椭圆的定义,可知|AF2|+|BF2|+|AB|=4a=8,所以|AB|=8-(|AF2|+|BF2|)≥3.由椭圆的性质,可知过椭圆焦点的弦中通径最短,即=3,可求得b2=3,即b=.答案D4.(2017·榆林模拟)若双曲线-=1(a>0,b>0)与直线y=x无交点,则离心率e的取值范围是( )A.(1,2)B.(1,2]C.(1,)D.(1,]解析因为双曲线的渐近线为y=±x,要使直线y=x与双曲线无交点,则直线y =x应在两渐近线之间,所以有≤,即b≤a,所以b2≤3a2,c2-a2≤3a2,即c2≤4a2,e2≤4,所以1<e≤2.答案B5.抛物线y2=8x的焦点为F,点P(x,y)为该抛物线上的动点,又点A(-2,0),则的最大值为( )A.1B.C. D.2解析由点P(x,y)在抛物线y2=8x上,得y2=8x(x≥0).由抛物线的定义可得|PF|=x+2,又|PA|==,所以==(x+2)2+8x(x+2)2=.当x=0时,=1;当x≠0时,=,因为x+≥2=4,当且仅当x=,即x=2时取等号,故x++4≥8,0<≤1,所以∈(1,].综上,∈[1,].所以的最大值为.答案B二、填空题6.已知双曲线-=1(a>0,b>0)的渐近线与圆x2-4x+y2+2=0相交,则双曲线的离心率的取值范围是______.解析双曲线的渐近线方程为y=±x,即bx±ay=0,圆x2-4x+y2+2=0可化为(x-2)2+y2=2,其圆心为(2,0),半径为.因为直线bx±ay=0和圆(x-2)2+y2=2相交,所以<,整理得b2<a2,从而c2-a2<a2,即c2<2a2,所以e2<2.又e>1,故双曲线的离心率的取值范围是(1,).答案(1,)7.已知椭圆+=1内有两点A(1,3),B(3,0),P为椭圆上一点,则|PA|+|PB|的最大值为________.解析在椭圆中,由a=5,b=4,得c=3,故焦点为(-3,0)和(3,0),点B是右焦点,记左焦点为C(-3,0),由椭圆的定义得|PB|+|PC|=10,所以|PA|+|PB|=10+|PA|-|PC|,因为||PA|-|PC||≤|AC|=5,所以当点P,A,C三点共线时,|PA|+|PB|取得最大值15.答案158.(2016·江苏卷)如图,在平面直角坐标系xOy中,F是椭圆+=1(a>b>0)的右焦点,直线y=与椭圆交于B,C两点,且∠BFC=90°,则该椭圆的离心率是________.解析联立方程组解得B、C两点坐标为B,C,又F(c,0),则=,=,又由∠BFC=90°,可得·=0,代入坐标可得:c2-a2+=0,①又因为b2=a2-c2.代入①式可化简为=,则椭圆离心率为e===.答案63三、解答题9.(2015·陕西)如图,椭圆E:+=1(a>b>0),经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.(1)解由题设知=,b=1,结合a2=b2+c2,解得a=,所以椭圆的方程为+y2=1.(2)证明由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0,由已知Δ>0,设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=,从而直线AP,AQ的斜率之和kAP+kAQ=+=+kx2+2-kx2=2k+(2-k)=2k+(2-k)x1+x2x1x2=2k+(2-k)=2k-2(k-1)=2.10.(2016·重庆诊断二)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解(1)设F(c,0),由条件知=,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1,得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=.所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0.所以当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.11.在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2.以F1为圆心,以3为半径的圆与以F2为圆心以1为半径的圆相交,且交点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(ⅰ)求的值;(ⅱ)求△ABQ面积的最大值.解(1)由题意知2a=4,则a=2,又=,a2-c2=b2,可得b=1,所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(ⅰ)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为,4)+y=1,又+=1,即,4)+y))=1,所以λ=2,即=2.(ⅱ)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2,①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m),所以△OAB的面积S=|m||x1-x2|=216k2+4-m2|m|1+4k2=2(16k2+4-m2)m21+4k2=2.设=t,将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2,故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(ⅰ)知,△ABQ面积为3S,所在△ABQ面积的最大值为6.。
第2讲 圆锥曲线的定义、方程及性质[做小题——激活思维]1.椭圆C :x 225+y 216=1的左、右焦点分别为F 1,F 2,过F 2的直线交椭圆C 于A ,B 两点,则△F 1AB 的周长为( )A .12B .16C .20D .24 C [△F 1AB 的周长为 |F 1A |+|F 1B |+|AB |=|F 1A |+|F 2A |+|F 1B |+|F 2B | =2a +2a =4a .在椭圆x 225+y 216=1中,a 2=25,a =5,∴△F 1AB 的周长为4a =20,故选C.]2.已知点F ⎝ ⎛⎭⎪⎫14,0,直线l :x =-14,点B 是l 上的动点.若过点B 垂直于y 轴的直线与线段BF 的垂直平分线交于点M ,则点M 的轨迹是( )A .双曲线B .椭圆C .圆D .抛物线D [由已知得|MF |=|MB |,根据抛物线的定义知,点M 的轨迹是以点F 为焦点,直线l 为准线的抛物线.]3.设P 是双曲线x 216-y 220=1上一点,F 1,F 2分别是双曲线左、右两个焦点,若|PF 1|=9,则|PF 2|=________.17 [由题意知|PF 1|=9<a +c =10,所以P 点在双曲线的左支,则有|PF 2|-|PF 1|=2a =8,故|PF 2|=|PF 1|+8=17.]4.设e 是椭圆x 24+y 2k =1的离心率,且e =23,则实数k 的值是________.209或365[当k >4时,有e =1-4k =23,解得k =365;当0<k <4时,有e =1-k4=23,解得k =209.故实数k 的值为209或365.]5.双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.5 [∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3ax .又双曲线的一条渐近线方程为y =35x ,∴a =5.]6.抛物线8x 2+y =0的焦点坐标为________.⎝ ⎛⎭⎪⎫0,-132 [由8x 2+y =0,得x 2=-18y . ∴2p =18,p =116,∴焦点为⎝⎛⎭⎪⎫0,-132.][扣要点——查缺补漏]1.圆锥曲线的定义及标准方程(1)应用圆锥曲线的定义解题时,一定不要忽视定义中的隐含条件,如T 3.(2)凡涉及椭圆或双曲线上的点到焦点的距离、抛物线上的点到焦点距离,一般可以利用定义进行转化.如T 1,T 2.(3)求解圆锥曲线的标准方程的方法是“先定型,后计算”. 2.圆锥曲线的几何性质(1)确定椭圆和双曲线的离心率的值及范围,就是确立一个关于a ,b ,c 的方程(组)或不等式(组),再根据a ,b ,c 的关系消掉b 得到a ,c 的关系式,如T 4.(2)要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.圆锥曲线的定义与标准方程(5年4考)[高考解读] 高考对圆锥曲线的定义及标准方程的直接考查较少,多对于圆锥曲线的性质进行综合考查.1.(2019·全国卷Ⅰ)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1 切入点:|AF 2|=2|F 2B |,|AB |=|BF 1|.关键点:挖掘隐含条件,确定点A 的位置,求a ,b 的值.B [设椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0),由椭圆定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|, ∴|AF 1|+2|AB |=4a .又|AF 2|=2|F 2B |,∴|AB |=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又∵|AF 1|+|AF 2|=2a ,∴|AF 2|=a ,∴A 为椭圆的短轴端点.如图,不妨设A (0,b ),又F 2(1,0),AF 2→=2F 2B →,∴B ⎝ ⎛⎭⎪⎫32,-b 2.将B 点坐标代入椭圆方程x 2a 2+y 2b 2=1,得94a 2+b 24b2=1,∴a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.]2.(2015·全国卷Ⅰ)已知F 是双曲线C :x 2-y 28=1的右焦点,P 是C 的左支上一点,A (0,66).当△APF 周长最小时,该三角形的面积为________.切入点:△APF 的周长最小.关键点:根据双曲线的定义及△APF 周长最小,确定P 点坐标.126 [由双曲线方程x 2-y 28=1可知,a =1,c =3,故F (3,0),F 1(-3,0).当点P 在双曲线左支上运动时,由双曲线定义知|PF |-|PF 1|=2,所以|PF |=|PF 1|+2,从而△APF 的周长=|AP |+|PF |+|AF |=|AP |+|PF 1|+2+|AF |.因为|AF |=32+662=15为定值,所以当(|AP |+|PF 1|)最小时,△APF 的周长最小,由图象可知,此时点P 在线段AF 1与双曲线的交点处(如图所示).由题意可知直线AF 1的方程为y =26x +66,由⎩⎪⎨⎪⎧y =26x +66,x 2-y 28=1,得y 2+66y -96=0,解得y =26或y =-86(舍去), 所以S △APF =S △AF 1F -S △PF 1F=12×6×66-12×6×26=12 6.] [教师备选题]1.[一题多解](2015·全国卷Ⅱ)已知双曲线过点(4,3),且渐近线方程为y =±12x ,则该双曲线的标准方程为________.x 24-y 2=1 [法一:∵双曲线的渐近线方程为y =±12x , ∴可设双曲线的方程为x 2-4y 2=λ(λ≠0). ∵双曲线过点(4,3), ∴λ=16-4×(3)2=4, ∴双曲线的标准方程为x 24-y 2=1.法二:∵渐近线y =12x 过点(4,2),而3<2,∴点(4,3)在渐近线y =12x 的下方,在y =-12x 的上方(如图).∴双曲线的焦点在x 轴上,故可设双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0). 由已知条件可得⎩⎪⎨⎪⎧b a =12,16a 2-3b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1,∴双曲线的标准方程为x 24-y 2=1.]2.(2018·天津高考)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,过右焦点且垂直于x 轴的直线与双曲线交于A ,B 两点.设A ,B 到双曲线的同一条渐近线的距离分别为d 1和d 2,且d 1+d 2=6,则双曲线的方程为( )A.x 23-y 29=1B.x 29-y 23=1C.x 24-y 212=1 D.x 212-y 24=1 A [设双曲线的右焦点为F (c,0).将x =c 代入x 2a 2-y 2b 2=1,得c 2a 2-y 2b 2=1,∴ y =±b 2a.不妨设A ⎝ ⎛⎭⎪⎫c ,b 2a ,B ⎝⎛⎭⎪⎫c ,-b 2a . 双曲线的一条渐近线方程为y =bax ,即bx -ay =0,则d 1=⎪⎪⎪⎪⎪⎪b ·c -a ·b 2a b 2+-a2=|bc -b 2|c=bc(c -b ),d 2=⎪⎪⎪⎪⎪⎪b ·c +a ·b 2a b 2+-a2=|bc +b 2|c=bc(c +b ),∴ d 1+d 2=bc·2c =2b =6,∴ b =3. ∵ c a=2,c 2=a 2+b 2,∴ a 2=3, ∴ 双曲线的方程为x 23-y 29=1.故选A.]1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|); (2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|); (3)抛物线:|MF |=d (d 为M 点到准线的距离).易错提醒:应用圆锥曲线定义解题时,易忽视定义中隐含条件导致错误. 2.求解圆锥曲线标准方程的方法是“先定型,后计算”(1)定型:就是指定类型,也就是确定圆锥曲线的焦点位置,从而设出标准方程; (2)计算:即利用待定系数法求出方程中的a 2,b 2或p .另外,当焦点位置无法确定时,抛物线方程常设为y 2=2ax 或x 2=2ay (a ≠0),椭圆方程常设为mx 2+ny 2=1(m >0,n >0,且m ≠n ),双曲线方程常设为mx 2-ny 2=1(mn >0).1.(椭圆的定义)设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y 轴上,则|PF 2||PF 1|的值为( )A.514 B.59 C.49 D.513D [如图,设线段PF 1的中点为M ,因为O 是F 1F 2的中点,所以OM ∥PF 2,可得PF 2⊥x 轴,|PF 2|=b 2a =53,|PF 1|=2a -|PF 2|=133,所以|PF 2||PF 1|=513.故选D.]2.(双曲线的标准方程)已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为45,渐近线方程为2x ±y =0,则双曲线的方程为( )A.x 24-y 216=1 B.x 216-y 24=1 C.x 216-y 264=1 D.x 264-y 216=1 A [易知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦点在x 轴上,所以由渐近线方程为2x ±y =0,得b a=2,因为双曲线的焦距为45,所以c =2 5.结合c 2=a 2+b 2,可得a =2,b =4,所以双曲线的方程为x 24-y 216=1.]3.(抛物线的定义)过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A ,B 两点,若|AF |=2|BF |=6,则p =________.4 [设直线AB 的方程为x =my +p2,A (x 1,y 1),B (x 2,y 2),且x 1>x 2,将直线AB 的方程代入抛物线方程得y 2-2pmy -p 2=0,所以y 1y 2=-p 2,4x 1x 2=p 2.设抛物线的准线为l ,过A 作AC ⊥l ,垂足为C (图略),过B 作BD ⊥l ,垂足为D ,因为|AF |=2|BF |=6,根据抛物线的定义知,|AF |=|AC |=x 1+p 2=6,|BF |=|BD |=x 2+p2=3,所以x 1-x 2=3,x 1+x 2=9-p ,所以(x 1+x 2)2-(x 1-x 2)2=4x 1x 2=p 2,即18p -72=0,解得p =4.]圆锥曲线的性质(5年17考)[高考解读] 高考对圆锥曲线性质的考查主要涉及椭圆和双曲线的离心率、双曲线的渐近线,难度适中.1.(2019·全国卷Ⅱ)若抛物线y 2=2px (p >0)的焦点是椭圆x 23p +y 2p=1的一个焦点,则p=( )A .2B .3C .4D .8 切入点:抛物线的焦点是椭圆的焦点. 关键点:正确用p 表示抛物线和椭圆的焦点.D [抛物线y 2=2px (p >0)的焦点坐标为⎝ ⎛⎭⎪⎫p2,0,椭圆x 23p +y 2p=1的焦点坐标为(±2p ,0).由题意得p2=2p ,∴p =0(舍去)或p =8.故选D.]2.(2019·全国卷Ⅱ)设F 为双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点,O 为坐标原点,以OF 为直径的圆与圆x 2+y 2=a 2交于P ,Q 两点.若|PQ |=|OF |,则C 的离心率为( )A. 2B. 3 C .2 D. 5切入点:以OF 为直径的圆与圆x 2+y 2=a 2相交且|PQ |=|OF |.关键点:正确确定以OF 为直径的圆的方程.A [令双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点F 的坐标为(c,0),则c =a 2+b 2.如图所示,由圆的对称性及条件|PQ |=|OF |可知,PQ 是以OF 为直径的圆的直径,且PQ ⊥OF .设垂足为M ,连接OP ,则|OP |=a ,|OM |=|MP |=c2,由|OM |2+|MP |2=|OP |2,得⎝ ⎛⎭⎪⎫c 22+⎝ ⎛⎭⎪⎫c 22=a 2,∴c a =2,即离心率e = 2.故选A.]3.[一题多解](2017·全国卷Ⅰ)设A ,B 是椭圆C :x 23+y 2m=1长轴的两个端点.若C 上存在点M 满足∠AMB =120°,则m 的取值范围是( )A .(0,1]∪[9,+∞)B .(0,3]∪[9,+∞)C .(0,1]∪[4,+∞)D .(0,3]∪[4,+∞)切入点:C 上存在点M 满足∠AMB =120°.关键点:求椭圆上的点与椭圆两端点连线构成角的范围建立关于m 的不等式. A [法一:设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0).故tan∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |·3-x |y |=23|y |x 2+y 2-3. 又tan∠AMB =tan 120°=-3,且由x 23+y 2m =1可得x 2=3-3y 2m,则23|y |3-3y 2m+y 2-3=23|y |⎝ ⎛⎭⎪⎫1-3m y2=- 3. 解得|y |=2m3-m. 又0<|y |≤m ,即0<2m3-m ≤m ,结合0<m <3解得0<m ≤1.对于焦点在y 轴上的情况,同理亦可得m ≥9. 则m 的取值范围是(0,1]∪[9,+∞).故选A.法二:当0<m <3时,焦点在x 轴上, 要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即3m≥3,解得0<m ≤1.当m >3时,焦点在y 轴上,要使C 上存在点M 满足∠AMB =120°, 则a b≥tan 60°=3,即m3≥3,解得m ≥9.故m 的取值范围为(0,1]∪[9,+∞). 故选A.] [教师备选题]1.(2018·全国卷Ⅱ)双曲线x 2a 2-y 2b2=1(a >0,b >0)的离心率为3,则其渐近线方程为( )A .y =±2xB .y =±3xC .y =±22x D .y =±32x A [因为双曲线的离心率为3,所以c a=3,即c =3a .又c 2=a 2+b 2,所以(3a )2=a 2+b 2,化简得2a 2=b 2,所以b a = 2.因为双曲线的渐近线方程为y =±bax ,所以y =±2x .故选A.]2.(2017·全国卷Ⅰ)已知F 是双曲线C :x 2-y 23=1的右焦点,P 是C 上一点,且PF 与x轴垂直,点A 的坐标是(1,3),则△APF 的面积为( )A.13B.12C.23D.32D [因为F 是双曲线C :x 2-y 23=1的右焦点,所以F (2,0).因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P3=1,解得y P =±3,所以P (2,±3),|PF |=3.又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32.故选D.]3.(2017·全国卷Ⅲ)已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则C 的离心率为( )A.63B.33C.23D.13A [由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切, ∴圆心到直线的距离d =2aba 2+b2=a ,解得a =3b ,∴b a=13,∴e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a 2=1-⎝ ⎛⎭⎪⎫132=63. 故选A.]1.椭圆、双曲线的离心率(或范围)的求法求椭圆、双曲线的离心率或离心率的范围,关键是根据已知条件确定a ,b ,c 的等量关系或不等关系,然后把b 用a ,c 代换,求ca的值.2.双曲线的渐近线的求法及用法(1)求法:把双曲线标准方程等号右边的1改为零,分解因式可得. (2)用法:①可得b a 或a b的值.②利用渐近线方程设所求双曲线的方程.1.(椭圆的离心率)[一题多解]直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( )A.13B.12C.23D.34B [法一:如图,|OB |为椭圆中心到l 的距离,则|OA |·|OF |=|AF |·|OB |,即bc =a ·b 2,所以e =c a =12.故选B.法二:设椭圆的方程为x 2a 2+y 2b2=1(a >b >0),由题意可取直线l 的方程为y =ba 2-b 2x +b ,椭圆中心到l 的距离为b a 2-b 2a ,由题意知b a 2-b 2a =14×2b ,即a 2-b 2a =12,故离心率e =12.] 2.(双曲线的离心率)设F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点,M为双曲线右支上一点,N 是MF 2的中点,O 为坐标原点,且ON ⊥MF 2,3|ON |=2|MF 2|,则C 的离心率为( )A .6B .5C .4D .3B [连接MF 1(图略),由双曲线的定义得|MF 1|-|MF 2|=2a ,因为N 为MF 2的中点,O 为F 1F 2的中点,所以ON ∥MF 1,所以|ON |=12|MF 1|,因为3|ON |=2|MF 2|,所以|MF 1|=8a ,|MF 2|=6a ,因为ON ⊥MF 2,所以MF 1⊥MF 2,在Rt△MF 1F 2中,由勾股定理得(8a )2+(6a )2=(2c )2,即5a =c ,因为e =c a,所以e =5,故选B.]3.(椭圆与抛物线的综合)已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12B [抛物线C :y 2=8x 的焦点坐标为(2,0),准线方程为x =-2.从而椭圆E 的半焦距c=2.可设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),因为离心率e =c a =12,所以a =4,所以b 2=a2-c 2=12.由题意知|AB |=2b 2a =2×124=6.故选B.]直线与圆锥曲线的综合问题(5年5考)[高考解读] 直线与圆锥曲线的位置关系是每年高考的亮点,主要涉及直线与抛物线、直线与椭圆的综合问题,突出考查研究直线与圆锥曲线位置关系的基本方法,注意通性通法的应用,考查考生的逻辑推理和数学运算核心素养.角度一:直线与圆锥曲线的位置关系1.(2018·全国卷Ⅰ)设抛物线C :y 2=2x ,点A (2,0),B (-2,0),过点A 的直线l 与C 交于M ,N 两点.(1)当l 与x 轴垂直时,求直线BM 的方程; (2)证明:∠ABM =∠ABN .切入点:①直线l 过点A ;②l 与C 交于M ,N 两点;③l 与x 轴垂直. 关键点:将问题转化为证明k BM 与k BN 具有某种关系.[解] (1)当l 与x 轴垂直时,l 的方程为x =2,可得点M 的坐标为(2,2)或(2,-2).所以直线BM 的方程为y =12x +1或y =-12x -1.(2)证明:当l 与x 轴垂直时,AB 为MN 的垂直平分线,所以∠ABM =∠ABN .当l 与x 轴不垂直时,设l 的方程为y =k (x -2)(k ≠0),M (x 1,y 1),N (x 2,y 2),则x 1>0,x 2>0.由⎩⎪⎨⎪⎧y =k x -2,y 2=2x 得ky 2-2y -4k =0,可知y 1+y 2=2k,y 1y 2=-4.直线BM ,BN 的斜率之和为k BM +k BN =y 1x 1+2+y 2x 2+2=x 2y 1+x 1y 2+2y 1+y 2x 1+2x 2+2.①将x 1=y 1k +2,x 2=y 2k+2及y 1+y 2,y 1y 2的表达式代入①式分子,可得x 2y 1+x 1y 2+2(y 1+y 2)=2y 1y 2+4k y 1+y 2k=-8+8k=0.所以k BM +k BN =0,可知BM ,BN 的倾斜角互补,所以∠ABM =∠ABN . 综上,∠ABM =∠ABN .角度二:直线与圆锥曲线的相交弦问题2.(2018·全国卷Ⅲ)已知斜率为k 的直线l 与椭圆C :x 24+y 23=1交于A ,B 两点,线段AB 的中点为M (1,m )(m >0).(1)证明:k <-12;(2)设F 为C 的右焦点,P 为C 上一点,且FP →+FA →+FB →=0.证明:2|FP →|=|FA →|+|FB →|. 切入点:①直线l 与椭圆C 相交;②AB 的中点M (1,m ).关键点:根据FP →+FA →+FB →=0及点P 在C 上确定m ,并进一步得出|FP →|,|FA →|,|FB →|的关系.[证明] (1)设A (x 1,y 1),B (x 2,y 2),则x 214+y 213=1,x 224+y 223=1.两式相减,并由y 1-y 2x 1-x 2=k 得x 1+x 24+y 1+y 23·k =0. 由题设知x 1+x 22=1,y 1+y 22=m ,于是k =-34m.由题设得0<m <32,故k <-12.(2)由题意得F (1,0).设P (x 3,y 3),则(x 3-1,y 3)+(x 1-1,y 1)+(x 2-1,y 2)=(0,0).由(1)及题设得x 3=3-(x 1+x 2)=1,y 3=-(y 1+y 2)=-2m <0. 又点P 在C 上,所以m =34,从而P 1,-32,|FP →|=32.于是|FA →|=x 1-12+y 21=x 1-12+31-x 214=2-x 12.同理|FB →|=2-x 22.所以|FA →|+|FB →|=4-12(x 1+x 2)=3.故2|FP →|=|FA →|+|FB →|. [教师备选题](2018·北京高考)已知椭圆M :x 2a 2+y 2b 2=1(a >b >0)的离心率为63,焦距为2 2.斜率为k 的直线l 与椭圆M 有两个不同的交点A ,B .(1)求椭圆M 的方程;(2)若k =1,求|AB |的最大值;(3)设P (-2,0),直线PA 与椭圆M 的另一个交点为C ,直线PB 与椭圆M 的另一个交点为D ,若C ,D 和点Q ⎝⎛⎭⎪⎫-74,14共线,求k .[解] (1)由题意得⎩⎪⎨⎪⎧a 2=b 2+c 2,c a =63,2c =22,解得a =3,b =1.所以椭圆M 的方程为x 23+y 2=1. (2)设直线l 的方程为y =x +m ,A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =x +m ,x 23+y 2=1,得4x 2+6mx +3m 2-3=0,所以x 1+x 2=-3m 2,x 1x 2=3m 2-34.所以|AB |= x 2-x 12+y 2-y 12= 2x 2-x 12= 2[x 1+x 22-4x 1x 2]=12-3m 22. 当m =0,即直线l 过原点时,|AB |最大,最大值为 6. (3)设A (x 1,y 1),B (x 2,y 2), 由题意得x 21+3y 21=3,x 22+3y 22=3. 直线PA 的方程为y =y 1x 1+2(x +2).由⎩⎪⎨⎪⎧y =y 1x 1+2x +2,x 2+3y 2=3,得[(x 1+2)2+3y 21]x 2+12y 21x +12y 21-3(x 1+2)2=0. 设C (x C ,y C ),所以x C +x 1=-12y 21x 1+22+3y 21=4x 21-124x 1+7. 所以x C =4x 21-124x 1+7-x 1=-12-7x 14x 1+7.所以y C =y 1x 1+2(x C +2)=y 14x 1+7. 设D (x D ,y D ),同理得x D =-12-7x 24x 2+7,y D =y 24x 2+7.记直线CQ ,DQ 的斜率分别为k CQ ,k DQ ,则k CQ -k DQ =y 14x 1+7-14-12-7x 14x 1+7+74-y 24x 2+7-14-12-7x 24x 2+7+74=4(y 1-y 2-x 1+x 2). 因为C ,D ,Q 三点共线,所以k CQ -k DQ =0. 故y 1-y 2=x 1-x 2. 所以直线l 的斜率k =y 1-y 2x 1-x 2=1.1.判断直线与圆锥曲线公共点的个数或求交点问题的两种常用方法(1)代数法:联立直线与圆锥曲线方程可得到一个关于x ,y 的方程组,消去y (或x )得到一个一元二次方程,此方程根的个数即为交点个数,方程组的解即为交点坐标;(2)几何法:画出直线与圆锥曲线,根据图形判断公共点个数. 2.弦长公式设斜率为k 的直线l 与圆锥曲线C 的两交点为P (x 1,y 1),Q (x 2,y 2). 则|PQ |=|x 1-x 2|1+k 2=[x 1+x 22-4x 1x 2]1+k2.或|PQ |=|y 1-y 2|1+1k2=[y 1+y 22-4y 1y 2]⎝⎛⎭⎪⎫1+1k 2(k ≠0).3.弦的中点圆锥曲线C :f (x ,y )=0的弦为PQ .若P (x 1,y 1),Q (x 2,y 2),中点M (x 0,y 0),则x 1+x 2=2x 0,y 1+y 2=2y 0.1.(直线与椭圆的综合)已知离心率为12的椭圆x 2a 2+y2b2=1(a >b >0)的左、右顶点分别为A 1,A 2,上顶点为B ,且BA 1→·BA 2→=-1.(1)求椭圆的标准方程;(2)过椭圆左焦点F 的直线l 与椭圆交于M ,N 两点,且直线l 与x 轴不垂直,若D 为x 轴上一点,|DM →|=|DN →|,求|MN ||DF |的值.[解] (1)A 1,A 2,B 的坐标分别为(-a,0),(a,0),(0,b ),BA 1→·BA 2→=(-a ,-b )·(a ,-b )=b 2-a 2=-1,∴c 2=1. 又e =c a =12,∴a 2=4,b 2=3.∴椭圆的标准方程为x 24+y 23=1.(2)由(1)知F (-1,0),设M (x 1,y 1),N (x 2,y 2), ∵直线l 与x 轴不垂直,∴可设其方程为y =k (x +1). 当k =0时,易得|MN |=4,|DF |=1,|MN ||DF |=4.当k ≠0时,联立⎩⎪⎨⎪⎧x 24+y 23=1,y =k x +1,得(3+4k 2)x 2+8k 2x +4k 2-12=0,∴x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, ∴|MN |=x 1-x 22+y 1-y 22=1+k 2|x 1-x 2|=1+k2x 1+x 22-4x 1x 2=12+12k 23+4k2. 又y 1+y 2=k (x 1+x 2+2)=6k3+4k2, ∴MN 的中点坐标为⎝ ⎛⎭⎪⎫-4k 23+4k 2,3k 3+4k 2,∴MN 的垂直平分线方程为y -3k 3+4k 2=-1k ⎝ ⎛⎭⎪⎫x +4k 23+4k 2(k ≠0), 令y =0得,1k x +k 3+4k 2=0,解得x =-k23+4k2.|DF |=⎪⎪⎪⎪⎪⎪-k 23+4k 2+1=3+3k 23+4k 2,∴|MN ||DF |=4.综上所述,|MN ||DF |=4.2.(直线与抛物线的综合)过抛物线E :x 2=4y 的焦点F 的直线交抛物线于M ,N 两点,抛物线在M ,N 两点处的切线交于点P .(1)证明点P 落在抛物线E 的准线上; (2)设MF →=2FN →,求△PMN 的面积.[解] (1)抛物线x 2=4y 的焦点坐标为(0,1),准线方程为y =-1.设直线MN 的方程为y =kx +1,代入抛物线方程x 2=4y ,整理得x 2-4kx -4=0. 设M (x 1,y 1),N (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4. 对y =14x 2求导,得y ′=12x ,所以直线PM 的方程为y -y 1=12x 1(x -x 1).①直线PN 的方程为y -y 2=12x 2(x -x 2).②联立方程①②,消去x ,得y =-1. 所以点P 落在抛物线E 的准线上.(2)因为MF →=(-x 1,1-y 1),FN →=(x 2,y 2-1),且MF →=2FN →.所以⎩⎪⎨⎪⎧-x 1=2x 2,1-y 1=2y 2-1,得x 21=8,x 22=2.不妨取M (22,2),N (-2,12),由①②得P ⎝ ⎛⎭⎪⎫22,-1.易得|MN |=92,点P 到直线MN 的距离d =322,所以△PMN 的面积S =12×92×322=2728.。
解析几何1.直线的倾斜角α与斜率k(1)倾斜角α的范围为[0,π).(2)直线的斜率①定义:k =tan α⎝⎛⎭⎪⎫α≠π2;倾斜角为π2的直线没有斜率;②斜率公式:经过两点P 1(x 1,y 1),P 2(x 2,y 2)(x 1≠x 2)的直线的斜率为k =y 1-y 2x 1-x 2(x 1≠x 2);③直线的方向向量a =(1,k ).[回顾问题1] 直线x cos θ+3y -2=0的倾斜角的范围是________.答案 ⎣⎢⎡⎦⎥⎤0,π6∪⎣⎢⎡⎭⎪⎫5π6,π 2.直线的方程(1)点斜式:y -y 0=k (x -x 0),它不包括垂直于x 轴的直线.(2)斜截式:y =kx +b ,它不包括垂直于x 轴的直线.(3)两点式:y -y 1y 2-y 1=x -x 1x 2-x 1,它不包括垂直于坐标轴的直线. (4)截距式:x a +y b =1,它不包括垂直于坐标轴的直线和过原点的直线.(5)一般式:任何直线均可写成Ax +By +C =0(A ,B 不同时为0)的形式.[回顾问题2] 已知直线过点P (1,5),且在两坐标轴上的截距相等,则此直线的方程为________.答案 5x -y =0或x +y -6=03.点到直线的距离及两平行直线间的距离(1)点P (x 0,y 0)到直线Ax +By +C =0的距离为d =|Ax 0+By 0+C |A 2+B2; (2)两平行线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0(C 1≠C 2)间的距离d =|C 1-C 2|A 2+B 2. [回顾问题3] 直线3x +4y +5=0与6x +8y -7=0的距离为________.答案 17104.两直线的平行与垂直①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2;l 1⊥l 2⇔k 1·k 2=-1.②l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则有l 1∥l 2⇔A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0;l 1⊥l 2⇔A 1A 2+B 1B 2=0.[回顾问题4] “a =15”是“直线2ax +(a -1)y +2=0与直线(a +1)x +3ay +3=0垂直”的________条件.(从“充分不必要”“必要不充分”“充要”“既不充分又不必要”中选取一个填写)答案 充分不必要5.圆的方程(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0).(2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),只有当D 2+E 2-4F>0时,方程x 2+y 2+Dx +Ey +F =0才表示圆心为⎝ ⎛⎭⎪⎫-D 2,-E 2,半径为 12D 2+E 2-4F 的圆. [回顾问题5] 若方程a 2x 2+(a +2)y 2+2ax +a =0表示圆,则a =________. 答案 -16.直线、圆的位置关系(1)直线与圆的位置关系直线l :Ax +By +C =0和圆C :(x -a )2+(y -b )2=r 2(r >0)有相交、相离、相切三种位置关系.可从代数和几何两个方面来判断:①代数方法(判断直线与圆方程联立所得方程组的解的情况):Δ>0⇔相交;Δ<0⇔相离;Δ=0⇔相切;②几何方法(比较圆心到直线的距离与半径的大小):设圆心到直线的距离为d ,则d <r ⇔相交;d >r ⇔相离;d =r ⇔相切.(2)圆与圆的位置关系已知两圆的圆心分别为O 1,O 2,半径分别为r 1,r 2,则①当O 1O 2>r 1+r 2时,两圆外离;②当O 1O 2=r 1+r 2时,两圆外切;③当|r 1-r 2|<O 1O 2<r 1+r 2时,两圆相交;④当O 1O 2=|r 1-r 2|时,两圆内切;⑤当0≤O 1O 2<|r 1-r 2|时,两圆内含. 若两圆相交把两圆x 2+y 2+D 1x +E 1y +F 1=0与x 2+y 2+D 2x +E 2y +F 2=0方程相减即得相交弦所在直线方程:(D 1-D 2)x +(E 1-E 2)y +(F 1-F 2)=0.[回顾问题6] 已知圆C 与圆x 2+y 2+10x +10y =0相切于原点,且过点A (0,-6),则圆C 的标准方程为________.答案 (x +3)2+(y +3)2=187.对圆锥曲线的定义要做到抓住关键词,例如椭圆中定长大于定点之间的距离,双曲线定义中是到两定点距离之差的“绝对值”,否则只是双曲线的其中一支.[回顾问题7] 方程(x +3)2+y 2+(x -3)2+y 2=6表示的曲线是________.答案 线段y =0(-3≤x ≤3)8.求椭圆、双曲线的标准方程,一般遵循先定位,再定型,后定量的步骤,即先确定焦点的位置,再设出其方程,求出待定系数.(1)椭圆标准方程:焦点在x 轴上,x 2a 2+y 2b 2=1(a >b >0);焦点在y 轴上,y 2a 2+x 2b 2=1(a >b >0).(2)双曲线标准方程:焦点在x 轴上,x 2a 2-y 2b 2=1(a >0,b >0);焦点在y 轴上,y 2a 2-x 2b 2=1(a >0,b >0).(3)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)具有共同渐近线的双曲线系为x 2a 2-y 2b 2=λ(λ≠0).[回顾问题8] (2019·如皋市高三年级第二学期语数英学科模拟(二),3)已知双曲线x 2m -y 2=1(m >0)的一条渐近线方程为x +3y =0,则m =________.答案 99.(1)在把圆锥曲线与直线联立求解时,消元后得到的方程中要注意二次项的系数是否为零,利用解情况可判断位置关系.有两解时相交;无解时相离;有唯一解时,在椭圆中相切,在双曲线中需注意直线与渐近线的关系.(2)直线与圆锥曲线相交时的弦长问题斜率为k 的直线与圆锥曲线交于两点P 1(x 1,y 1),P 2(x 2,y 2),则所得弦长P 1P 2=1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2]或P 1P 2=1+1k 2|y 1-y 2|=⎝ ⎛⎭⎪⎫1+1k 2[(y 1+y 2)2-4y 1y 2]. [回顾问题9] 在平面直角坐标系xOy 中,已知直线y =kx 被圆x 2+y 2-2mx -23。
2020年高考数学二轮复习重点专题冲刺复习指导专题5 解析几何【高考考场实情】解析几何的本质是用代数的方法研究几何问题,其中蕴含丰富的数学思想:函数与方程思想、数形结合思想、化归与转化思想、分类与整合思想等.因此,要注意数学思想方法在问题解决过程中的核心地位.【考查重点难点】近几年解析几何内容考查的题型归纳与分析如下:考什么怎么考题型与难度1.圆与圆锥曲线的定义、标准方程与性质考查圆锥曲线的定义、标准方程与性质题型:选择题或填空题难度:基础题2.直线与(圆)圆锥曲线的位置关系主要考查直线与圆锥曲线的位置关系题型:解答题难度:中档题或难题3.与(圆)圆锥曲线有关的范围与最值主要考查与圆锥曲线有关的范围与最值问题,常与函数、不等式交汇命题题型:解答题难度:中档题或难题4.定点、定值的探究与证明①考查以直线、圆、圆锥曲线为载体,探究直线或曲线过定点;②考查与圆锥曲线有关的定值问题.题型:解答题难度:中档题或难题5.(圆)圆锥曲线中的点、线、参数等存在性问题①考查以圆锥曲线为载体,探究平分面积的线、平分线段的点等问题;②考查某解析式成立的参数是否存在.题型:解答题难度:中档题或难题【存在问题分析】(一)缺乏利用圆锥曲线的定义研究相关问题的意识与模式习惯【指点迷津】定义是数学问题研究的起点.圆锥曲线的定义蕴含了丰富的内涵,对我们的问题的理解与思考有深刻的意义.【例1】(2016全国I卷理20)设圆222150x y x++-=的圆心为A,直线l过点B(1,0)且与x轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E .(I )证明EA EB +为定值,并写出点E 的轨迹方程. 【解析】圆的方程可化为()22116x y ++=的圆心为()1,0A -,半径为4;动点C ,D 落在圆上,满足4AC AD ==;(点在圆上,根据圆的定义有4AC AD ==) 等腰三角形ACD ∆中,//BE AC BE DE ⇒=;4AE ED AE BE ∴+=+=;由题设得(1,0)A -,(1,0)B ,||2AB =,由椭圆定义可得点E 的轨迹方程为:22143x y +=(0y ≠).(4AE EB +=根据定义知点E的轨迹是椭圆)【名师点睛】去探究目标“证明AE EB +为定值”的证明思路,未能结合定义预判可能的轨迹类型,从而没能联系已有的几何条件寻找突破口. 究其原因在于研究求轨迹方程这类问题时,没有养成优先站在“观察发现动点运动变化过程中不变的几何关系”的角度探究问题的意识;没有养成“定义”的应用意识,未能从圆锥曲线的定义审视动点满足的不变的几何关系,选择简便的方法实现几何条件代数化.建议复习中凡涉及轨迹问题,均需先回顾梳理各种方法,结合问题背景比较、优化方法;强调要在大问题(圆锥曲线的定义与几何图形中的位置关系与数量关系)下研究几何性质;加强逻辑严密的课堂推演与条理清晰试题剖析.(二)缺乏对几何条件代数化(坐标化)方法策略的深入研究【指点迷津】解析几何就是用代数的方法研究几何问题.那么,对题目所给的几何条件如何代数化(坐标化)很值得研究,我们追求的是既要准确转化,又要简便、减少运算量的转化. 【例2】(唐山2017)已知O 为坐标原点,F 是双曲线()2222:10,0x y a b a bΓ-=>>的左焦点,,A B 分别为Γ的左、右顶点,P 为Γ上一点,且PF x ⊥轴,过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E ,直线BM 与y 轴交于点N ,若2OE ON =,则Γ的离心率为( ) A .3 B .2 C .32D .43【解析】从试题中的关键条件2OE ON =出发,因为三点均在y 轴上,从坐标关系角度加以理解,从而引入关联参数实现几何条件代数化:设点()()0,0,2N t E t -, 则直线:12x y l a t +=--,直线:1BM a t+=, 联立即可得:()3,4M a t -,3c a ∴-=-,答案:AMEF 1F 2ABNxy【名师点睛】题中的几何条件(2OE ON =,M PF∈E 、N 由何而来,如何求得)以及从动态的角度理解几何条件(2OE ON =),未能从求离心率的角度认识问题中各个几何量间的联系.本题是动态的、需要一个参变量,可以设()0,N t ,也可以设(,)M c t -.大凡两直线上的交点或者动点问题,代数上多结合几何条件或设点或列方程,进而用方程思想求解问题,而求离心率,多是从几何图形中抽象相关性质并转化为,,a b c 有关的等量关系或是方程(组).建议必须依题构图,结合曲线的性质从题意与图形中抽象出关键的几何特征,并以简洁的代数形式加以呈现,从而转化为待求目标关系式进行变形演算. (三)缺乏对算法、算理、算式的分析,简化运算的意识待加强有效运算、简便运算是求解解析几何问题必须重视的环节,包括如何设元、如何设方程、如何整体代换、如何化简等.【例3】(2017全国Ⅰ卷理10)已知F 为抛物线C :2=4y x 的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .10【解析】解一:设直线AB 的方程:1x ty =+,(这样设方程减少一次的平方运算) 并联立抛物线方程得: 2440y ty -+=,12124,4y y t y y ∴+==,221122()444AB x x t y y t =++=++=+,(弦过抛物线的焦点,选用公式减少运算)因为1l ,2l 通过焦点且互相垂直,则同理得2144CD t =+,(互相垂直,将t 换成1t-即可,不必重复运算)224||||8416AB DE t t ∴+=++≥. DC B OFxA【名师点睛】解题时将所求量|AB |+|DE |孤立的理解两条含参的动弦长之和,感到运算量大,没信心求解,只是瞎猜结果.究其原因在于没能先从计算求解方法上用联系的观点认识两条含参的动弦长的区别与联系(方法公式相同,斜率互为负导数),从而不懂得用等价代换的思想简化运算.建议不能只是谈思路方法,应通过课堂师生共同演算的体验,增加实践经验,进行算法算理的指导.在涉及求有关过一点的两条斜率不同的直线的交点坐标或弦长问题时,往往只需计算其中的一类交点坐标或弦长,另一类只需等价代换结果中的参数即可. 【例4】(2015全国Ⅱ卷理20)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . (Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(略)(Ⅱ)若l 过点(,)3mN m ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【解析】(Ⅱ)如图,设直线OP 斜率存在且小于0,设直线OP :()<0y kx k =,OP 中点00(,)M x y ,又由(1)得9AB OP k k ⋅=-,则有9k =-229k ⇒-=-+(2923k k ⇒+=+()()229433k k k ⇒+=+>-,边平方,降低方程的次数)2890kk ⇒++=,4k =-AB 4k ∴=+;当点(M 时,3ABk =(2923k k ⇒+=-+()3k <-,4k =--AB 4k ∴=.综上AB 4k ∴=.【名师点睛】此题是含参的椭圆中某性质转化得到的一般性结论,由于参数多,计算量相对较大,必须结合圆锥曲线的定义并合理利用几何特征设参,分析算式结构合理消参、降次,才能准确求得最终答案.获取直线l 的斜率的等量关系需通过平行四边形成立的几何条件获得,如一组平行且对边相等(两条弦长及所对应的斜率相等);对角线互相平分(两中点横坐标相等);无论采用哪一种方法都要设直线与椭圆联立的方程,选择后者稍显简洁.如果根据(Ⅰ)得到两直线的斜率积9AB OP k k ⋅=-可设得两对角线的斜率分别为9k k-,,也可以通过解两个二次方程组得到中点横坐标的有关k 的关系式,但是式子复杂、运算繁琐较难化简.联想题中的关联参数m ,容易得到l 的斜率为定值是一般性的结论,在运算求解过程中的某个环节,参数m 能被消去;若采取先求得OP 中点00(,)M x y 的坐标,再由四点,,,M N A B 共线转化为斜率相等9MN AB k k k==-,避免再次联立求弦AB 中点坐标的繁杂运算.(四)缺乏参数的选择与解题过程中的优化意识【指点迷津】我们往往需要设元引参,但选择什么作为参数对问题的解决影响较大, 【例5】(2017厦门高二理11)抛物线2:2C y px =(0)p >与椭圆2222:1x y E a b+= (0)a b >>有相同焦点F ,两条曲线在第一象限内的交点为A .若直线OA 的斜率为2,则椭圆的离心率为 ABC1 D【答案】Cx【名师点睛】求得点(),2A c c 并发现OAF ∆是Rt ∆是关键。
如果仅从代数角度认识问题,直接联立直线、椭圆、抛物线方程去求点A 的坐标,发现计算量非常庞大耗时耗力,难以消参. 未充分理解题意、未能发现“两曲线有相同焦点F 与直线OA 的斜率为2”共同“作用”反应在几何图形中的现象------Rt OAF ∆.需从“两曲线有相同焦点F 与直线OA 的斜率为2”这条件去分析思考图形的特性,发现OAF ∆是Rt ∆,这是一般性的结论,我们要理解.我们也可以写出直线OA 的方程,联立直线与抛物线求得,2p A p ⎛⎫ ⎪⎝⎭,注意到点A 的特性也可以发现OAF ∆是Rt ∆.再回归椭圆定义与性质分析三角形中边角关系,获取参数,,a b c 的等量关系式,从而求得结论.【解决问题对策】(一)立足概念,返璞归真-----适度挖掘图形的特征,善于运用圆锥曲线的定义.【指点迷津】数形结合思想为指导,把定量的计算与定性的分析(图形的几何性质)有机结合,可简化计算量上.圆锥曲线的定义是根本,利用定义解题是高考的一个重要命题点.圆锥曲线的定义反映了它们的图形特点,是画图的依据和基础,也是问题研究的基础,正确利用定义可以使问题的解决更加灵活.已知圆锥曲线上的点以及焦点,应考虑使用圆锥曲线的定义.【例6】(2015重庆理21)如图所示,椭圆()222210x y a b a b+=>>的左、右焦点分别为1F ,2F ,过2F 的直线交椭圆于P ,Q 两点,且1PQ PF ⊥.(1)若122PF =+,222PF =-,求椭圆的标准方程. (2)若1PF PQ =,求椭圆的离心率e .F 2F 1QPO yx【解析】(1)由椭圆的定义()()12222224a PF PF =+=++-=,故2a =. 设椭圆的半焦距为c ,由已知21PF PF ⊥,因此2212122c F F PF PF ==+=22(22)(22)23++-=,即3c =,从而221b a c =-=.故所求椭圆的标准方程为2214x y +=.(2)如图所示,连接1QF ,由椭圆的定义,122PF PF a +=,122QF QF a +=, 因此2212PF PF c e a+===()()222221-+-=96263-=-.【名师点睛】1.定义是事物本质属性的概括和反映,圆锥曲线许多性质都是由定义派生出来的.对某些圆锥曲线问题,采用“回归定义”的策略,把定量的计算和定性的分析有机地结合起来,则往往能获得题目所固有的本质属性,达到准确判断、合理运算、灵活解题的目的. 2.求圆锥曲线方程常用的方法有定义法、待定系数法、轨迹方程法.用待定系数法求圆锥曲线的标准方程时,要“先定型,后计算”.所谓“定型”,是指确定类型,也就是确定椭圆、双曲线的焦点所在的坐标轴是x 轴还是y 轴,抛物线的焦点是在x 轴的正半轴、负半轴,还是y 轴的正半轴、负半轴,从而设出相应的标准方程的形式;“计算”就是指利用待定系数法求出方程中的a 2、b 2、p 的值,最后代入写出椭圆、双曲线、抛物线的标准方程. 3.求解离心率的时候,应该寻求三角形中的边角之间的关系,从而建立a 、c 的齐次方程(求值)或者齐次不等式(求范围).(二)巧用平几,事半功倍------关注平面几何知识方法与性质在问题转化中的应用,关注几何图形(特别是三角形)相关方法在运算中的应用.【指点迷津】解析几何的研究对象就是几何图形及其性质,所以在处理解析几何问题时,除了运用代数方程外,充分挖掘几何条件,结合平面几何知识,这往往能减少计算量.数学试题中很多图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解. 提高等价转化的能力——实现复杂问题简单化,陌生问题熟悉化.例如:①没有图形,不妨画个图形,以便直观思考;②“设—列—验”是求轨迹的通法;③消元转化为一元二次函数(方程),判别式,韦达定理,中点,弦长公式等要把握好;④多感悟“设—列—解”,“设”:设什么?坐标、方程、角、斜率、截距?“列”:列的前提是找关系,“解”:解就是转化、化简、变形,向目标靠拢;⑤紧扣题意,联系图形,数形结合;⑥一旦与自己熟悉的问题接轨立即入位.【例8】在平面直角坐标系xOy 中,已知圆C :22(3)2x y +-=,点A 是x 轴上的一个动点,AP ,AQ 分别切圆C 于P ,Q 两点,则线段PQ 长的取值范围为 .BPQCOxyA3.回归题意确定变量AC 的范围,计算求解:又3AC ≥,所以21109AC <≤,因此线段PQ 长的取值范围为214[,22)3【名师点睛】直线与圆的三种位置关系:相切,相交,相离.解决直线与圆的问题时,一方面,要运用解析几何的一般方法,即代数化方法,把它转化为代数问题;另一方面,由于直线与圆和平面几何联系非常紧密,因此,准确地作出图形,挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.【例9】如图所示,过点(1,0)的直线与抛物线2y x =交于A 、B 两点,射线OA 和OB 分别和圆22(2)4x y -+=交于D 、E 两点,若OABODES Sλ∆∆=,则λ的最小值等于A .12B .13C .14【解析】设11(,)A x y 、22(,)B x y (1)y k x =-⎩20k =,即121x x ⋅=.又211222y x y x ⎧=⎪⎨=⎪⎩, ∴12120x x y y ⋅+⋅=,即OA OB ⊥u u u r u u u r . 设33(,)C x y 、44(,)D x y ,直线OA :1y k x =,直线OB :2y k x =,则121k k ⋅=-.由21y xy k x⎧=⎪⎨=⎪⎩得21111(,)A k k ,同理22211(,)B k k . 由221(2)4x y y k x⎧-+=⎪⎨=⎪⎩得1221144(,)11k D k k ++,同理2222244(,)11k E k k ++.∴OA =OB =, OD =OE = ∴221122221211111(1)(1)2(1)(1)12116161642OABODEk k OA OB S k k k k S OD OE ∆∆++++++====≥. 【名师点睛】1.解析几何研究的对象是几何图形,善用巧用几何图形的特征,把几何特征转化为代数表示,从而缩短思维链条,简化运算过程;2.在几何图形中,利用解三角形和三角形相似等知识,转化为边角之间的关系解决解析几何问题.其中,解三角形的画图写图,体现数形结合的思想;利用角或边的关系消角(边),体现了消元的思想;用正弦、余弦定理列方程组求三角函数值,体现了方程思想.(三)设而不求,参数归一------立足目标意识,寻求点的坐标之间的关系,剖析变量内在的几何意义,通过整体代换的思想,简化运算过程,实现设而不求,简洁明了、准确解题.【指点迷津】运算繁杂是解析几何最突出的特点.首先,解题中要指导学生克服只重视思路、轻视动手运算的缺点.运算能力差是学生普遍存在的问题,不仅在解析几何问题中要加强训练,在其它板块中也要加强训练,只有把提高学生的运算能力贯彻于教学的过程之中,才能受到较好的效果.其次,要培养学生运算的求简意识,尤其是“设而不求”,充分发挥圆锥曲线的定义和利用平面几何知识化难为易、化繁为简的作用.譬如圆锥曲线中的定点、定值问题,解决的基本思想从变量中寻求不变,即先用变量表示所求的量或点的坐标,再通过推理计算,导出这些量或点的坐标和变量无关.其基本策略:定点和定值问题就是在运动变化中寻找不变量的问题,基本思想是使用参数表示要解决的问题,证明要解决的问题与参数无关.在这类试题中选择消元的方向是非常关键的.另外,对于某些定点问题的证明,可以先通过特殊情形探求定点坐标,然后对一般情况进行证明,这种方法在填空题中更为实用.【例10】过抛物线24y x =的焦点F 的直线交抛物线于A 、B 两点,分别过A 、B 两点作准线的垂线,垂足分别为1A ,1B 两点,以线段1A 1B 为直径的圆C 过点(2,3)-,则圆C 的方程为( ) A .22(1)(2)2x y ++-= B .22(1)(1)5x y ++-= C .22(1)(1)17x y +++= D .22(1)(2)26x y +++= 【答案】BCMB 1A 1BOFxA【名师点睛】1. 目标化归;2.两支圆锥曲线交汇是全国卷高考常见的考查方式,本题涉及圆锥曲线的概念、圆的切线问题,解决这类问题主要以方程思想和数形结合的方法来处理,还应注意恰当运用平面几何知识对其进行求解.【例11】如图,在平面直角坐标系xOy 中,已知椭圆22142x y+=,过坐标原点的直线交椭圆于P 、A 两点,其中点P 在第一象限,过P 作x 轴的垂线,垂足为C ,连接AC ,并延长交椭圆于点B ,设直线P A 的斜率为k .求证:对任意k >0,都有P A ⊥PB .【名师点睛】1.方法一,利用直线与椭圆联立,求点坐标,再转化求直线点斜率,最后利用斜率乘积等于-1证明垂直,这是常规方法,思维比较自然,但计算量大;方法二,利用点A 、C 在椭圆上,所以满足椭圆方程,利用点差法,先求出12AB PB k k ⨯=-,再利用12PA PB PA ABk k k k -⨯=⨯,得到结论,方法很巧妙;2.设出点的坐标,但目的不是求出坐标,而是通过它作为媒介寻求变量间的关系,确立解题目标,简化运算和快速准确解决问题,这就是设而不求.3.对于椭圆,有如下结论:若,M N 是椭圆()222210x y a b a b+=>>上关于原点对称两点,P为椭圆上动点(不同于,M N ),则22PM PN b k k a ⋅=-=21e -,特殊地,若12,A A 是椭圆长轴的顶点,更有此结论,该结论还可推广到椭圆弦中点,以及双曲线也有类似结论.(四)函数思想,方程互化-----整体意识下利用方程思想处理求值,利用函数思想求范围和最值.【例12】(2015天津理19)已知椭圆()2222+=10x y a b a b >>的左焦点为(),0F c -,3,点M在椭圆上且位于第一象限,直线FM 被圆222+4b x y =截得的线段的长为c ,43FM(1)求直线FM 的斜率; (2)求椭圆的方程;(3)设动点P 在椭圆上,若直线FP 2OP (O 为原点)的斜率的取值范围.【解析】(1)由已知有2213c a=,又由222a b c =+,可得223a c =,222b c =,设直线FM 的斜率为(0)k k >,则直线FM 的方程为()y k x c =+,由已知有2222221c b k ⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭+⎝⎭,解得33k =. (2)由(1)得椭圆方程为2222132x y c c+=,直线FM 的方程为()y k x c =+,两个方程联立,消去y ,整理得223250x cx c +-=,解得53x c =-或x c =,因为点M 在第一象限,可得M 的坐标为23,3c c ⎛⎫ ⎪ ⎪⎝⎭,由222343()03FM c c c ⎛⎫=++-= ⎪ ⎪⎝⎭,解得1c =, 所以椭圆方程为22132x y +=.(3)设点P 的坐标为(,)x y ,直线FP 的斜率为t ,得1yt x =+,即(1)y t x =+(1)x ≠-, 与椭圆方程联立22(1)132y t x x y =+⎧⎪⎨+=⎪⎩,消去y ,整理得22223(1)6x t x ++=,又由已知,得226223(1)x t x -=>+,解得312x -<<-或10x -<<,设直线OP 的斜率为m ,得y m x=,即(0)y mx x =≠,与椭圆方程联立,整理可得22223m x =-. ①当3,12x ⎛⎫∈-- ⎪⎝⎭时,有(1)0y t x =+<,因此0m >,于是2223m x =-,得223,m ⎛⎫∈ ⎪ ⎪⎝⎭; ②当()1,0x ∈-时,有(1)0y t x =+>,因此0m <,于是2223m x =--,得23,m ⎛∈-∞- ⎪ ⎪⎝⎭综上所述,直线OP 的斜率的取值范围是23223,⎛-∞ ⎝⎭⎝⎭U . 【例13】(2015四川理20)如图所示,椭圆E :()222210x y a b a b +=>>2,过点()0,1P 的动直线l 与椭圆相交于,A B 两点,当直线l 平行于x 轴时,直线l 被椭圆E 截得的线段长为22.(1)求椭圆E 的方程;(2)在平面直角坐标系xOy 中,是否存在与点P 不同的定点Q ,使得QAPA QBPB=恒成立?若存在,求出点Q 的坐标;若不存在,请说明理由.y xBOPA【解析】(1)由已知点()2,1在椭圆E 上.所以222222112a b c a a b c ⎧+=⎪⎪⎪=⎨⎪⎪-=⎪⎩,解得2a =,2b =.所以椭圆E 方程为22142x y+=.(2)则()0,2M ,()0,2N -,由QM PM QN PN =,有00221212y y --=++,解得01y =或02y =.所以,若存在不同于点P 的定点Q 满足条件,则点Q 的坐标只可能为()0,2Q . 下面证明:对任意的直线l ,均有QAPA QBPB=.当直线l 的斜率不存在时,由上可知,结论成立.当直线l 的斜率存在时,可设直线l 的方程为1y kx =+,,A B 的坐标分别为()11,x y ,()22,x y .联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,得()2221420k x kx ++-=. 所以()22168210k k ∆=++>, 122421k x x k +=-+,122221x x k =-+g . 因此121212112x x k x x x x ++==g . 易知,点B 关于y 轴对称的点的坐标为()22,B x y '-. 又11121QA y k k x x -==-,2221211QB y k k k x x x '-==-+=--, 所以QA QB k k '=,即,,Q A B '三点共线.所以12QA QA x PAQB QB x PB==='. 故存在与点P 不同的定点()0,2Q ,使得QA PAQB PB=恒成立.【名师点睛】1.求轨迹方程要注意利用圆锥曲线的定义解题.涉及多个动点时,可用动点代入法或参数法求解,分清主动点和从动点.与圆锥曲线有关的轨迹求解,也要注意取值范围和“杂点”的去除.2.对于最值、定值问题的处理,常采用①几何法:利用图形性质来解决;②代数法:建立目标函数,再求函数的最值,确定某几何量的值域或取值范围,一般需要建立起方程或不等式,或利用圆锥曲线的有界性来求解.。