固体物理第一章 晶体结构
- 格式:ppt
- 大小:9.91 MB
- 文档页数:80
固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。
黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。
本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。
一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。
晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。
晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。
二、晶体结构晶体结构是固体物理学的基础。
黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。
晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。
晶向和晶面则分别描述了晶体中原子排列的方向和平面。
三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。
黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。
声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。
四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。
黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。
自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。
这一模型可以解释金属的导电性和热传导性。
五、能带理论能带理论是固体电子理论的一个重要组成部分。
黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。
能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。
六、固体的磁性固体的磁性是固体物理中的另一个重要主题。
黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。
磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。
七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。
黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。
八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。
《固体物理学》习题解答黄昆 原著 韩汝琦改编 (陈志远解答,仅供参考)第一章 晶体结构1.1、解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1)a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06r 8r34a r 34x 3333=π=π=π= (2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)r 334(r 342a r 342x 3333≈π=π⨯=π⨯=(3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)r 22(r 344a r 344x 3333≈π=π⨯=π⨯= (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233 晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062r224r346x 33≈π=π⨯= (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.063r 338r 348a r 348x 33333≈π=π⨯=π⨯=1.2、试证:六方密排堆积结构中633.1)38(a c 2/1≈= 证明:在六角密堆积结构中,第一层硬球A 、B 、O 的中心联线形成一个边长a=2r 的正三角形,第二层硬球N 位于球ABO 所围间隙的正上方并与这三个球相切,于是: NA=NB=NO=a=2R.即图中NABO 构成一个正四面体。
固体物理习题参考答案(部分)第一章 晶体结构1.氯化钠:复式格子,基元为Na +,Cl -金刚石:复式格子,基元为两个不等价的碳原子 氯化钠与金刚石的原胞基矢与晶胞基矢如下:原胞基矢)ˆˆ()ˆˆ()ˆˆ(213212211j i a a i k a a k j a a +=+=+= , 晶胞基矢 ka a j a a ia a ˆˆˆ321===2. 解:31A A O ':h:k;l;m==-11:211:11:111:1:-2:1 所以(1 1 2 1) 同样可得1331B B A A :(1 1 2 0); 5522A B B A :(1 1 0 0);654321A A A A A A :(0 0 0 1)3.简立方: 2r=a ,Z=1,()63434r 2r a r 3333πππ===F体心立方:()πππ833r4r 342a r 3422a 3r 4a r 4a 33333=⨯=⨯=∴===F Z ,,则面心立方:()πππ622r 4r 34434442r 4a r 4a 233ar 33=⨯=⨯=∴===F Z ,,则 六角密集:2r=a, 60sin 2c a V C = a c 362=,πππ622336234260sin 34223232=⨯⨯⨯=⨯=⎪⎭⎫ ⎝⎛a a c a r F a金刚石:()πππ163r 38r 348a r 3488Z r 8a 33333=⨯=⨯===F ,, 4. 解:'28109)31arccos(312323)ˆˆˆ()ˆˆˆ(cos )ˆˆˆ()ˆˆˆ(021*******12211=-=-=++-⋅+-=⋅=++-=+-=θθa a k j i a k j i a a a a a kj i a a kj i a a 5.解:对于(110)面:2a 2a a 2S =⋅=所包含的原子个数为2,所以面密度为22a2a22=对于(111)面:2a 2323a 22a 2S =⨯⨯= 所包含的原子个数为2,所以面密度为223a34a 232=8.证明:ABCD 是六角密堆积结构初基晶胞的菱形底面,AD=AB=a 。
第一章晶体结构⏹布拉菲点阵概念⏹惯用晶胞(单胞)概念⏹初基晶胞(原胞)概念⏹Wigner-Seize晶胞⏹晶体结构基元+点阵=晶体结构⏹简单的晶体结构(1)sc,bcc,fcc结构的特征(2)金刚石结构(3)六角密堆积结构(4)NaCl结构(5)CsCl结构⏹晶列, 晶向, 晶面, 晶面族, 晶面指数, 密勒指数, 晶面间距晶面指数(hkl)的定义和求法方向指数[abc]的定义和求法⏹对称操作⏹7种晶系和14种布拉菲点阵1以堆积模型计算由同种原子构成的同体积的简立方和面心立方晶体中的原子数之比。
2证明立方晶系的晶列[hkl]与晶面族(hkl)正交3某元素晶体的结构为体心立方布拉菲格子,试指出其格点面密度最大的晶面系的密勒指数,并求出该晶面系相邻晶面的面间距4在立方晶胞中画出(122),(001),(10),(210)晶面和[122]5晶体中可以独立存在的8种对称元素是:、、、、、、、。
⏹布拉格定理⏹倒易点阵初基矢量公式⏹布里渊区的求法(二维正方格子和长方格子)⏹实验衍射方法(劳厄法、转动晶体法和粉末法)⏹倒易点阵矢量和晶面指数间的关系1考虑晶体中一组互相平行的点阵平面(hkl),(a)证明倒易点阵矢量G(hkl)=hb1+kb2+lb3垂直于这组平面(hkl);(b)证明两个相邻的点阵平面间的距离d(hkl)为2从体心立方铁的(110)平面来的X-射线反射的布喇格角为22º,X-射线波长λ=1.54Å。
试计算铁的立方晶胞边长;(b)从体心立方结构铁的(111)平面来的反射的布喇格角是多少?答案:a)a=2.91Å;b)θ=27.28º3对于点阵常数为a的二维六角点阵,(a)写出正点阵的初基矢量;(b )计算倒易点阵的初基矢量;(c )画出第一、第二、第三布里渊区;(d )计算第一布里渊区的体积。
4半导体材料Si 和Ge 单晶的晶体点阵类型为 ,倒易点阵类型为 ,第一布里渊区的形状为 ,每个 原子的最近邻原子数为 。
第一章晶体结构1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.晶格点阵与实际晶体有何区别和联系?解:晶体点阵是一种数学抽象,其中的格点代表基元中某个原子的位置或基元质心的位置,也可以是基元中任意一个等价的点。
当晶格点阵中的格点被具体的基元代替后才形成实际的晶体结构。
晶格点阵与实际晶体结构的关系可总结为:晶格点阵+基元=实际晶体结构3.晶体结构可分为Bravais格子和复式格子吗?解:晶体结构可以分为Bravais格子和复式格子,当基元只含一个原子时,每个原子的周围情况完全相同,格点就代表该原子,这种晶体结构就称为简单格子或Bravais格子;当基元包含2个或2个以上的原子时,各基元中相应的原子组成与格点相同的网格,这些格子相互错开一定距离套构在一起,这类晶体结构叫做复式格子。
解:(a)“面心+体心”立方不是布喇菲格子。
从“面心+体心”立方体的任一顶角上的格点看,与它最邻近的有12个格点;从面心任一点看来,与它最邻近的也是12个格点;但是从体心那点来看,与它最邻近的有6个格点,所以顶角、面心的格点与体心的格点所处的几何环境不同,即不满足所有格点完全等价的条件,因此不是布喇菲格子,而是复式格子,此复式格子属于简立方布喇菲格子。
(b)“边心”立方不是布喇菲格子。
从“边心”立方体竖直边心任一点来看,与它最邻近的点子有八个;从“边心”立方体水平边心任一点来看,与它最邻近的点子也有八个。
虽然两者最邻近的点数相同,距离相等,但他们各自具有不同的排列。