以表示B=0时电子的能量,则当B0时其能
量为:
BB
为简单起见,我们首先看T=0K时的情形,此
时费米分布函数为1。在没有外磁场时, 自旋磁
矩在空间没有择优取向。按照泡利原理,自旋
磁矩沿空间某方向的电子数与沿相反方向的电
子数应该相等。 (c)高能态的电子转向低能态,导致两种自旋取向的电子数目不等,出现净磁矩,产生顺磁效应。
具有平行于B的自旋磁矩的电子数目增大。 自旋顺磁性理论是泡利研究出来的,他证明了金属中的导电电子的行为与费米-狄拉克所支配的自由电子气一样。 一、 泡利顺磁性的起因
施加磁场后,在磁场的作用下,自旋取向 在T≠0K时,费米分布函数在整个积分区间不再等于1,要遇到上一节所讲的费米积分.
二、金属泡利顺磁性的物理机制示意图
由于B=1Tቤተ መጻሕፍቲ ባይዱ, µBB约为10-5eV,而费米能级约 为2-10eV.说明发生反转的只能是能量较高的那
部分电子,而且数目极少,位于费米面附近。
图中为了好表示,故意夸大了µBB的范围。 所以,发生反转的电子数约为:
Z
1 2
g(F0 )
1 2
g(F0
)
BB
每反转一个电子,沿磁场方向磁矩的改变为2µB
1 g ( ) 2
1 g ( ) 2
(c)B0,达到平衡
(a) B=0
g()g()12g()
(b) B 0,未平衡,自旋取向与磁场相反的电子具有较高
的能量,与磁场相同的电子具有较低的能量.从而高能
态的电子要转向低能态。 (c)高能态的电子转向低能态,导致两种自旋取向的电
子数目不等,出现净磁矩,产生顺磁效应。
所以,反转Z个电子后的沿磁场方向的总磁
矩为: 2B Z 2B 1 2 g (F 0)B B B 2 B g (F 0 )