射频与微波电路设计低噪声放大器设计
- 格式:ppt
- 大小:5.03 MB
- 文档页数:41
射频低噪声放大器电路设计详解射频LNA 设计要求:低噪声放大器(LNA)作为射频信号传输链路的第一级,它的噪声系数特性决定了整个射频电路前端的噪声性能,因此作为高性能射频接收电路的第一级LNA 的设计必须满足:(1)较高的线性度以抑制干扰和防止灵敏度下降;(2)足够高的增益,使其可以抑制后续级模块的噪声;(3)与输入输出阻抗的匹配,通常为50Ω;(4)尽可能低的功耗,这是无线通信设备的发展趋势所要求的。
InducTIve-degenerate cascode 结构是射频LNA 设计中使用比较多的结构之一,因为这种结构能够增加LNA 的增益,降低噪声系数,同时增加输入级和输出级之间的隔离度,提高稳定性。
InducTIve-degenerate cascode 结构在输入级MOS 管的栅极和源极分别引入两个电感Lg 和Ls,通过选择适当的电感值,使得输入回路在电路的工作频率附近产生谐振,从而抵消掉输入阻抗的虚部。
由分析可知应用InducTIve-degenerate cascode 结构输入阻抗得到一个50Ω的实部,但是这个实部并不是真正的电阻,因而不会产生噪声,所以很适合作为射频LNA 的输入极。
高稳定度的LNAcascode 结构在射频LNA 设计中得到广泛应用,但是当工作频率较高时由于不能忽略MOS 管的寄生电容Cgd,因而使得整个电路的稳定特性变差。
对于单个晶体管可通过在其输入端串联一个小的电阻或在输出端并联一个大的电阻来提高稳定度,但是由于新增加的电阻将使噪声值变坏,因此这一技术不能用于低噪声放大器。
文献对cascode 结构提出了改进,在其中ZLoad=jwLout//(jwCout)-。
高效低噪声射频放大器设计随着科技的发展和普及,现代人对于通信技术也有了更高的要求。
射频放大器是通信技术中非常重要的元器件,它承担着信号的放大和传输任务。
为了保证通信技术的高效稳定性,设计高效低噪声射频放大器已经成为研究者所关注的重点。
本文以高效低噪声射频放大器设计为主题,阐述了射频放大器工作原理、设计思路和优化方法等方面内容。
一、射频放大器工作原理射频放大器是将一定带宽的电信号进行放大的元器件。
根据增益系数的不同,又可分为低增益射频放大器、中等增益射频放大器和高增益射频放大器三类。
低增益射频放大器广泛应用在接收机中,中等增益射频放大器应用于本振、中频放大等电路,而高增益射频放大器则常用于驱动输出等级。
基于放大器原理,射频放大器一般由放大电路、滤波电路、稳定电路和整流电路等部分组成。
其中,放大电路是评估射频放大器性能的关键部分之一。
二、设计思路在射频放大器的设计中,设计思路非常重要。
设计思路具有指导性和概括性,可避免重复性工作和研究过程的冗余。
设计思路包括如下几个方面:(1)选择合适的放大器结构和器件。
对于低噪声放大器,应选择晶体管、场效应晶体管等器件,高功率放大器应该选择晶体管、静电复合晶体管等器件。
(2)提高射频放大器的增益。
增益是射频放大器最为重要的参数之一。
射频放大器的增益受到许多因素的影响,在设计中应该充分考虑电路参数对增益参数的影响,一般采用电容耦合、电感耦合、差动模式、共源共极等优化技术。
(3)提高射频放大器的线性度。
通信技术中要求射频放大器具有高的线性度,电路中采用线性化技术、负反馈技术、A级放大器等方式可提高线性度。
(4)选用合适的功率稳定电路。
功率稳定是射频放大器中一个非常重要的参数。
采用零稳态技术、瞬态保护、电流限制等稳定电路可充分保证射频放大器的工作性能稳定。
(5)选用合适的整流电路。
提高整流效率是射频放大器制作中的一个重要工作。
在设计时,要根据整流电路的差异,采用合适的元件、选择合适的工作方式等对整流效率进行优化。
实验七微波低噪声放大器的设计与测量一、实验目的1.了解射频放大器的基本原理与设计方法。
2.利用实验模块实际测量以了解放大器的特性。
3.学会使用微波软件对射频放大器的设计并分析结果。
二、预习内容1.熟悉放大器原理等理论知识。
2.熟悉放大器设计相关理论知识。
三、实验设备四、理论分析一个射频晶体放大器电路可分为三大部分:二端口有源电路、输入匹配电路及输出匹配电路,如图4-1所示。
一般而言,二端口有源电路采用共射极(或共源极)三极管(BJT、FET)电路,此外,还包括直流偏压电路。
而输入匹配电路及输出匹配电路大多采用无源电路,即利用电容、电感或传输线来设计电路。
一般放大器电路,根据输入信号功率不同可以分为小信号放大器、低噪声放大器及功率放大器三类。
而小信号放大器依增益参数及设计要求,可分成最大增益及固定增益两类。
而就S参数设计而言,则可有单向设计及双边设计两种。
本单元仅就小信号放大器来说明射频放大器之基本理论及设计方法。
(一) 单边放大器设计(Unilateral Amplifier Design )所谓单边设计即是忽略有源器件S 参数中的S 12,即是S 12=0。
此时可得: ΓIN = S 11 及 ΓOUT = S 22 则放大器之单边转换增益(Unilateral Transducer Gain,G TU )为:L O S TU G G G G =其中 222222121121111LLL O SSSS G S G S G Γ-Γ-==Γ-Γ-=假若电路又符合下列匹配条件:ΓS = S 11* 及 ΓL = S 22*则可得到此放大器电路之最大单边转换增益(Maximum Unilaterla Transducer Gain,G TU,max ):222221211max ,1111S S S G TU -⋅⋅-=(二) 双边放大器设计(Bilateral Amplifier Dseign)双边设计即是考虑有源器件S 参数中的S 12,即是S 12≠0。
毕业设计开题报告433MHz低噪声射频功率放大器的设计学院:班级:学生姓名:指导教师:职称:年月日433MHz低噪声射频功率放大器的设计一、研究的目的:低噪声微波放大器(LNA)已广泛应用于微波通信、GPS 接收机、遥感遥控、雷达、电子对抗、射电天文、大地测绘、电视及各种高精度的微波测量系统中,是必不可少的重要电路。
低噪声放大器位于射频接收系统的前端,其主要功能是将来自天线的低电压信号进行小信号放大。
前级放大器的噪声系数对整个微波系统的噪声影响最大,它的增益将决定对后级电路的噪声抑制程度,它的线性度将对整个系统的线性度和共模噪声抑制比产生重要影响。
对低噪声放大器的基本要求是:噪声系数低、足够的功率增益、工作稳定性好、足够的带宽和大的动态范围。
随着工作频率升高,低噪声放大器却因为其强烈的非线性而要依赖非线性模型来预测其电性能,且电路设计的精度取决于非线性模型的准确度。
厂商一般都是给出某个的s参数值,对于那些不是常用的频段获取参数相当的困难。
因此选择合适的仿真软件对器件进行建模仿真变得非常重要。
同时,由于晶体管在高频工作时,受到寄生效应的影响,要保持低噪声放大器的稳定性就需要电路板布局合理、输入输出匹配之间的有效配置都是设计射频放大器的关键。
着手分析并解决这些问题,为以后开展更深一步的研究做好铺垫。
二、主要研究内容功率放大器设计指标:工作频率:433MHz接选用晶体管:AT41511;工作频率:433MH ±50MHz ;带宽:100MHz ;偏置电压:5 V ;增益:20dB ;噪声系数<1.输入输出驻波比<2输出功率:1W.低噪声放大器的主要技术指标是噪声系数和增益,这些是研究射频低噪声放大器的关键。
本文对此进行了一些研究,主要包括下面几个方面:1.射频电路的噪声系数二端口的噪声系数定义为二端口输入端的信噪比与输出端的信噪比:用符号/S N P P (或 S/N)表示。
放大器噪声系数是指放大器输入端信号噪声功率比/SI NI P P 与输出端信号噪声功率比/SO NO P P 的比值,以分贝数表示噪声系数: NF=101g(F)。
微波低噪声放大器的原理与设计一、实验目的1.了解射频放大器的基本原理与设计方法;2.利用实验模组实际测量以了解放大器的特性;3.学会使用微波软件对射频放大器的设计和仿真,并分析结果。
二、实验原理在一个无线接收系统中,为了获得良好的总体系统性能,需要一个性能优越的前端,而低噪声放大器(LNA)就是前端的一个重要组成部分。
低吸声放大器电路结构:低噪声放大器作为射频信号传输链路的第一级,必须满足以下要求:首先,具有足够高的增益及接收灵敏度;其次,具有足够高的线性度,以抑止干扰和防止灵敏度下降;第三,端口匹配良好,信号能够有效地传输。
另外,还要满足有效隔离、防止信号泄漏以及稳定性等方面的要求。
通常,射频电路端口要与50Ω阻抗匹配,为了满足输入端功率匹配条件,一般采用源极串联电感反馈匹配结构,如图15-1所示。
图15-2是该结构的小信号图。
图15-1 源极串联电感反馈匹配结构图15-2 源极串联电感反馈匹配结构的小信号图在图15-1、图15-2中,Lg为栅极串联电感,LS为源极串联电感,Cgs为等效栅源电容。
由图15-2可得:当谐振时有:其中,这种结构用电感来等效实电阻进行阻抗匹配,没有引入过多的噪声,因此被广泛采用。
在频率较高的频段设计制作放大器,通常采用场效应管FET。
影响放大器的噪声系数的因素有很多,除了选用性能优良的元器件外,电路的拓扑结构是否合理也是非常重要的。
放大器的噪声系数和信号源的阻抗有关,放大器存在着最佳的信号源阻抗,如图15-3所示。
此时,放大器的噪声系数是最小的,所以放大器的输入匹配电路应该按照噪声最佳来进行设计,也即根据FET的Γopt来进行设计。
为了获得较高的功率增益和较好的输出驻波比,输出匹配电路则采用共轭匹配。
输入匹配电路在达到最佳噪声匹配时,放大器的输入阻抗不一定恰好与信号源阻抗匹配,因而功率放大倍数不是最大。
设计低噪声放大器,首要考虑的是噪声要尽可能低,其次才是增益的问题。
摘要近年来,以电池作为电源的电子产品得到广泛使用,迫切要求采用低电压的模拟电路来降低功耗,所以低电压、低功耗模拟电路设计技术正成为研究的热点。
本文主要讨论电感负反馈cascode-CMOS-LNA(共源共栅低噪声放大器)的噪声优化技术,同时也分析了噪声和输入同时匹配的SNIM技术。
以噪声参数方程为基础,列出了简单易懂的设计原理。
为了实现低电压、低噪声、高线性度的设计指标,在本文中使用了三种设计技术。
第一,本文以大量的篇幅推导出了一个理想化的噪声结论,并使用Matlab分析了基于功耗限制的噪声系数,取得最优化的晶体管尺寸。
第二,为了实现低电压设计,引用了一个折叠式的共源共栅结构低噪声放大器。
第三,通过线性度的理论分析并结合实验仿真的方法,得出了设计一个高线性度的最后方案。
另外,为了改善射频集成电路的器件参数选择的灵活性,在第四章中使用了一种差分结构。
所设计的电路用CHARTER公司0.25μm CMOS 工艺技术实现,并使用Cadence的spectre RF 工具进行仿真分析。
本文使用的差分电路结构只进行了电路级的仿真,而折叠式的共源共栅电路进行了电路级的仿真、版图设计、版图参数提取、电路版图一致性检查和后模拟,完成了整个低噪声放大器的设计流程。
折叠式低噪声放大器的仿真结果为:噪声系数NF为1.30dB,反射参数S11、S12、S22分别为-21.73dB、-30.62dB、-23.45dB,正向增益S21为14.27dB,1dB 压缩点为-12.8dBm,三阶交调点IIP3 为0.58dBm。
整个电路工作在1V电源下,消耗的电流为8.19mA,总的功耗为8.19mW。
所有仿真的技术指标达到设计要求。
关键字:低噪声放大器;噪声系数;低电压、低功耗;共源共栅;噪声匹配ABSTRACTIn recent years, electronics with battery supply are widely used, which cries for adopting low voltage analog circuits to reduce power consumption, so low voltage, low power analog circuit design techniques are becoming research hotspot. This paper mainly discusses noise figure optimization techniques for inductively degenerated cascode CMOS low-noise amplifiers (LNAs) with on-chip inductors. And it reviews and analyzes simultaneous noise and input matching techniques (SNIM). Based on the noise parameter equations, this paper provides clear understanding of the design principle. In order to achieve low-voltage, low noise, high-linearity of the design specifications, in this paper by three design technology. Firstly, using Matlab tool analyzes noise figure based on power-constrained, and obtain the optimum transistor size. Secondly, design a folded-cascode-type LNA to reduce the power supper. Third, through theoretical analysis of Linear and combine simulation methods, I obtain a final design of a high-linearity. On the other side, in order to improve the radio frequency integrated circuit device parameters of flexibility, this paper presents a difference in the structure in the fourth chapter. The proposed circuit design is realized using csm25RF 0.25μm CMOS technology, simulated with Cadence specter RF.Based on csm25RF 0.25μm CMOS technology, the resulting differential LNA achieves 1.32dB noise figure, -20.65dB S11, -24dB S22, -30.27 S12, 14 dB S21. The LNA's 1-dB compression point is -13.3dBm, and IIP3 is -0.79dBm, with the core circuit consuming 8.1mA from a 1V power supply.Key words:low-noise amplifier (LNA);noise figure;low voltage low power;cascode;noise matching目录第一章绪论 (1)1.1课题背景 (1)1.2研究现状及存在的问题 (2)1.3本论文主要工作 (3)1.4论文内容安排 (3)第二章射频电路噪声理论和线性度分析 (4)2.1噪声理论 (4)2.1.1 噪声的表示方法 (4)2.1.2 本文研究的器件噪声类型 (5)2.1.2.1 热噪声 (5)2.1.2.2 MOS噪声模型 (6)2.1.3 两端口网络噪声理论 (7)2.1.4 多级及联网络噪声系数计算 (9)2.2MOSFET两端口网络噪声参数的理论分析 (10)2.3降低噪声系数的一般措施 (13)2.4MOS LNA线性度分析 (14)2.4.1 1dB压缩点 (14)2.4.2 三阶输入交调点IIP3 (16)2.4.3 多级及联网络线性度表示方法(起最重要作用的线性级) (17)2.5小结 (18)第三章 CMOS低噪声放大器的设计理论推导 (20)3.1LNA设计指标 (20)3.1.1 噪声系数 (20)3.1.2 增益 (20)3.1.3 线性度 (20)3.1.4 输入输出匹配 (21)3.1.5 输入输出隔离 (21)3.1.6 电路功耗 (21)3.1.7 稳定性 (21)3.2CMOS LNA拓扑结构分析 (21)3.2.1 基本结构及比较 (21)3.2.2 源极去耦与噪声、输入同时匹配(SNIM)的设计 (22)3.2.3 共源共栅电路结构(cascode) (27)3.2.4 功率限制的单端分析—获得最佳化的宽长比 (29)3.3其它改进型电路比较 (31)3.4偏置电路的设计 (33)3.5 CASCODE设计结论 (34)第四章 2.4GHZ LNA电路设计 (35)4.1工艺库的元器件 (35)4.2差分CASCODE电路 (35)4.2.1 差分电路的设计 (35)4.2.2 差分电路的电路极仿真 (37)4.3单端CASCODE电路 (39)4.3.1 单端电路的设计 (39)4.3.2 单端电路的电路级仿真 (43)4.3.3 单端电路的版图设计、提取及后模拟 (45)4.4电路级仿真和后模拟仿真总结 (48)4.5与其它电路的比较 (49)结束语 (51)致谢 (52)参考文献 (53)附录A 二端口网络的噪声理论补充 (54)附录B S参数与反射系数 (56)B.1双端口网络S参数 (56)B.2反射系数与S参数的关系 (57)B.3其它参数与S参数的关系 (58)附录C 电感源极负反馈共源电路噪声推导 (59)附录D MATLAB程序 (63)第一章绪论1.1 课题背景在最近的十多年来,迅猛发展的射频无线通信技术被广泛地应用于当今社会的各个领域中,如:高速语音来,第3代移动通信(3G)、高速无线互联网、Bluetooth以及利用MPEG 标准实现无线视频图像传输的卫星电视服务等技术是日新月异,无线通讯技术得到了飞速发展,预计到2010年,无线通信用户将达到10亿人[1],并超过有线通信用户。
低噪声放大器的设计姓名:#### 学号:################ 班级:1########一、设计要求1. 中心频率为1.45GHz ,带宽为50MHz ,即放大器工作在1.40GHz-1.50GHz频率段;2. 放大器的噪声系数NF<0.8dB , S11<-10dB ,S22<-15dB ,增益Gain>15dB 。
二、低噪声放大器的主要技术指标低噪声放大器的性能主要包括噪声系数、合理的增益和稳定性等。
1. 噪声系数NF放大器的噪声系数(用分贝表示)定义如下:()10lg in inout out S NNF dB S N ⎛⎫= ⎪⎝⎭式中NF 为射频/微波器件的噪声系数;in S ,in N 分别为输入端的信号功率和噪声功率;out S ,out N 分别为输出端的信号功率和噪声功率。
噪声系数的物理含义是,信号通过放大器后,由于放大器产生噪声,使得信噪比变坏,信噪比下降的倍数就是噪声系数。
2. 放大器的增益Gain在微波设计中,增益通常被定义为传输给负载的平均功率与信号源的最大资用功率之比:SLP P Gain =增益的值通常是在固定的频率点上测到的,低噪声放大器都是按照噪声最佳匹配进行设计的。
噪声最佳匹配点并非最大增益点,因此增益Gain 要下降。
噪声最佳匹配情况下的增益称为相关增益。
通常,相关增益比最大增益大概低2~4dB.3.稳定性一个微波管的射频绝对稳定条件是221112212212211,1,1K S S S S S S ><-<-。
只有当3个条件都满足时,才能保证放大器是绝对稳定的。
三、低噪声放大器的设计步骤1.下载并安装晶体管的库文件(1)由于ADS2008自带的元器件库里并没有ATF54143的元器件模型,所以需要从Avago公司的网站上下载ATF54143.zap,并进入ADS主界面,点击【File】——【Unarchive Project】进行安装。
低噪声放大器的设计-射频课程设计射频设计报告低噪声放大器的设计目录1 前言 ........................................................................... ........................................ 1 2 低噪声放大器的主要技术指标 (1)2.1 工作频率与带宽 ........................................................................... ......... 1 2.2 噪声系数 ........................................................................... ..................... 2 2.3 增益 ........................................................................... ............................. 2 2.4 放大器的稳定性 ........................................................................... ......... 3 2.5 输入阻抗匹配 ........................................................................... ............. 3 2.6 端口驻波比和反射损耗 (3)3 低噪声放大器的设计指标 ........................................................................... .... 4 4 设计方案 ........................................................................... .. (5)4.1 直流分析及偏置电路的设计 ................................................................ 5 4.2 稳定性分析 ........................................................................... ................. 7 4.3 匹配网络设计 ........................................................................... ............. 9 4.4 最大增益的输出匹配 ..........................................................................12 4.5 匹配网络的实现 ........................................................................... ....... 16 4.6 版图的设计 ........................................................................... ............... 17 5. 学习心得 ........................................................................... ............................. 23 参考文献............................................................................ . (24)1 前言低噪声放大器(low noise amplifier,LNA)是射频接收机前端的重要组成部分。