李狄-电化学原理-第三章-界面电化学分析
- 格式:pdf
- 大小:8.80 MB
- 文档页数:84
电化学方法原理电化学方法是研究和应用电化学原理与技术的一种科学方法。
它通过利用电化学反应来分析、合成和修饰物质,具有高选择性、高灵敏度、无污染等优点,在生物、化学、环境等领域得到广泛应用。
一、电化学基础原理1.1 电化学反应电化学反应是在电化学电池中发生的化学变化过程。
电池由阳极、阴极和电解质溶液组成。
在电解质溶液中,阳极是发生氧化反应的地方,而阴极则是发生还原反应的地方。
这两个反应通过电解质中的离子交换电荷来实现。
1.2 电位与电流电位是指电化学反应发生时电解质界面内的电势差。
电势差的大小表示了物质发生氧化或还原的趋势。
电势差越大,反应越容易发生。
而电流则是指单位时间内通过电极界面的电荷量,它与电势差相关联。
1.3 离子传递与扩散离子传递是指离子在电解质中通过迁移方式进行传递的过程。
在电化学反应中,正离子(如阳离子)从阴极迁移到阳极,负离子(如阴离子)则相反。
这种离子传递过程是通过电双层和溶液中的连续扩散来实现的。
二、电化学方法应用2.1 电化学分析电化学分析是利用电化学方法对物质进行定性和定量分析的一种技术。
常见的电化学分析方法包括电位滴定法、极谱法、循环伏安法等。
通过测量样品产生的电流或电势变化,可以得到目标物质的信息。
2.2 电化学合成电化学合成是指利用电流对物质进行氧化、还原等反应,从而合成新的化合物或材料的过程。
例如,电解水可以将水分解为氢气和氧气。
电化学合成具有高选择性、高纯度等优点,被广泛应用于有机合成、金属电沉积等领域。
2.3 电化学修饰电化学修饰是指利用电化学方法对材料表面进行改性或修饰,以改变其物理化学性质或增强其功能。
例如,通过电化学沉积方法在电极表面形成导电聚合物薄膜,可以提高电极的催化性能和稳定性。
三、电化学方法在环境保护中的应用3.1 废水处理电化学方法在废水处理中具有高效、无二次污染等优点。
例如,电化学氧化可以将有机废水中的有毒有害物质转化为无毒无害的物质。
电化学还原则可以将金属离子还原成金属,从而实现废水中金属的回收利用。
电化学原理第一章习题答案1、解:2266KCl KCl H O H O 0.001141.31.010142.31010001000c K K K K cm 11λ−−−−×=+=+=+×=×Ω溶液 2、解:E V Fi i =λ,FE V i i λ=,,, 10288.0−⋅=+s cm V H 10050.0−⋅=+s cm V K 10051.0−⋅=−s cm V Cl 3、解:,62.550121,,,,2−−⋅Ω=−+=eq cm KCl o HCl o KOH o O H o λλλλ2O c c c ,c 1.004H H +−====设故,2,811c5.510cm 1000o H O λκ−−−==×Ω4、(1)121,,Cl ,t t 1,t 76.33mol (KCl o KCl o Cl cm λλλλλ−−−−+−+−=++=∴==Ω⋅∵中)121121121,K ,Na ,Cl 73.49mol 50.14mol 76.31mol (NaCl o o o cm cm cm λλλ++−−−−−−−=Ω⋅=Ω⋅=Ω⋅同理:,,中)(2)由上述结果可知: 121Cl ,Na ,121Cl ,K ,mol 45.126mol 82.142−−−−⋅Ω=+⋅Ω=+−+−+cm cm o o o o λλλλ,在KCl 与NaCl 溶液中−Cl ,o λ相等,所以证明离子独立移动定律的正确性;(3) vs cm vs cm u vs cm u F u a o o l o l o i o /1020.5,/1062.7,/1091.7,/24N ,24K ,24C ,C ,,−−−×=×=×==++−−λλ5、解:Cu(OH)2== Cu 2++2OH -,设=y ;2Cu c +OH c −=2y 则K S =4y 3因为u=Σu i =KH 2O+10-3[y λCu 2++2y λOH -]以o λ代替λ(稀溶液)代入上式,求得y=1.36×10-4mol/dm 3所以Ks=4y 3=1.006×10-11 (mol/dm 3)36、解: ==+,令=y ,3AgIO +Ag −3IO Ag c +3IO c −=y ,则=y S K 2,K=i K ∑=+(y O H K 2310−+Ag λ+y −3IO λ)作为无限稀溶液处理,用0λ代替,=+y O H K 2310−3AgIO λ则:y=43651074.1104.68101.11030.1−−−×=××−×L mol /;∴= y S K 2=3.03810−×2)/(L mol 7、解:HAc o ,λ=HCl o ,λ+NaAc o ,λ-NaCl o ,λ=390.7,121−−⋅Ωeq cm HAc o ,λ=9.02121−−⋅Ωeq cm ∴α0/λλ==0.023,==1.69αK _2)1/(V αα−510−×8、解:由欧姆定律IR=iS KS l ⋅=K il,∵K=1000c λ,∴IR=1000il cλ⋅=V 79.05.0126101010533≈××××− 9、解:公式log ±γ=-0.5115||||+Z −Z I (设25)C °(1)±γ=0.9740,I=212i i z m ∑,I=212i i c z ∑,=()±m ++νm −−νm ν1(2)±γ=0.9101,(3)±γ=0.6487,(4)±γ=0.811410、解:=+H a ±γ+H m ,pH=-log =-log (0.209+H a 4.0×)=1.08电化学原理第二章习题答案1、 解:()+2326623Sb O H e Sb H O ++++ ,()−236H H +6e + ,电池:2322323Sb O H Sb H O ++解法一:00G E nF ∆=−83646F =0.0143V ≈,E=+0E 2.36RT F 2232323log H Sb O Sb H OP a a a ==0.0143V0E 解法二:0602.3 2.3log log 6Sb Sb H H RT RT a a F Fϕϕϕ+++=+=+; 2.3log H RTa Fϕ+−=∴000.0143Sb E E ϕϕϕ+−=−===V2解:⑴,(()+22442H O e H O +++ )−224H H +4e + ;电池:22222H O H O +2220022.3log 4H O H O P P RT E E E Fa =+= 查表:0ϕ+=1.229V ,0ϕ−=0.000V ,001.229E V ϕϕ+−∴=−= ⑵视为无限稀释溶液,以浓度代替活度计算()242Sn Sn e ++−+ ,(),电池:32222Fe e Fe ++++ 23422Sn Fe Sn Fe 2+++++ +23422022.3log 2Sn Fe Sn Fe C C RT E E F C C ++++=+=(0.771-0.15)+220.05910.001(0.01)log 20.01(0.001)××=0.6505V ⑶(),,(0.1)Ag Ag m e +−+ ()(1)Ag m e Ag +++ (1)(0.1)Ag m Ag m ++→电池:(1)0(0.1)2.3log Ag m Ag m a RT E E F a ++=+,(其中,=0) 0E 查表:1m 中3AgNO 0.4V γ±=,0.1m 中3AgNO 0.72V γ±=, 2.310.4log0.0440.10.72RT E V F×∴==× 3、 解:2222|(),()|(),Cl Hg Hg Cl s KCl m Cl P Pt ()2222Hg Cl Hg Cl e −−++ ,()222Cl e Cl −++ ,222Hg Cl Hg Cl 2+ 电池:222200002.3log 2Cl Hg Hg Cl P a RT E E E F a ϕϕ+−=+==−∵O 1.35950.2681 1.0914(25C)E V ,∴=−=设 由于E 与无关,故两种溶液中的电动势均为上值Cl a −其他解法:①E ϕϕ+=−−0,亦得出0E ϕϕ+=−−②按Cl a −计算ϕ+,查表得ϕ甘汞,则E ϕϕ+=−甘汞 4、 ⑴解法一:23,(1)|(1)()H Pt H atm HCl a AgNO m Ag +=()222H H e +−+ 222,()Ag e Ag +++ g ,2222H Ag H A ++++ 电池:有E ϕϕϕ+−=−=+,02.3log()AgAgAg RTE m Fϕγ++±∴=−。
界面电化学在物理化学中的新进展界面电化学是物理化学领域中的一个重要分支,它研究的是电化学反应和过程发生的界面和电极表面。
最近几年,界面电化学在物理化学领域取得了一些新的进展,为我们深入理解界面反应动力学和电化学催化机理提供了更多的思路和方法。
本文章将重点介绍界面电化学在物理化学中的新进展。
一、界面电化学的基本原理界面电化学研究的基础是电化学反应的基本原理。
电化学反应是指物质在电极界面上由电子传递或离子传递所引起的化学反应。
电化学反应可以分为两种基本类型:电子转移反应和离子转移反应。
电子转移反应是指电子在电化学反应中从一个物种转移到另一个物种,而离子转移反应是指离子在电化学反应中从一个物种转移到另一个物种。
二、界面电化学在电催化剂研究中的应用界面电化学在电催化剂研究中起着关键作用。
电催化剂是指能够促进电化学反应的物质,它可以提高反应速率和效率。
界面电化学可以用于研究电催化剂在电极表面的吸附、解离和表面反应过程。
通过界面电化学的研究方法,可以确定催化剂的表面活性位点、催化机理和反应动力学参数,进而设计和合成高效的电催化剂。
三、界面电化学在能源转换和储存中的应用能源转换和储存是目前全球研究的热点领域,而界面电化学在其中起着重要作用。
例如,界面电化学可以用于研究电池、超级电容器和燃料电池等能源转换和储存设备的电化学反应过程。
通过界面电化学的研究方法,可以改善能源转换和储存设备的性能,提高能源的利用效率。
四、界面电化学在生物传感器和化学分析中的应用界面电化学在生物传感器和化学分析中也有广泛的应用。
生物传感器是利用生物识别元素和传感技术进行分析检测的一种设备。
界面电化学可以用于研究生物传感器的电极材料和电化学过程,从而提高生物传感器的灵敏度和选择性。
另外,界面电化学还可以用于研究化学分析方法的基本原理和应用。
综上所述,界面电化学在物理化学中的新进展为我们提供了更多的研究思路和方法。
通过界面电化学的研究,可以深入理解电化学反应的机理和动力学,在电催化剂、能源转换和储存、生物传感器以及化学分析等领域有着广泛的应用前景。
第五章1、在电极界面附近的液层中,是否总存在三种传质方式?为什么?每种传质方式的传质速度如何表示?答:电极界面附近的液层通常是指扩散层,可以同时存在着三种传质方式(电迁移、对流和 扩散),但当溶液中含有大量局外电解质时,反应离子的迁移数很小,电迁移传质作用可以忽略不计,而且根据流体力学,电极界面附近液层的对流速度非常小,因此电极界面附近液 层主要传质方式是扩散。
三种传质方式的传质速度可用各自的电流密度J 来表示。
电迁移: 对流:扩散:2. 在什么条件下才能实现稳态扩散过程?实际稳态扩散过程的规律与理想稳态扩散过程有 什么区别?答:一定强度的对流的存在是稳态扩散过程的前提。
区别:在理想稳态扩散条件下,扩散层有确定的厚度,其厚度等于毛细管的长度l ;而在真实体系中,由于对流作用与扩散作用的重叠,只能根据一定的理论来近似求得扩散层的厚度。
理想稳态扩散: 实际稳态扩散: 3. 旋转圆盘电极和旋转圆环圆盘电极有什么优点?它们在电化学测量中有什么重要用途? 答: 旋转圆盘电极和旋转圆环圆盘电极上各点的扩散层厚度是均匀的,因此电极表面各处的电流密度分布均匀。
这克服了平面电极表面受对流作用影响不均匀的缺点。
它们可以测量并分析极化曲线,研究反应中间产物的组成及其电极过程动力学规律。
4. 试比较扩散层、分散层和边界层的区别。
扩散层中有没有剩余电荷?答:紧靠电极表面附近,有一薄层,此层内存在反应粒子的浓度梯度,这层叫做扩散层;电极表面的荷电粒子由于热运动而倾向于均匀分布,从而使剩余电荷不可能完全紧贴着电极表面分布,而具有一定的分散性,形成所谓分散层;靠近电极表面附近的液流层叫做边界层,越接近电极表面,其液流流速越小。
电极/溶液界面存在着离子双电层时,金属一侧的剩余电荷来源于电子的过剩或缺贫。
双电层一侧区可以认为各种离子浓度分布只受双电层电场影响,不受其它传质(包括扩散)过程的影响。
因此扩散层中没有剩余电荷。
5. 假定一个稳态电极过程受传质步骤控制,并假设该电极过程为阴离子在阴极还原。
)电化学分析法(最全电化学分析法]小大中2011-06-24]来源:作者:[字体:[日期:)是根据电化学原理和物质在溶液中的电化electroanalytical chemistry电化学分析法(这类方法都是将试样溶液以适当的形式作为化学性质及其变化而建立起来的一类分析方法。
学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。
是利用试样溶液的电化学分析法可分为三种类型。
第一种类型是最为主要的一种类型,这些电参浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中电如电位滴定法、某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,然后用重量法测定其质第三种类型是将试样溶液中某个待测组分转入第二相,导滴定法等;量,称为电重量分析法,实际上也就是电解分析法。
分析速有很高的灵敏度和准确度,电化学分析法与其他分析方法相比,所需仪器简单,度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。
目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。
电势分析法第一节即用电势计测定两电极(电势分析法是一种电化学分析方法,它是利用测定原电池的电动势,以求得物质含量的分析方法。
电势分析法又可分为直接电势法)间的电势差 (potentiometric titration)。
和电势滴定法(potentiometric analysis)应用最多的是测定溶液直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。
近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,的pH特别是它能适用于其它具有简便、快速和灵敏的特点,应用它作为指示电极进行电势分析,方法难以测定的离子。
因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。
电势滴定法确定的滴定终点电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。
李狄电化学考试试卷李狄电化学考试试卷篇一:电化学第1章绪论第1章绪论1.1 电化学的发展与研究对象1.1.1 电化学的产生及其在历史上的作用1、电化学的产生电化学的产生与发展始于18世纪末19世纪初。
1791年意大利生物学家伽伐尼(Galvanic)从事青蛙的生理功能研究时,用手术刀触及解剖后挂在阳台上的青蛙腿,发现青蛙腿产生剧烈的抽动。
分析原因后认为,由于肌肉内有电解液,这时是偶然地构成了电化学电路。
这件事引起了很大的轰动。
当时成立了伽伐尼动物电学会,但未搞明白。
1799年伏打(Volta),也是意大利人,他根据伽伐尼实验提出假设:认为蛙腿的抽动是因二金属接触时通过电解质溶液产生的电流造成的。
故将锌片和银片交错迭起,中间用浸有电解液的毛呢隔开,构成电堆。
因电堆两端引线刺激蛙腿,发生了同样的现象。
该电堆被后人称为“伏打电堆”,是公认的世界历史上第一个化学电源。
2、电化学在历史上的作用伏打电堆的出现,使人们较容易地获得了直流电。
科学家们利用这种直流电得以进行大量的研究,大大地扩展了人们对于物质的认识,同时促进了电化学的发展,也极大地促进了化学理论的发展。
1)扩展了对于物质的认识。
最初人们认为自然界中有33种元素,实际上其中有一部分是化合物。
如:KOH、NaOH、NaCl、H2O 等。
1800年尼克松(Nichoson)、卡利苏(Carlisle)利用伏打电堆电解水溶液,发现有两种气体析出,得知为H2和O2。
此后人们做了大量的工作:如电解CuSO4得到Cu,电解AgNO3得到Ag,电解熔融KOH得到K等等。
10年之内,还得到了Na、Mg、Ca、Sr、Ba等,这就是最早的电化学冶金。
10年时间,人们所能得到或认识的元素就已多达55种。
没有这个基础,门捷列夫周期表的产生是不可能的。
2)促进了电学的发展1819年,奥斯特用电堆发现了电流对磁针的影响,即所谓电磁现象。
1826年,发现了欧姆定律。
这都是利用了伏打电堆,对于电流通过导体时发生的现象进行了物理学的研究而发现的。
电化学原理一、课程说明课程编号:060402Z10课程名称:电化学原理/Principles of Electrochemistry课程类别:全院选修/专业基础课学时/学分:48 /3(其中实验学时:4 ,课内上机学时:0 )先修课程:大学物理、大学工科化学、物理化学、晶体学基础适应专业:材料科学与工程教材、教学参考书:李荻主编,电化学原理,北京航空航天出版社,2010年修订版。
二、课程设置的目的和意义意义:本课程是一门边缘学科,涉及到化学、物理化学、材料结构、金属加工、电工、电子学等多学科的知识,是金属腐蚀与防护、电池等课程的基础。
它是面向材料科学与工程一级学科下各专业的重要课程。
通过本课程的教学,培养工科学生对电化学等实际问题的分析能力,结合本学科的发展历史,激发学生在材料的制备、改性等方面的创新意识。
目的:通过学习使学生掌握电化学专业基础知识,学生能够进行金属腐蚀与防护处理、材料的电化学制备、化学电源的设计和制备等工作。
三、课程的基本要求1.知识掌握——A掌握基本的电化学知识,掌握电化学的热力学和动力学知识,对材料的电化学制备、改性和电化学性能有充分了解。
引导学生能将物理化学、物理和电工电子等知识应用于材料的制备和改性等,培养学生具备根据材料的要求选择合适电化学制备方法和改性的能力,利用电化学知识研发新材料的能力。
B掌握各种常见材料的电化学制备和改性的方法,能与专门从事电化学工业、金属腐蚀与防护等工作的实验人员共同设计试验方案,正确分析检测结果,并熟练开展相关科学研究。
2.能力培养——通过扎实的基础理论学习和过硬的实验技能训练,培养学生从事材料电化学制备、金属腐蚀与防护、电化学性能分析等实验技能,提升从事材料科学研究的基本能力和综合素质,为后继专业课学习、开展毕业论文及科学研究奠定坚实的基础。
3.素质——培养建立从材料设计、材料制备到实际应用的思维模式,提升学生发现问题和解决问题的基本素质。
电化学分析法[日期:2011-06-24] 来源:作者:[字体:大中小]电化学分析法(electroanalytical chemistry)是根据电化学原理和物质在溶液中的电化学性质及其变化而建立起来的一类分析方法。
这类方法都是将试样溶液以适当的形式作为化学电池的一部分,根据被测组分的电化学性质,通过测量某种电参量来求得分析结果的。
电化学分析法可分为三种类型。
第一种类型是最为主要的一种类型,是利用试样溶液的浓度在某一特定的实验条件下与化学电池中某种电参量的关系来进行定量分析的,这些电参量包括电极电势、电流、电阻、电导、电容以及电量等;第二种类型是通过测定化学电池中某种电参量的突变作为滴定分析的终点指示,所以又称为电容量分析法,如电位滴定法、电导滴定法等;第三种类型是将试样溶液中某个待测组分转入第二相,然后用重量法测定其质量,称为电重量分析法,实际上也就是电解分析法。
电化学分析法与其他分析方法相比,所需仪器简单,有很高的灵敏度和准确度,分析速度快,特别是测定过程的电信号,易与计算机联用,可实现自动化或连续分析。
目前,电化学分析方法已成为生产和科研中广泛应用的一种分析手段。
第一节电势分析法电势分析法是一种电化学分析方法,它是利用测定原电池的电动势(即用电势计测定两电极间的电势差),以求得物质含量的分析方法。
电势分析法又可分为直接电势法(potentiometric analysis)和电势滴定法(potentiometric titration)。
直接电势法是根据测量原电池的电动势,直接求出被测物质的浓度。
应用最多的是测定溶液的pH。
近些年来,由于离子选择性电极的迅速发展,各种类型的离子选择性电极相继出现,应用它作为指示电极进行电势分析,具有简便、快速和灵敏的特点,特别是它能适用于其它方法难以测定的离子。
因此,直接电势法在土壤、食品、水质、环保等方面均得到广泛的应用。
电势滴定法是利用电极电势的变化来指示滴定终点的分析方法。