所以∠DOE= ∠BOD=75°.
所以∠COE=∠COD+∠DOE=90°+75°=165°.
②如图②所示,因为∠AOB=90°,∠COD=90°,
∠AOC=30°,
所以∠BOD=30°.
因为OE平分∠BOD,
所以∠DOE=15°.
所以∠COE=∠COD+∠DOE=90°+15°=105°.
故答案为165°或105°.
解:(1)因为∠BOC=40°,所以∠AOC=140°.
因为 OE 是∠AOC 的平分线,
所以∠AOE= ∠AOC=70°.
(2)题图中与∠COE互余的角有∠COD,∠BOD.
(3)∠COE有补角吗?若有,请把它找出来,并说明理由.
解:(3)∠COE有补角.理由如下:
因为∠AOE=∠COE,∠AOE+∠BOE=180°,
A.互余
B.互补
C.相等D.∠α=90°+∠γ
5.一副三角板按如图所示的方式摆放,则∠1补角的度数为( D )
A.45° B.135°
C.75° D.165°
6.如图所示,已知点O是直线AB上的一点,∠BOC=40°,OD,OE分别是
∠BOC,∠AOC的平分线.
(1)求∠AOE的度数.
(2)写出图中与∠COE互余的角.
B.59°50′
C.149°10′
D.60°10′
2.如果一个角的补角是120°,则这个角的余角是( D )
A.150°
B.90° C.60° D.30°
3.若一个角比它的余角大30°,则这个角等于( B)
A.30° B.60° C.105°
D.120°