7
相变储能材料是基础,因此在相变储能技术 领域,首先是研究和开发相变潜热大,性能稳定 和性价比高的相变材料。其次是应用,主要涉及 储能元件,储能换热器和储能系统的相变传热, 相变材料与换热流体的对流耦合换热,材料的腐 蚀与防护,系统的设计等方面。除了对传统的无 机盐、无机水合盐、有机和金属相变材料进行研 究外,近年来,对新相变储能材料的研制,存在 从无机到有机、从单一成分到复合材料、从宏观 到纳米/微胶囊化的趋势,定形相变材料、相变 材料的微胶囊化、功能储能流体等及其在建筑、 太阳能等领域的应用成为研究的热点。
21
3.交联高密度聚乙烯
高密度聚乙烯的熔点虽然一般都在125℃以上, 但通常在100℃以上使用时会软化。经过辐射交联 或化学交联之后,其软化点可提高到150℃以上, 而晶体的转变却发生在120~135℃。而且,这种 材料的使用寿命长、性能稳定、无过冷和层析现 象、材料的力学性能较好、便于加工成各种形状, 是真正意义上的固—固相变材料,具有较大的实 际应用价值。但是交联会使高密度聚乙烯的相变 潜热有较大降低,普通高密度聚乙烯的相变潜热 为210~220J/g,而交联聚乙烯只有180J/g。在 氨气气氛下.采用等离子体轰击使高密度
5
我国的能源利用率很低, 大约30%以上,与发达国家 的40%~50%相比,还有较 大的距离。我国的环境保护 还存在许多问题,因此,研 究、掌握和利用一切可行的 高新技术,包括相变储能技 术来提高我国的能源利用率 及改善环境。是我国从事材 料与能源工作的科技人员、 企事业管理人员和工人的神 圣职责,也是我们研究和应 用相变储能技术的意义。
在一起制成组分均匀的储能材料。此种方法比较
26
适合制备工业和建筑用低温的定形相变材料, Inaba H等人通过熔融共混法成功地制备出石蜡/ 高密度聚乙烯定形相变材料, 并探讨了这种材料 在建筑节能中的应用。