4.3.3 金属电子结构的价键理论
一些过渡金属的d空穴和d%
4.3.3 金属电子结构的价键理论
乙烯在各种金属薄膜上催化加氢的活性与d%关系 金属键中的d%越大, 相应的d能级中的电子 越多,有可能它的d空 穴也就减小。 将d%与催化活性相 联,会得到一定的规 律,从而为选择合适催 化剂提供信息。
第四章 各类催化剂及其催化作用
4.3 金属催化剂及其催化作用
主要内容:
4.3.1 概述 4.3.2 金属电子结构的能带理论 4.3.3 金属电子结构的价键理论 4.3.4 金属表面的几何构造因素 4.3.5 负载型金属催化剂
4.3.1 概述
(1)金属催化剂可催化的反应类型
加氢反应:Ni、 Pt上,烯烃、苯加氢饱和等; 氧化反应:Ag, Au, Pt上,甲醇氧化制甲醛;烯 烃环氧化等; 重整反应:负载型的Pt, Pt-Re 上,烷基异构 化;环化脱氢;加氢裂化等 氢醛化反应: Fe3(CO)12催化剂烯烃氢醛化反应
S轨道组合形成S能带; p轨道组合形成p能带; d轨道组合形成d能带。
4.3.2 金属电子结构的能带理论
(2)能带模型
能带的形成(以铜原子为例)
随着铜原子的接近,原子中所固有的各个分立能级, 如s、p、d等,会发生重叠形成相应能带。
4.3.2 金属电子结构的能带理论
(2)能带模型
金属Cu的d能带和s能带填充情况
4.3.2 金属电子结构的能带理论
(3) d空穴与催化性能的关系
d带空穴:d能带上有能级而无电子,它具有获得电 子的能力。d带空穴愈多,则说明末配对的d电子愈 多,对反应分子的化学吸附也愈强。 有d带空穴,就能与被吸附的气体分子形成化学吸 附键,生成表面中间物种,使之具有催化性能。 对于Pd和IB族(Cu、Ag、Au)元素d轨道是填满的, 但相邻的S轨道上没有填满电子。在外界条件影响 下,如升高温度时d电子仍可跃迁到S轨道上,从而 形成d空穴,产生化学吸附。