数据结构种类及分类
- 格式:ppt
- 大小:316.50 KB
- 文档页数:9
第1篇一、引言数据结构是计算机科学中一门重要的学科,它研究如何有效地组织、存储和操作数据。
在计算机科学和软件开发中,数据结构的选择直接影响着程序的效率、可读性和可维护性。
本文将对常见的数据结构进行归类总结,分析其特点、应用场景以及优缺点,旨在为读者提供全面的数据结构知识。
二、数据结构分类1. 基本数据结构基本数据结构包括线性表、栈、队列、字符串等。
(1)线性表线性表是一种有序的数据集合,包括顺序表和链表两种形式。
顺序表是一种通过数组实现的线性表,具有随机访问的特点;链表则通过指针连接节点,实现动态存储。
特点:顺序表支持随机访问,链表支持动态扩展。
应用场景:数组、链表、栈、队列等数据结构。
(2)栈栈是一种后进先出(LIFO)的线性表,只能在表的一端进行插入和删除操作。
特点:先进后出,具有明确的操作顺序。
应用场景:递归算法、函数调用栈、表达式求值等。
(3)队列队列是一种先进先出(FIFO)的线性表,只能在表的一端进行插入操作,在另一端进行删除操作。
特点:先进先出,具有明确的操作顺序。
应用场景:打印任务、缓冲区、资源分配等。
(4)字符串字符串是由字符组成的序列,是处理文本信息的重要数据结构。
特点:可变长度,支持字符操作。
应用场景:文本编辑、搜索引擎、自然语言处理等。
2. 树状数据结构树状数据结构包括二叉树、堆、平衡树等。
(1)二叉树二叉树是一种每个节点最多有两个子节点的树形结构。
特点:层次结构,具有明确的父子关系。
应用场景:数据结构中的查找、排序、遍历等。
(2)堆堆是一种特殊的完全二叉树,满足堆性质:每个节点的值大于或等于其子节点的值(最大堆)或小于或等于其子节点的值(最小堆)。
特点:支持快速查找、插入和删除操作。
应用场景:优先队列、动态数组、排序等。
(3)平衡树平衡树是一种保持平衡的二叉搜索树,如AVL树、红黑树等。
特点:保持平衡,查找、插入和删除操作具有对数时间复杂度。
应用场景:数据库索引、搜索树等。
C语⾔中都有哪些常见的数据结构你都知道⼏个?上次在⾯试时被⾯试官问到学了哪些数据结构,那时简单答了栈、队列/(ㄒoㄒ)/~~其它就都想不起来了,今天有空整理了⼀下⼏种常见的数据结构,原来我们学过的数据结构有这么多~⾸先,先来回顾下C语⾔中常见的基本数据类型吧O(∩_∩)OC语⾔的基本数据类型有:整型int,浮点型float,字符型char等等添加描述那么,究竟什么是数据结构呢?数据结构是计算机存储、组织数据的⽅式。
数据结构是指相互之间存在⼀种或多种特定关系的数据元素的集合⼤部分数据结构的实现都需要借助C语⾔中的指针和结构体类型下⾯,进⼊今天的重点啦O(∩_∩)O⼏种常见的数据结构(1)线性数据结构:元素之间⼀般存在元素之间存在⼀对⼀关系,是最常⽤的⼀类数据结构,典型的有:数组、栈、队列和线性表(2)树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(3)图形结构:在图形结构中,允许多个结点之间相关,称为“多对多”关系下⾯分别对这⼏种数据结构做⼀个简单介绍:1、线性数据结构:典型的有:数组、栈、队列和线性表(1)数组和链表a、数组:存放着⼀组相同类型的数据,需要预先指定数组的长度,有⼀维数组、⼆维数组、多维数组等b、链表:链表是C语⾔中⼀种应⽤⼴泛的结构,它采⽤动态分配内存的形式实现,⽤⼀组任意的存储单元存放数据元素链表的,⼀般为每个元素增设指针域,⽤来指向后继元素c、数组和链表的区别:从逻辑结构来看:数组必须事先定义固定的长度,不能适应数据动态地增减的情况;链表动态地进⾏存储分配,可以适应数据动态地增减的情况,且可以⽅便地插⼊、删除数据项(数组中插⼊、删除数据项时,需要移动其它数据项)从内存存储来看:(静态)数组从栈中分配空间(⽤NEW创建的在堆中), 对于程序员⽅便快速,但是⾃由度⼩;链表从堆中分配空间, ⾃由度⼤但是申请管理⽐较⿇烦从访问⽅式来看:数组在内存中是连续存储的,因此,可以利⽤下标索引进⾏随机访问;链表是链式存储结构,在访问元素的时候只能通过线性的⽅式由前到后顺序访问,所以访问效率⽐数组要低(2)栈、队列和线性表:可采⽤顺序存储和链式存储的⽅法进⾏存储顺序存储:借助数据元素在存储空间中的相对位置来表⽰元素之间的逻辑关系链式存储:借助表⽰数据元素存储地址的指针表⽰元素之间的逻辑关系a、栈:只允许在序列末端进⾏操作,栈的操作只能在栈顶进⾏,⼀般栈⼜被称为后进先出或先进后出的线性结构顺序栈:采⽤顺序存储结构的栈称为顺序栈,即需要⽤⼀⽚地址连续的空间来存储栈的元素,顺序栈的类型定义如下:添加描述链栈:采⽤链式存储结构的栈称为链栈:添加描述b、队列:只允许在序列两端进⾏操作,⼀般队列也被称为先进先出的线性结构循环队列:采⽤顺序存储结构的队列,需要按队列可能的最⼤长度分配存储空空,其类型定义如下:添加描述 链队列:采⽤链式存储结构的队列称为链队列,⼀般需要设置头尾指针只是链表的头尾结点:添加描述c、线性表:允许在序列任意位置进⾏操作,线性表的操作位置不受限制,线性表的操作⼗分灵活,常⽤操作包括在任意位置插⼊和删除,以及查询和修改任意位置的元素顺序表:采⽤顺序存储结构表⽰的线性表称为顺序表,⽤⼀组地址连续的存储单元⼀次存放线性表的数据元素,即以存储位置相邻表⽰位序相继的两个元素之间的前驱和后继关系,为了避免移动元素,⼀般在顺序表的接⼝定义中只考虑在表尾插⼊和删除元素,如此实现的顺序表也可称为栈表:添加描述线性表:⼀般包括单链表、双向链表、循环链表和双向循环链表单链表:添加描述 双向链表:添加描述线性表两种存储结构的⽐较:顺序表: 优点:在顺序表中,逻辑中相邻的两个元素在物理位置上也相邻,查找⽐较⽅便,存取任⼀元素的时间复杂度都为O(1) 缺点:不适合在任意位置插⼊、删除元素,因为需要移动元素,平均时间复杂度为O(n)链表: 优点:在链接的任意位置插⼊或删除元素只需修改相应指针,不需要移动元素;按需动态分配,不需要按最⼤需求预先分配⼀块连续空空 缺点:查找不⽅便,查找某⼀元素需要从头指针出发沿指针域查找,因此平均时间复杂度为O(n)2、树形结构:结点间具有层次关系,每⼀层的⼀个结点能且只能和上⼀层的⼀个结点相关,但同时可以和下⼀层的多个结点相关,称为“⼀对多”关系,常见类型有:树、堆(1)⼆叉树:⼆叉树是⼀种递归数据结构,是含有n(n>=0)个结点的有限集合,⼆叉树具有以下特点:⼆叉树可以是空树;⼆叉树的每个结点都恰好有两棵⼦树,其中⼀个或两个可能为空;⼆叉树中每个结点的左、右⼦树的位置不能颠倒,若改变两者的位置,就成为另⼀棵⼆叉树(2)完全⼆叉树:从根起,⾃上⽽下,⾃左⽽右,给满⼆叉树的每个结点从1到n连续编号,如果每个结点都与深度为k的满⼆叉树中编号从1⾄n的结点⼀⼀对应,则称为完全⼆叉树a、采⽤顺序存储结构:⽤⼀维数组存储完全⼆叉树,结点的编号对于与结点的下标(如根为1,则根的左孩⼦为2*i=2*1=2,右孩⼦为2*i+1=2*1+1=2)添加描述b、采⽤链式存储结构:⼆叉链表:添加描述三叉链表:它的结点⽐⼆叉链表多⼀个指针域parent,⽤于执⾏结点的双亲,便于查找双亲结点添加描述两种存储结构⽐较:对于完全⼆叉树,采⽤顺序存储结构既能节省空间,⼜可利⽤数组元素的下标值确定结点在⼆叉树中的位置及结点之间的关系,但采⽤顺序存储结构存储⼀般⼆叉树容易造成空间浪费,链式结构可以克服这个缺点(3)⼆叉查找树:⼆叉查找树⼜称⼆叉排序树,或者是⼀课空⼆叉树,或者是具有如下特征的⼆叉树:a、若它的左⼦树不空,则左⼦树上所有结点的值均⼩于根结点的值b、若它的右⼦树不空,则右⼦树上所有结点的值均⼤于根结点的值c、它的左、右⼦树也分别是⼆叉查找树(4)平衡⼆叉树:平衡⼆叉查找树简称平衡⼆叉树,平衡⼆叉树或者是棵空树,或者是具有下列性质的⼆叉查找树:它的左⼦树和右⼦树都是平衡⼆叉树,且左⼦树和右⼦树的⾼度之差的绝对值不超过1添加描述平衡⼆叉树的失衡及调整主要可归纳为下列四种情况:LL型、RR型、LR型、RL型(5)树:树是含有n(n>=0)个结点的有限集合,在任意⼀棵⾮空树种: a、有且仅有⼀个特定的称为根的结点b、当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每⼀个集合本⾝⼜是⼀棵树,并且T1,T2,...,Tm称为根的⼦树(6)堆:堆是具有以下特性的完全⼆叉树,其所有⾮叶⼦结点均不⼤于(或不⼩于)其左右孩⼦结点。
数据标准分类方法数据标准分类方法是指根据不同的标准和要求对数据进行分类和整理的方法。
数据标准分类方法广泛应用于数据管理、数据分析和数据交换等领域,旨在提高数据的可用性、可靠性和可维护性。
下面将介绍几种常见的数据标准分类方法。
1. 按数据类型分类按数据类型进行分类是最基础和常见的分类方法。
数据可以分为数值型、字符串型、日期型等不同类型。
数值型数据包括整型和浮点型,字符串型数据指代文本型数据,日期型数据为时间相关的数据。
按照不同的类型对数据进行分类有助于进行数据处理和分析。
2. 按数据结构分类按数据结构进行分类是指根据数据的组织形式和结构特征进行分类。
常见的数据结构分类包括层次结构、平面结构、网状结构和关系型结构等。
层次结构是指数据按层次关系进行组织和存储的结构,平面结构是指数据按平面关系进行组织和存储的结构,网状结构是指数据按复杂网状关系进行组织和存储的结构,关系型结构是指数据按表格方式进行组织和存储的结构。
按照不同的结构对数据进行分类可以更好地适应不同的数据处理和分析需求。
3. 按数据粒度分类按数据粒度进行分类是指根据数据的描述和表达的粒度大小进行分类。
数据粒度可以分为粗粒度和细粒度两种。
粗粒度数据指代描述较为宏观、总体性的数据,细粒度数据指代描述较为详细、具体的数据。
按照不同粒度对数据进行分类可以更好地满足不同的分析需求。
4. 按数据来源分类按数据来源进行分类是指根据数据的获取途径和来源进行分类。
数据来源可以分为内部数据和外部数据两种。
内部数据指代组织内部产生、收集和积累的数据,外部数据指代从外部获取的数据,如第三方数据供应商提供的数据。
按照不同来源对数据进行分类有助于了解数据的可信度和可靠性。
5. 按数据用途分类按数据用途进行分类是指根据数据在业务和决策中的应用目的和功能进行分类。
数据用途可以分为管理决策、统计分析、预测模型和数据挖掘等不同方面。
按照不同用途对数据进行分类有助于更好地满足特定的分析和应用需求。
数据结构(一)目录第1章序论 (1)1.1 什么是数据? (1)1.2 什么是数据元素? (1)1.3 什么是数据结构及种类? (1)1.4 数据的逻辑结构 (1)1.5 数据的物理结构 (1)1.6 算法和算法分析 (1)1.7 算法的五个特性 (1)1.8 算法设计的要求 (2)1.9 算法效率的度量 (2)第2章线性表 (3)2.1 线性表举例 (3)2.2 线性表的存储 (4)2.3 线性表-栈 (4)2.4 队列 (4)2.5 双端队列 (6)第3章树和二叉树 (6)3.1 树 (6)3.1.1 树的基本概念 (6)3.1.2 树的常用存储结构 (6)3.1.3 树的遍历 (7)3.2 二叉树 (7)3.2.1 二叉树的基本概念 (7)3.2.2 二叉树与树的区别 (7)3.2.3 树及森林转到二叉树 (7)3.2.4 二叉树的性质 (8)3.2.5 满二叉树 (8)3.2.6 完全二叉树 (8)3.2.7 完全二叉树的性质 (9)3.2.8 二叉树的四种遍历 (9)3.2.9 二叉排序树 (10)3.2.10 平衡二叉树 (11)3.2.11 m阶B-树 (11)3.2.12 最优二叉树 (11)3.2.13 二叉树的存储结构 (12)3.3 广义表 (13)3.4 矩阵的压缩存储 (14)3.4.1 特殊矩阵 (14)3.4.2 压缩存储 (14)第4章历年真题讲解 (15)4.1 2009年上半年 (15)4.2 2009年下半年 (15)4.3 2010年上半年 (15)4.4 2011年上半年 (16)4.5 2011年下半年 (16)4.6 2012年上半年 (17)4.7 2012年下半年 (17)4.8 2013年上半年 (18)4.9 2013年下半年 (18)4.10 2014年上半年 (18)4.11 2014年下半年 (19)4.12 2015年上半年 (19)4.13 2015年下半年 (19)4.14 2016年上半年 (20)第1章序论什么是数据?所有能输入到计算机中并能够被计算机程序处理的符号的总称,它是计算机程序加工的原料。
数据结构知识点概括第一章概论数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
数据结构的定义:·逻辑结构:从逻辑结构上描述数据,独立于计算机。
·线性结构:一对一关系。
·线性结构:多对多关系。
·存储结构:是逻辑结构用计算机语言的实现。
·顺序存储结构:如数组。
·链式存储结构:如链表。
·索引存储结构:·稠密索引:每个结点都有索引项。
·稀疏索引:每组结点都有索引项。
·散列存储结构:如散列表。
·数据运算。
·对数据的操作。
定义在逻辑结构上,每种逻辑结构都有一个运算集合。
·常用的有:检索、插入、删除、更新、排序。
数据类型:是一个值的集合以及在这些值上定义的一组操作的总称。
·结构类型:由用户借助于描述机制定义,是导出类型。
抽象数据类型ADT:·是抽象数据的组织和与之的操作。
相当于在概念层上描述问题。
·优点是将数据和操作封装在一起实现了信息隐藏。
程序设计的实质是对实际问题选择一种好的数据结构,设计一个好的算法。
算法取决于数据结构。
算法是一个良定义的计算过程,以一个或多个值输入,并以一个或多个值输出。
评价算法的好坏的因素:·算法是正确的;·执行算法的时间;·执行算法的存储空间(主要是辅助存储空间);·算法易于理解、编码、调试。
时间复杂度:是某个算法的时间耗费,它是该算法所求解问题规模n的函数。
渐近时间复杂度:是指当问题规模趋向无穷大时,该算法时间复杂度的数量级。
评价一个算法的时间性能时,主要标准就是算法的渐近时间复杂度。
算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关。
时间复杂度按数量级递增排列依次为:常数阶O(1)、对数阶O(log2n)、线性阶O(n)、线性对数阶O(nlog2n)、平方阶O(n^2)、立方阶O(n^3)、……k次方阶O(n^k)、指数阶O(2^n)。
常用的数据结构1、线性数据结构:典型的有:数组、栈、队列和线性表(1)数组和链表a、数组:存放着一组相同类型的数据,需要预先指定数组的长度,有一维数组、二维数组、多维数组等b、链表:链表是C语言中一种应用广泛的结构,它采用动态分配内存的形式实现,用一组任意的存储单元存放数据元素链表的,一般为每个元素增设指针域,用来指向后继元素c、数组和链表的区别:从逻辑结构来看:数组必须事先定义固定的长度,不能适应数据动态地增减的情况;链表动态地进行存储分配,可以适应数据动态地增减的情况,且可以方便地插入、删除数据项(数组中插入、删除数据项时,需要移动其它数据项)从内存存储来看:(静态)数组从栈中分配空间(用NEW创建的在堆中), 对于程序员方便快速,但是自由度小;链表从堆中分配空间, 自由度大但是申请管理比较麻烦从访问方式来看:数组在内存中是连续存储的,因此,可以利用下标索引进行随机访问;链表是链式存储结构,在访问元素的时候只能通过线性的方式由前到后顺序访问,所以访问效率比数组要低(2)栈、队列和线性表:可采用顺序存储和链式存储的方法进行存储顺序存储:借助数据元素在存储空间中的相对位置来表示元素之间的逻辑关系链式存储:借助表示数据元素存储地址的指针表示元素之间的逻辑关系a、栈:只允许在序列末端进行操作,栈的操作只能在栈顶进行,一般栈又被称为后进先出或先进后出的线性结构顺序栈:采用顺序存储结构的栈称为顺序栈,即需要用一片地址连续的空间来存储栈的元素,顺序栈的类型定义如下:b、队列:只允许在序列两端进行操作,一般队列也被称为先进先出的线性结构循环队列:采用顺序存储结构的队列,需要按队列可能的最大长度分配存储空空,其类型定义如下:链队列:采用链式存储结构的队列称为链队列,一般需要设置头尾指针只是链表的头尾结点:c、线性表:允许在序列任意位置进行操作,线性表的操作位置不受限制,线性表的操作十分灵活,常用操作包括在任意位置插入和删除,以及查询和修改任意位置的元素顺序表:采用顺序存储结构表示的线性表称为顺序表,用一组地址连续的存储单元一次存放线性表的数据元素,即以存储位置相邻表示位序相继的两个元素之间的前驱和后继关系,为了避免移动元素,一般在顺序表的接口定义中只考虑在表尾插入和删除元素,如此实现的顺序表也可称为栈表:线性表:一般包括单链表、双向链表、循环链表和双向循环链表单链表:双向链表:线性表两种存储结构的比较:顺序表:优点:在顺序表中,逻辑中相邻的两个元素在物理位置上也相邻,查找比较方便,存取任一元素的时间复杂度都为O(1)缺点:不适合在任意位置插入、删除元素,因为需要移动元素,平均时间复杂度为O(n)链表:优点:在链接的任意位置插入或删除元素只需修改相应指针,不需要移动元素;按需动态分配,不需要按最大需求预先分配一块连续空空缺点:查找不方便,查找某一元素需要从头指针出发沿指针域查找,因此平均时间复杂度为O(n)2、树形结构:结点间具有层次关系,每一层的一个结点能且只能和上一层的一个结点相关,但同时可以和下一层的多个结点相关,称为“一对多”关系,常见类型有:树、堆(1)二叉树:二叉树是一种递归数据结构,是含有n(n>=0)个结点的有限集合,二叉树具有以下特点:二叉树可以是空树;二叉树的每个结点都恰好有两棵子树,其中一个或两个可能为空;二叉树中每个结点的左、右子树的位置不能颠倒,若改变两者的位置,就成为另一棵二叉树(2)完全二叉树:从根起,自上而下,自左而右,给满二叉树的每个结点从1到n连续编号,如果每个结点都与深度为k的满二叉树中编号从1至n的结点一一对应,则称为完全二叉树a、采用顺序存储结构:用一维数组存储完全二叉树,结点的编号对于与结点的下标(如根为1,则根的左孩子为2*i=2*1=2,右孩子为2*i+1=2*1+1=2)b、采用链式存储结构:二叉链表:三叉链表:它的结点比二叉链表多一个指针域parent,用于执行结点的双亲,便于查找双亲结点两种存储结构比较:对于完全二叉树,采用顺序存储结构既能节省空间,又可利用数组元素的下标值确定结点在二叉树中的位置及结点之间的关系,但采用顺序存储结构存储一般二叉树容易造成空间浪费,链式结构可以克服这个缺点(3)二叉查找树:二叉查找树又称二叉排序树,或者是一课空二叉树,或者是具有如下特征的二叉树:a、若它的左子树不空,则左子树上所有结点的值均小于根结点的值b、若它的右子树不空,则右子树上所有结点的值均大于根结点的值c、它的左、右子树也分别是二叉查找树(4)平衡二叉树:平衡二叉查找树简称平衡二叉树,平衡二叉树或者是棵空树,或者是具有下列性质的二叉查找树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的高度之差的绝对值不超过1平衡二叉树的失衡及调整主要可归纳为下列四种情况:LL型、RR型、LR型、RL 型(5)树:树是含有n(n>=0)个结点的有限集合,在任意一棵非空树种:a、有且仅有一个特定的称为根的结点b、当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每一个集合本身又是一棵树,并且T1,T2,...,Tm称为根的子树(6)堆:堆是具有以下特性的完全二叉树,其所有非叶子结点均不大于(或不小于)其左右孩子结点。
常用的数据结构以及算法一、关于数据的几个概念1、数据。
是对客观事物的符号表示。
在计算机科学是指所有能够输入到计算机中并能被计算机程序处理的符号集合。
包括数值、文字、图像、图像、音频、视频等形式。
2、数据项。
所谓数据项就是数据中具有独立含义的、不可再分割的最小数据单位。
是客观实体一种特征的数据表示。
3、数据元素。
是多个相关数据项的集,是一个客观实体多种特征的数据描述,是计算机程序中加工处理的基本单位。
数据元素按其组成可分为简单型数据元素和复杂型数据元素。
简单型数据元素由一个数据项组成,复杂型数据元素由多个数据项组成,它通常携带着一个概念的多方面信息。
二、数据结构的几个概念。
1、数据结构,就是相互之间存在一种或多种特定关系的数据元素的集合。
可以简单表示为:数据结构 = 数据 + 关系同一数据元素集合,所定一的关系不同,构成不同的数据结构。
数据结构包括逻辑结构和存储结构两个方面。
2、数据的逻辑结构。
是指对数据及其关系的抽象逻辑描述,对立与计算机,与机器实现无关。
根据定义的关系不同,数据的逻辑结构分为四种:集合结构。
数据元素之间未定义任何关的松散集合。
线性结构。
数据元素之间定义了次序关系的集合(全序集合),描述的是1对1关系。
树形结构。
数据元素之间定义了层次关系的集合(偏序集合),描述的是1对多关系。
图状结构。
数据元素之间定义了网状关系的集合,描述的是多对多关系。
3、数据的存储结构(亦成物理结构)是指数据结构在计算机存储器中的具体实现。
存储结构与孤立的数据元素表示形式不同,数据结构中的数据元素不但要表示其本身的实际内容,还要表示清楚数据元素之间的逻辑结构。
常见的存储结构有:顺序存储结构:特点是借助于数据元素的相对存储位置来表示数据元素之间的逻辑结构;链式存储结构:特点是借助于指示数据元素地址的指针表示数据元素之间的逻辑结构。
散列存储结构:顺序+算列。
索引存储结构:顺序+索引。
数据元素相互之间的关系称为结构。
数据结构简介及分类数据结构是计算机科学中的重要概念,它用于组织和管理数据的方式。
在计算机科学领域,数据结构有着广泛的应用,它可以提高数据的存储和访问效率,使得计算机可以更加高效地处理和操作数据。
本文将对数据结构进行简要介绍,并对其进行分类。
一、数据结构简介数据结构可以理解为数据之间的逻辑关系和物理存储关系。
简而言之,它是一种将数据组织起来的方式,以便于操作和管理。
数据结构可以分为两大类别:线性结构和非线性结构。
1. 线性结构线性结构是一种数据元素之间一对一的关系。
常见的线性结构包括数组、链表、栈和队列等。
其中,数组是最简单的线性结构,它将一组具有相同特性的数据元素按照一定的顺序存储在一块连续的内存空间中。
链表是由一系列节点组成的数据结构,每个节点都包含一个数据域和一个指针域,通过指针将节点串联在一起。
栈是一种特殊的线性结构,采用"先进后出"(LIFO)的原则,在栈顶进行插入和删除操作。
队列也是一种特殊的线性结构,采用"先进先出"(FIFO)的原则,只能在队列的两端进行插入和删除操作。
2. 非线性结构非线性结构是一种数据元素之间存在多对多的关系。
常见的非线性结构包括树和图等。
树是一种层次结构,它由节点和边组成。
每个节点可以有多个子节点,最上面的节点称为根节点。
图是由节点和边组成的集合,节点可以是任意对象,边表示节点之间的关系。
二、数据结构的分类除了线性结构和非线性结构外,数据结构还可以根据数据的存储方式进一步分类。
常见的数据结构分类包括数组、链表、树和图。
1. 数组数组是最简单的数据结构之一,它将一组相同类型的数据元素顺序存储在一块连续的内存空间中。
数组的最大特点是可以通过索引快速访问任意位置的元素。
然而,数组的大小在创建时就已固定,无法动态扩充和缩小。
2. 链表链表是一种动态的数据结构,它通过指针将一组节点串联在一起。
链表可以分为单向链表、双向链表和循环链表等类型。
数据结构(⼀)——线性表、栈和队列数据结构是编程的起点,理解数据结构可以从三⽅⾯⼊⼿:1. 逻辑结构。
逻辑结构是指数据元素之间的逻辑关系,可分为线性结构和⾮线性结构,线性表是典型的线性结构,⾮线性结构包括集合、树和图。
2. 存储结构。
存储结构是指数据在计算机中的物理表⽰,可分为顺序存储、链式存储、索引存储和散列存储。
数组是典型的顺序存储结构;链表采⽤链式存储;索引存储的优点是检索速度快,但需要增加附加的索引表,会占⽤较多的存储空间;散列存储使得检索、增加和删除结点的操作都很快,缺点是解决散列冲突会增加时间和空间开销。
3. 数据运算。
施加在数据上的运算包括运算的定义和实现。
运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
因此,本章将以逻辑结构(线性表、树、散列、优先队列和图)为纵轴,以存储结构和运算为横轴,分析常见数据结构的定义和实现。
在Java中谈到数据结构时,⾸先想到的便是下⾯这张Java集合框架图:从图中可以看出,Java集合类⼤致可分为List、Set、Queue和Map四种体系,其中:List代表有序、重复的集合;Set代表⽆序、不可重复的集合;Queue代表⼀种队列集合实现;Map代表具有映射关系的集合。
在实现上,List、Set和Queue均继承⾃Collection,因此,Java集合框架主要由Collection和Map两个根接⼝及其⼦接⼝、实现类组成。
本⽂将重点探讨线性表的定义和实现,⾸先梳理Collection接⼝及其⼦接⼝的关系,其次从存储结构(顺序表和链表)维度分析线性表的实现,最后通过线性表结构导出栈、队列的模型与实现原理。
主要内容如下:1. Iterator、Collection及List接⼝2. ArrayList / LinkedList实现原理3. Stack / Queue模型与实现⼀、Iterator、Collection及List接⼝Collection接⼝是List、Set和Queue的根接⼝,抽象了集合类所能提供的公共⽅法,包含size()、isEmpty()、add(E e)、remove(Object o)、contains(Object o)等,iterator()返回集合类迭代器。
数据结构是指同一数据元素类中各数据元素之间存在的关系。
数据结构分别为逻辑结构、存储结构(物理结构)和数据的运算。
数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。
逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
数据元素相互之间的关系称为结构。
有四类基本结构:集合、线性结构、树形结构、图状结构(网状结构)。
树形结构和图形结构全称为非线性结构。
集合结构中的数据元素除了同属于一种类型外,别无其它关系。
线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。
在图形结构中每个结点的前驱结点数和后续结点数可以任意多个。
数据结构在计算机中的表示(映像)称为数据的物理(存储)结构。
它包括数据元素的表示和关系的表示。
数据元素之间的关系有两种不同的表示方法:顺序映象和非顺序映象,并由此得到两种不同的存储结构:顺序存储结构和链式存储结构。
顺序存储方法:它是把逻辑上相邻的结点存储在物理位置相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现,由此得到的存储表示称为顺序存储结构。
顺序存储结构是一种最基本的存储表示方法,通常借助于程序设计语言中的数组来实现。
链接存储方法:它不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系是由附加的指针字段表示的。
由此得到的存储表示称为链式存储结构,链式存储结构通常借助于程序设计语言中的指针类型来实现。
索引存储方法:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。
散列存储方法:就是根据结点的关键字直接计算出该结点的存储地址。
数据结构中,逻辑上(逻辑结构:数据元素之间的逻辑关系)可以把数据结构分成线性结构和非线性结构。
线性结构的顺序存储结构是一种随机存取的存储结构,线性表的链式存储结构是一种顺序存取的存储结构。
线性表若采用链式存储表示时所有结点之间的存储单元地址可连续可不连续。