粉末注射成型技术的特点
- 格式:doc
- 大小:496.51 KB
- 文档页数:4
粉末注塑和粉末冶金工艺介绍
粉末冶金工艺是一种利用金属粉末或者金属合金粉末作为原料,通过成型和烧结等工艺制备金属零部件的方法。
而粉末注塑则是粉
末冶金工艺的一种分支,它利用注射成型技术将金属粉末或者金属
合金粉末注入模具中,经过高压成型后再进行烧结,最终得到成型
的零部件。
粉末冶金工艺具有以下几个特点:
1. 可以制备复杂形状的零部件,粉末冶金工艺可以制备形状复杂、内部结构精细的零部件,因为粉末可以充分填充模具的所有空隙,从而制备出复杂的形状。
2. 原料利用率高,粉末冶金工艺可以充分利用原料,减少浪费,因为制备零部件时几乎不需要进行切削加工,减少了原料的浪费。
3. 可以制备高性能材料,通过粉末冶金工艺可以制备出高性能
的金属材料,比如高强度、高耐磨、高温等特性的材料,满足不同
工程领域的需求。
粉末注塑作为粉末冶金工艺的一种应用,具有以下特点:
1. 成本低,相比传统的金属加工工艺,粉末注塑可以减少原材
料浪费和加工成本,从而降低零部件的制造成本。
2. 生产效率高,粉末注塑可以批量生产零部件,提高生产效率,适用于大规模生产。
3. 可以制备复杂形状的零部件,粉末注塑技术可以制备出复杂
形状的零部件,满足不同工程领域对零部件形状的需求。
总的来说,粉末冶金工艺和粉末注塑技术在制备金属零部件方
面具有独特的优势,可以满足不同领域对于零部件性能和形状的需求,有着广泛的应用前景。
金属粉末注射成形技术发展探究顾海峰摘要:金属粉末注射成形(Metal powder injection molding,MIM)技术,是一种新型的近净成形技术,主要用来生产形状小、结构复杂的零部件。
文章针对MIM技术的发展应用进行探究,综述了MIM工艺流程和技术特点、气雾化粉末与水雾化粉末的对比、MIM技术的应用现状、MIM工艺中的常见问题及解决对策,以期促进MIM技术进一步发展。
关键词:MIM技术;工艺流程;应用现状;问题;解决对策MIM技术起源于20世纪70年代,由美国学者首次开发成功。
到了80年代,关于MIM技术的理论和应用研究活动广泛开展,这一时期脱脂工艺用时明显缩短,产品尺寸精度得以提高。
进入21世纪,随着新材料、新工艺的出现,MIM向着产业化发展,解决了难熔金属基复合材料的加工问题。
在金属材料加工领域,人类追求金属零件一体成形的梦想从未停止,MIM技术是当今金属零件制造的顶尖技术,被誉为“金属加工技术的未来”。
以下结合现有研究成果,对MIM技术的发展与应用进行探讨。
1 MIM工艺流程和技术特点1.1 MIM工艺流程MIM工艺流程为:金属粉末+粘结剂→混炼制粒→注射成形→脱脂→烧结→后处理→成品。
主要材料和关键工艺介绍如下。
1.1.1 金属粉末理论上,满足粉末冶金要求的金属,均能用在MIM工艺中。
目前常用的金属粉末有:①低合金钢,如Fe-2Ni、Fe-8Ni;②不锈钢,如304L、440C、17-4PH;③硬质合金,如WC-6Co;④重合金,如W-Ni-Fe、W-Cu;⑤钛合金,如TiAl、Ti-6Al-4V、TiMo;⑥新型合金,如Fe-Al-Si、无Ni奥氏体不锈钢。
制备金属粉末,主要方法有雾化法、羰基法、电解法、还原法、研磨法等。
实践证实,粉末粒度大小、粉末之间的摩擦力,均会影响混料的均匀度。
粉末粒度越小、摩擦力越小,混料均匀度越高,有助于提高工艺质量。
1.1.2 粘结剂MIM工艺中,对粘结剂的要求为:粘度与熔点低,固化性、流动性、湿润性好,各组分不会分离,不会与金属粉末发生反应,分解温度高于混料温度、成形温度,且产物无毒无害、可循环使用。
精心整理
MIM(金属粉末注塑成型)技术介绍
?????MIM 是将现代塑料注射成形技术引入粉末冶金领域而形成的一种全新的金属零部件近净成形加工技术,是近年来粉末冶金学科和工业领域中发展十分迅猛的一项高新技术。
MIM 的工艺步骤是:首先选取符合MIM MIM ????1????2~1.6μm ????3度高,工序简单,可实现连续大批量生产;?
????4、产品质量稳定、性能可靠,制品的相对密度可达95%~99%,可进行渗碳、淬火、回火等热处理。
产品强度、硬度、延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀;?
国际上普遍认为MIM技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“21世纪最热门的零部件的成形技术”。
?
MIM技术优势
MIM与传统粉末冶金相对比?
?MIM可以制造复杂形状的产品,避免更多的二次机加工。
?
?MIM产品密度高、耐蚀性好、强度高、延展性好。
?
?MIM可以将2个或更多PM产品组合成一个MIM产品,节省材料和工序。
?
MIM与机械加工相对比?
??MIM设计可以节省材料、降低重量。
???MIM可以将注射后的浇口料重复破碎使用,不影响产品性能,材料利用率高。
注射成型不锈钢粉末工艺参数
注射成型是一种常用于不锈钢粉末加工的工艺方法,它通过注射机将熔化的不锈钢粉末注入模具中,经冷却后得到所需形状的零件或产品。
这种工艺具有高效、精确和可重复性等优点,被广泛应用于制造业。
在进行注射成型不锈钢粉末的工艺参数设置时,需要考虑以下几个方面:
1. 不锈钢粉末的选用:选择适合注射成型的不锈钢粉末,通常要求粒度均匀、流动性好、氧化物含量低等特点。
2. 注射温度:注射成型过程中,不锈钢粉末需要先熔化然后冷却固化,因此注射温度的控制至关重要。
过低的温度会导致粉末无法完全熔化,影响成型质量;过高的温度则可能引起粉末烧结、氧化等问题。
3. 注射压力:注射压力决定了不锈钢粉末在注射过程中的流动性和填充性能。
过低的压力可能导致充填不均匀,产生空洞或缺陷;过高的压力则可能引起模具破裂等问题。
4. 冷却速度:冷却速度直接影响不锈钢粉末的固化过程,过快的冷却速度可能导致内部应力过大,引起裂纹或变形;过慢的冷却速度则会延长生产周期。
5. 模具温度:模具温度的控制可以影响注射成型的充填性能和成品的表面质量。
过低的温度可能导致粉末凝固不完全,产生毛刺或瑕疵;过高的温度则可能引起粉末烧结或氧化。
6. 固化时间:固化时间是指不锈钢粉末在模具中冷却固化所需的时间。
固化时间过短可能导致产品未完全固化,无法保持所需形状;固化时间过长则会增加生产周期。
在实际操作中,需要根据具体的不锈钢粉末材料和产品要求进行工艺参数的优化调整。
通过合理的工艺参数设置,可以实现不锈钢粉末注射成型工艺的高效、精确和稳定性,为制造业提供优质的不锈钢零件和产品。
粉末注射成型
粉末注射成型(Powder Injection Moulding,简称PIM)是一种将金属或陶瓷粉末通过加工制造成零件的技术。
这
个过程类似于传统的塑料注射成型,但使用的是金属或陶
瓷粉末。
整个过程包括以下步骤:
1. 材料准备:选择合适的金属或陶瓷粉末,并按照特定的
配方制备成所需的粉末混合物。
2. 注射成型:将粉末混合物装入注射机中,并通过高压将
粉末推入模具中。
模具通常是具有所需形状的两个半球体。
3. 球芯去除:等到粉末充填到模具后,球芯会自动脱落并
迅速冷却固化。
4. 焙烧:固化的零件需要经过焙烧过程,以去除残留的有
机物,并增加材料的密度和强度。
5. 精加工:将焙烧后的零件进行必要的后续加工,例如打磨、抛光等。
6. 检测和质量控制:对成品进行检测,确保其符合规定的
尺寸和质量标准。
粉末注射成型技术具有许多优点,例如可以生产形状复杂的零件,材料利用率高,生产效率高等。
它被广泛应用于汽车、医疗器械、工具等领域的零部件制造。
PIM粉末注射成形概述:注射成型车间连续烧结炉设备结构图真空烧结炉粉末注射成形(Powder Injection Molding,PIM)由金属粉末注射成形(Metal Injection Molding,MIM)与陶瓷粉末注射成形(Ceramics Injection Molding,CIM)两部分组成,它是一种新的金属、陶瓷零部件制备技术,它是将塑料注射成形技术引入到粉末冶金领域而形成的一种全新的零部件加工技术。
MIM的基本工艺步骤是:首先选取符合MIM要求的金属粉末和黏结剂,然后在一定温度下采用适当的方法将粉末和黏结剂混合成均匀的喂料,经制粒后再注射成形,获得成形坯(Green Part),再经过脱脂处理后烧结致密化成为最终成品(White Part)。
粉末注射成形技术的特点:粉末注射成形能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷零部件。
该工艺技术利用注射方法,保证物料充满模具型腔,也就保证了零件高复杂结构的实现。
以往在传统加工技术中,对于复杂的零件,通常是先分别制作出单个零件,然后再组装;而在使用PIM技术时,可以考虑整合成完整的单一零件,这样大大减少了生产步骤,简化了加工程序。
1、与传统的机械加工、精密铸造相比,制品内部组织结构更均匀;与传统粉末冶金压制∕烧结相比,产品性能更优异,产品尺寸精度高,表面光洁度好,不必进行再加工或只需少量精加工。
金属注射成形工艺可直接成形薄壁结构件,制品形状已能接近或达到最终产品要求,零件尺寸公差一般保持在±0.10%~±0.30%水平,特别对于降低难以进行机械加工的硬质合金的加工成本、减少贵重金属的加工损失尤其具有重要意义。
2、零部件几何形状的自由度高,制件各部分密度均匀、尺寸精度高,适于制造几何形状复杂、精度密高及具有特殊要求的小型零件(0.2~200g)。
3、合金化灵活性好,对于过硬、过脆、难以切削的材料或原料铸造时有偏析或污染的零件,可降低制造成本。
粉末注射成型技术的特点
MIM作为一种制造高质量精密零件的近净成形技术,具有常规和机加工方法比拟的优势。
MIM能制造许多具有复杂形状特征的零件:如各种外部切槽,外螺纹,锥形外表面,交叉通孔、盲孔,四台与键销,加强筋板,表面滚花等等,具有以上特征的零件都是无法用常规粉末冶金方法得到的。
由于通过MIM制造的零件几乎不需要再进行机加工,所以减少了材料的消耗,因此在所要求生产的复杂形状零件数量高于一定值时,MIM就会比机加工方法更为经济。
MIM和精密铸造成形能力的比较
粉末注射成型的优点:
能像生产塑料制品一样,一次成形生产形状复杂的金属、陶瓷等零件部件产品成本低、光洁度好、精度高(±0.3%~±0.1%),一般无需后续加工产品强度,硬度,延伸率等力学性能高,耐磨性好,耐疲劳,组织均匀原材料利用率高,生产自动化程度高,工序简单,可连续大批量生产无污染,生产过程为清洁工艺生产
粉末注射成型
粉末注射成型材料应用
较新MIM材料体系应用
常用MIM产品应用
几种粉末注射成型材料的基本性能
粉末注射形成技术与其他成形工艺技术比较
粉末注射成型工艺与传统批量工业与自动化零件加工、冲压、锻造、精密铸造、粉末冶金相比,具有极其明显的优势。
零件薄壁能力高中中低高
零件复杂程度高低中高低
零件设计宽容度高中中中低
批量生产能力高高中中-高高
适应材质范围高高中-高高中
供货能力高高中低高
粉末注射成型工艺流程图
适用材料及性能
材料
密度硬度拉伸强度伸长率
g/cm 3 洛氏MPa %
铁基合金MIM-2200(烧结态)
7.65
45HRB 290 40 MIM-2200(烧结态)50HRC 380 20 MIM-2700(烧结态)
7.65
69HRB 440 26 MIM-2700(碳氮共渗)55HRC 830 9 MIM-4650(烧结态)7.55 90HRB 700 11 MIM-4650(热处理态)7.55 48HRC 1655 2 MIM-8620(烧结态)7.5 85HRB 445 20 MIM-8620(热处理态)7.5 35HRC 800-1300 5-9
不锈钢
MIM - 316L (烧结态)7.8 67HRB 520 50
MIM-304L(烧结态)7.75 60HRB 500 70。