金属粉末注射成型技术.
- 格式:doc
- 大小:31.00 KB
- 文档页数:13
金属粉末的注射成型金属粉末的注射成型,也被称为金属粉末注射成型(Metal Powder Injection Molding,简称MIM),是一种先进的制造技术,将金属粉末与有机物相结合,通过注射成型和烧结工艺,制造出高密度、精确尺寸、复杂形状的金属零件。
在金属粉末注射成型过程中,首先将金属粉末与有机粘结剂和其他添加剂混合均匀,形成金属粉末/有机物混合物。
其次,在高压下,将混合物通过注射机注射到具有细微孔隙和管道的模具中。
模具通常采用两片结构,上模和下模之间形成的形状即为所需制造的零件形状。
注射机将足够的压力用于将混合物推进模具的每一个细微空间,以确保零件形状准确,毛边小。
注射后,模具中的混合物开始固化,形成绿色零件。
最后,通过烧结处理,去除有机物并使金属颗粒结合成整体,形成具有理想密度和力学性能的金属粉末零件。
相对于传统的金属加工方法,金属粉末注射成型具有以下优势:首先,MIM可以制造复杂形状的金属零件,包括薄壁结构、内外复杂曲面和细小结构,满足了一些特殊零件的制造需求。
其次,MIM的材料利用率高,废料少,可以减少原材料和能源的浪费。
此外,零件的尺寸稳定性好,需要的加工工序少,可以降低生产成本。
最重要的是,对于一些其他制造工艺难以实现的金属材料,例如高强度不锈钢、钨合金和钛合金,MIM可以实现高质量的制造。
然而,金属粉末注射成型也存在应用范围的限制。
首先,相对较高的制造成本使得该技术在一些低成本产品上难以应用。
其次,较大的尺寸限制了MIM在制造大尺寸、高精度的零件上的应用。
此外,与其他成型方法相比,MIM的制造周期较长,对行业响应速度要求较高的场景不适用。
尽管如此,金属粉末注射成型技术已经在汽车、电子产品、医疗器械、工具和航空航天等领域得到了广泛的应用。
随着制造技术的进步和材料属性的改进,金属粉末注射成型有望在更多领域发挥其优势,并带来更多创新的解决方案。
MIM技术介绍MIM技术,即金属注射成型技术(Metal Injection Molding),是一种将金属粉末与高聚合物粉末相混合,通过注射成型后烧结制成零件的先进制造技术。
该技术的特点是将金属粉末颗粒与粘结剂混合,并在注射成型后通过烧结过程将粉末颗粒结合在一起形成致密的金属零件。
MIM技术是目前最流行的三维成型技术之一,它兼具了传统压力成型和金属烧结的优点。
在MIM技术中,首先将金属粉末与粘结剂按一定比例混合,形成MIM料浆。
然后,通过注射机将MIM料浆注射到金属模具中进行成型。
成型后的零件经过脱模,形成近净成型的未烧结零件。
最后,通过烧结过程,将未烧结零件在惰性气氛下加热至金属粉末的熔点以上进行烧结,粘结剂将烧结后残留物挥发,金属粉末颗粒结合在一起,形成致密的金属零件。
MIM技术的优点主要表现在以下几个方面。
首先,MIM技术可以制造形状复杂、精度高的零件,相比传统的金属加工方法更加灵活。
其次,MIM技术能够生产大批量的零件,并且具有高度的一致性,适用于需求量大的产品制造。
此外,MIM技术还可以制造超细或微型零件,满足现代微电子、医疗器械等领域对高精度零件的需求。
尽管MIM技术在低成本、高效率和高精度等方面具有明显优势,但也存在一些挑战。
首先,MIM技术对原料的要求较高,金属粉末的粒度和形状对成型效果有较大影响。
其次,粘结剂的选择和控制也是一项关键任务。
此外,由于烧结过程中需要控制温度和气氛等因素,烧结工艺相对复杂。
因此,MIM技术的成功应用需要综合考虑材料、工艺和设备等多个因素。
总的来说,MIM技术是一种高度灵活、高效率、高精度的金属成型方法,已在汽车、航空航天、电子、医疗器械等领域得到广泛应用。
随着材料科学和制造技术的不断发展,MIM技术将进一步完善和推广,为各个行业提供更多高质量的金属零件。
MIM技术作为一种金属粉末成型技术,具有独特的优势和特点,逐渐成为制造业中不可忽视的一种先进工艺。
2024年金属粉末注射成型(MIM)市场分析报告1. 引言金属粉末注射成型(Metal Injection Molding,简称MIM)是一种先进的金属制造技术,通过将金属粉末与高聚物粉末混合,加入成型剂和活性粉末,经过注射成型、脱模和烧结等工艺步骤,最终获得具有高精度和复杂形状的金属零部件。
MIM技术具有能耗低、制造周期短以及材料利用率高等优势,因此在汽车、医疗器械、电子等领域得到了广泛应用。
2. 市场规模及趋势据市场研究机构统计,金属粉末注射成型市场在过去几年中呈现出稳定的增长趋势。
预计到2025年,全球金属粉末注射成型市场规模将达到xx.xx亿美元。
这一增长主要受到以下因素的推动:2.1 新材料开发带动需求增长随着科技的不断进步,新材料的研发取得了显著突破,为金属粉末注射成型技术提供了更广阔的应用空间。
新材料的不断涌现与市场需求之间的相互促进,推动了金属粉末注射成型市场的快速发展。
2.2 汽车和医疗器械行业的增长汽车行业和医疗器械行业是金属粉末注射成型市场的主要消费领域。
随着人们对于汽车和医疗器械品质和性能需求的不断提高,对金属粉末注射成型技术的需求也在不断增长。
预计未来几年,这两个行业的持续增长将进一步推动金属粉末注射成型市场的发展。
3. 市场竞争格局目前,金属粉末注射成型市场存在着一些主要的竞争企业,包括: - 公司A - 公司B - 公司C这些企业在产品品质、技术研发能力以及市场拓展能力等方面均具备一定优势。
随着市场竞争的加剧,这些企业将不断提升自身的竞争力,同时也面临着市场份额争夺的压力。
4. 市场机遇与挑战金属粉末注射成型市场具有广阔的发展前景,同时也面临着一些挑战。
4.1 市场机遇•创新技术的推动:随着新材料和新技术的不断出现,金属粉末注射成型市场将迎来更多的机遇。
新技术的应用将进一步拓宽市场的发展空间。
•新兴领域需求增加:随着人们对于高性能产品和高精度零部件的需求不断增加,金属粉末注射成型技术将在航空航天、能源等新兴领域中得到更广泛的应用。
金属粉末注射成型技术在轻武器制造上的应用摘要:本文通过对金属粉末注射成型技术进行介绍并以此实施作为基础,对比过去传统的加工方式,在加工经济性以及生产效率等各方面的差异,并通过对金属粉末注射成型技术在轻武器制造方面的成功应用案例进行分析,体现该技术在轻武器以及各类精细复杂结构零件方面所不可比拟的重要优势,也借此提出金属粉末注射成型技术在具体应用过程中需要注意并且尚未解决的问题,为将来更加深远的发展奠定基础。
关键词:金属粉末注射成型技术;轻武器制造一、金属粉末注射成型技术概述金属粉末注射成型技术和陶瓷粉末注射成型技术组成了粉末注射成型技术,主要是运用模具成型的原理,将现代塑料注射成型技术融入到粉末冶金领域而形成的一种新型粉末冶金技术。
主要特征是将金属粉末或者陶瓷粉末通过注释使得成型,通过一系列的加工处理之后形成具体型状。
金属粉末注射成型技术的主要工艺是将固体的粉末和有机粘结剂进行充分混合,在一定的条件下进行加热塑化过后注射入具体的模型内使其成型固化,该项技术作为一种可以用于制造各种精密零件的技术被广泛运用于各类航天航空以及具有精密零件制造需求的行业之中。
二、金属粉末注射成型技术的优势金属粉末注射成型技术作为一种可以制造各种精密零件的技术,具有传统加工方法所无法比拟的巨大优势,主要有以下几种。
第可以制造各种常规粉末冶金技术难以制造的各种精密,并且形状怪异的零件,各种螺纹,锥形等等都可以高质量的制作。
第二,利用金属粉末注射成型技术所制造的相关零件,大多数零件都不需要进行二次加工,大幅度提高了材料的利用效率。
第三,对于某些具有特殊要求极其精密的零件,能够尽可能的减少误差,使其更加符合制作要求,并且零件表面较为光滑。
第四,零件制造较为稳定,并且使用性能高能够反复利用,对于各类化学材料的处理等等都不会产生太大影响。
第五,金属粉末注射成型技术应用广泛并且原材料的利用效率较高,尽可能的缩短了工艺的流程提高了制造效率。
粉末注射成型
粉末注射成型(Powder Injection Moulding,简称PIM)是一种将金属或陶瓷粉末通过加工制造成零件的技术。
这
个过程类似于传统的塑料注射成型,但使用的是金属或陶
瓷粉末。
整个过程包括以下步骤:
1. 材料准备:选择合适的金属或陶瓷粉末,并按照特定的
配方制备成所需的粉末混合物。
2. 注射成型:将粉末混合物装入注射机中,并通过高压将
粉末推入模具中。
模具通常是具有所需形状的两个半球体。
3. 球芯去除:等到粉末充填到模具后,球芯会自动脱落并
迅速冷却固化。
4. 焙烧:固化的零件需要经过焙烧过程,以去除残留的有
机物,并增加材料的密度和强度。
5. 精加工:将焙烧后的零件进行必要的后续加工,例如打磨、抛光等。
6. 检测和质量控制:对成品进行检测,确保其符合规定的
尺寸和质量标准。
粉末注射成型技术具有许多优点,例如可以生产形状复杂的零件,材料利用率高,生产效率高等。
它被广泛应用于汽车、医疗器械、工具等领域的零部件制造。
金属粉末注射成型技术金属粉末注射成型技术(Metal Powder Injection Molding,简称MIM)是一种先进的制造工艺,结合了粉末冶金和塑料注射成型技术,广泛应用于金属零件的制造。
MIM技术以其高精度、高复杂性和高效率的特点,成为近年来制造业领域的热门技术。
一、MIM工艺简介金属粉末注射成型技术是将金属粉末与有机材料(通常为热熔型塑料)混合,经过塑化、成型、脱脂和烧结等多个工艺步骤,最终形成具有金属特性的零件。
该技术的基本步骤包括:原料准备、混合、注射成型、脱脂和烧结。
1. 原料准备金属粉末是MIM技术的关键原料,其粒径通常为10~20μm,且具有良好的流动性和可压缩性。
可以使用的金属粉末有不锈钢、合金钢、铁基合金、钛合金等。
同时,还需准备有机材料(通常是聚丙烯、聚氨酯或类似材料)作为粘结剂。
2. 混合将金属粉末和有机材料进行混合,通常采用机械搅拌或球磨的方法,确保金属粉末均匀分布在有机材料中。
3. 注射成型混合料经过塑化,放入注射成型机中进行注射成型。
注射成型机通过加热熔融的混合料,并将其注入模具中,在一定的温度和压力下形成所需的零件形状。
4. 脱脂注射成型后,零件经过脱脂工艺,将有机材料从混合料中去除。
通常使用热处理或溶剂处理方法进行脱脂。
5. 烧结脱脂后的零件被置于特定的高温环境中,金属粉末与有机材料经过烧结而成。
在烧结过程中,金属颗粒之间发生冶金结合,形成致密的金属零件。
二、MIM技术的优势金属粉末注射成型技术相比其他金属加工方式具有以下几个显著优势:1. 复杂形状MIM技术可以制造复杂形状的金属零件,包括细小孔洞、薄壁结构、内部腔体等。
这种高精度和高复杂性的加工能力,使得MIM技术在航空航天、医疗器械、汽车零部件等领域得到广泛应用。
2. 材料多样性MIM技术可以使用多种金属粉末制造零件,涵盖广泛的金属材料,包括不锈钢、合金钢、铁基合金、钛合金等。
这使得MIM技术具有较大的材料选择范围,满足不同应用领域对材料性能的需求。
金属粉末注射成型(Metal Powder Injection Molding,简称MIM技术是将现代塑料注射成型技术引入粉末冶金领域而形成的一门新型粉末冶金近净成形技术。
其基本工艺过程是:首先将固体粉末与有机粘结剂均匀混练,经制粒后在加热塑化状态下(~150℃用注射成型机注入模腔内固化成型,然后用化学或热分解的方法将成型坯中的粘结剂脱除,最后经烧结致密化得到最终产品。
与传统工艺相比,MIM具有精度高、组织均匀、性能优异、生产成本低等特点,其产品广泛应用于电子信息工程、生物医疗器械、办公设备、汽车、机械、五金、体育器械、钟表业、兵器及航空航天等工业领域。
国际上普遍认为该技术的发展将会导致零部件成形与加工技术的一场革命,被誉为“当今最热门的零部件成形技术”和“21世纪的成形技术”。
MIM技术由美国加州Parmatech公司于1973年发明,八十年代初欧洲许多国家以及日本也都投入极大精力开始研究该技术,并使其得到迅速推广,特别是在八十年代中期该技术实现产业化以来,更获得了突飞猛进的发展,产量每年都以惊人速度递增。
到目前为止,美国、西欧、日本等十多个国家和地区有一百多家公司从事该工艺技术的产品开发、研制与销售工作。
日本在竞争上十分积极,并且表现突出,许多大型株式会社均参与MIM工艺的推广应用,这些公司包括太平洋金属、三菱制钢、川崎制铁、神户制钢、住友矿山、精工-爱普生、大同特殊钢等。
目前日本有四十多家专业从事MIM产业的公司,其MIM产品的销售总值早已超过欧洲并直追美国。
MIM技术已成为新型制造业中最为活跃的前沿技术领域,是世界冶金行业的开拓性技术,代表着粉末冶金技术发展的主方向。
金属粉末注射成型技术是塑料成型工艺学、高分子化学、粉末冶金工艺学和金属材料学等多学科渗透与交叉的产物,利用模具可注射成型坯件并通过烧结快速制造高密度、高精度、三维复杂形状的结构零件,能够快速、准确地将设计思想物化为具有一定结构、功能特性的制品,并可直接批量生产出零件,是制造技术行业一次新的变革。
该工艺技术不仅具有常规粉末冶金工艺工序少、无切削或少切削、经济效益高等优点,而且克服了传统粉末冶金工艺制品材质不均匀、机械性能低、薄壁成型困难、结构复杂等缺点,特别适合于大批量生产小型、复杂以及具有特殊要求的金属零件。
2.MIM的工艺流程MIM的工艺流程为:金属粉末+粘结剂→混炼→注射成型→脱脂→烧结→后处理。
(1金属粉末MIM工艺所用的金属粉末颗粒尺寸一般在0.5~20μm。
从理论上讲,颗粒越细,比表面积也越大,越易于成型和烧结。
而传统的粉末冶金工艺则采用大于40μm的较粗粉末。
(2有机粘结剂有机粘结剂的作用是粘结金属粉末颗粒,使混合料在注射机料筒中加热后具有流变性和润滑性,即粘结剂是带动粉末流动的载体。
因此,粘结剂的选择是整个粉末注射成型的关键。
对有机粘结剂的要求为:①用量少,用较少的粘结剂能使混合料产生较好的流变性;②不反应,在去除粘结剂的过程中与金属粉末不起任何化学反应;③易去除,在制品内不残留碳。
(3混料把金属粉末与有机粘结剂均匀掺混在一起,使各种原料成为注射成型用混合料。
混合料的均匀程度直接影响其流动性,从而影响注射成型工艺参数以及最终材料的密度及其它性能。
(4注射成型本步工艺过程与塑料注射成型工艺过程在原理上是一致的,其设备条件也基本相同。
在注射成型过程中,混合料在注射机料筒内被加热成具有流变性的塑性物料,并在适当的注射压力下注入模具中,成型出毛坯。
注射成型毛坯在外观上应均匀一致,从而使制品在烧结过程中均匀收缩。
(5萃取成型毛坯在烧结前必须去除毛坯内所含有的有机粘结剂,该过程称为萃取。
萃取工艺必须保证粘结剂从毛坯的不同部位沿着颗料之间的微小通道逐渐排出,而不降低毛坯的强度。
粘结剂的排除速率一般遵循扩散方程。
(6烧结烧结能使多孔的脱脂毛坯收缩密化成为具有一定组织和性能的制品。
尽管制品的性能与烧结前的许多工艺因素有关,但在许多情况下,烧结工艺对最终制品的金相组织和性能有着很大甚至决定性的影响。
(7后处理对于尺寸要求较为精密的零件,需要进行必要的后处理。
这工序与常规金属制品的热处理工序相同。
3.MIM的工艺特点及与其它加工工艺的比较:MIM使用的原料粉末粒径在2~15μm,而传统粉末冶金的原料粉末粒径大多在50~100μm;MIM工艺的成品密度较高,相对密度达95%~98%,而传统粉末冶金工艺相对密度仅为80%~85%(主要原因是MIM工艺使用微细粉末; MIM的产品重量通常小于400克,传统粉末冶金的产品重量为十到数百克;MIM 的产品形状可以是三维复杂形状,传统粉末冶金的产品形状通常为二维简单形状。
MIM工艺具有传统粉末冶金工艺的优点,而其形状自由度高是传统粉末冶金工艺所不能达到的。
传统粉末冶金工艺受到模具强度和填充密度的影响,成型形状大多为二维圆柱型。
传统的精密铸造脱燥工艺为一种制作复杂形状产品的有效技术,近年来使用陶芯辅助,可以完成狭缝、深孔的制造,但受到陶芯强度以及铸液流动性的限制,该工艺仍存在某些技术难题。
一般而言,该工艺制造大、中型零件较为合适,制造复杂形状的小型零件则以MIM工艺较为合适。
压铸工艺用于铝和锌合金等熔点低、铸液流动性良好的材料,该工艺的产品因材料的限制,其强度、耐磨性、耐蚀性均有一定限度。
MIM工艺可以加工的原材料则较多。
精密铸造工艺虽然近年来其产品的精度和复杂度均有所提高,但仍比不上脱蜡工艺和MIM工艺。
粉末锻造是一项重要的发展,已适用于连杆的量产制造。
但是一般而言,锻造工程中热处理的成本和模具的寿命还是有问题,仍待进一步解决。
传统机械加工工艺靠自动化而提升其加工能力,在效果和精度上有极大的进步,但在基本程序上仍脱不开以逐步加工(车、刨、铣、磨、钻孔、抛光等来完成零件形状的加工。
机械加工方法的加工精度远优于其他加工方法,但是因为材料的有效利用率低,且其形状的完成受限于设备与刀具,有些零件无法用机械加工完成。
相反,MIM可以有效利用材料,不受限制,对于小型、高难度形状的精密零件的制造,MIM工艺比较机械加工而言,其成本较低且效率高,具有很强的竞争力。
MIM技术并非与传统加工方法竞争,而是弥补传统加工方法在技术上的不足或无法制作的缺陷。
MIM技术可以在传统加工方法制作的零件领域上发挥其特长。
4.MIM工艺在零部件制造方面的技术优势(1可成型高度复杂结构的结构零件注射成型工艺技术利用注射机注射成型产品毛坯,保证物料充分充满模具型腔,也就保证了零件高复杂结构的实现。
以往在传统加工技术中先作成个别元件再组合成组件的方式,在使用MIM技术时可以考虑整合成完整的单一零件,大大减少步骤,简化加工程序。
MIM与其他金属加工方法比较,制品尺寸精度高,不必进行二次加工或只需少量精加工。
注射成型工艺可直接成型薄壁、复杂结构件,制品形状已接近最终产品要求,零件尺寸公差一般保持在±0.1~± 0.3左右,特别对于降低难于进行机械加工的硬质合金的加工成本,减少贵重金属的加工损失尤其具有重要意义。
(2制品微观组织均匀、密度高、性能好在压制加工过程中,由于模壁与粉末以及粉末与粉末之间的摩擦力,使得压制压力分布不均匀,也就导致了压制毛坯在微观组织上不均匀,这样就会造成压制粉末冶金件在烧结过程中收缩不均匀,因此不得不降低烧结温度以减少这种效应,从而使制品孔隙度大、材料致密性差、密度低,严重影响制品的机械性能。
反之,注射成型工艺是一种流体成型工艺,粘接剂的存在保障了粉末的均匀排布,从而可消除毛坯微观组织上的不均匀,进而使烧结制品密度可达到其材料的理论密度。
一般情况下,压制产品的密度最高只能达到理论密度的85%。
制品的高致密性可使强度增加,韧性加强,延展性、导电导热性得到改善,磁性能提高。
(3效率高,易于实现大批量和规模化生产MIM技术使用的金属模具,其寿命和工程塑料注射成型具模具相当。
由于使用金属模具,MIM适合于零件的大批量生产。
由于利用注射机成型产品毛坯,极大地提高了生产效率,降低了生产成本,而且注射成型产品的一致性、重复性好,从而为大批量和规模化工业生产提供了保证。
(4适用材料范围宽,应用领域广阔(铁基,低合金,高速钢,不锈钢,克阀合金,硬质合金可用于注射成型的材料非常广泛,原则上任何可高温浇结的粉末材料均可由MIM工艺制造成零件,包括传统制造工艺中的难加工材料和高熔点材料。
此外, MIM也可以根据用户要求进行材料配方研究,制造任意组合的合金材料,将复合材料成型为零件。
注射成型制品的应用领域已遍及国民经济各领域,具有广阔的市场前景。
(5MIM工艺采用微米级细粉末,既能加速烧结收缩,有助于提高材料的力学性能,延长材料的疲劳寿命,又能改善耐、抗应力腐蚀及磁性能。
5.MIM技术的应用领域(1计算机及其辅助设施:如打印机零件、磁芯、撞针轴销、驱动零件等;(2工具:如钻头、刀头、喷嘴、枪钻、螺旋铣刀、冲头、套筒、扳手、电工工具,手工具等;(3家用器具:如表壳、表链、电动牙刷、剪刀、风扇、高尔夫球头、珠宝链环、圆珠笔卡箍、刃具刀头等零部件;(4医疗机械用零件:如牙矫形架、剪刀、镊子等;(5军用零件:导弹尾翼、枪支零件、弹头、药型罩、引信用零件等;(6电器用零件:电子封装,微型马达、电子零件、传感器件等;(7机械用零件:如松棉机、纺织机、卷边机、办公机械等;(8汽车船舶用零件:如离合器内环、拔叉套、分配器套、汽门导管、同步毂、安全气囊件等。
金属粉末注射成形技术研究进展金属注射成形(Metal Powder Injection Molding,简称MIM是传统粉末冶金技术和塑料注射成形技术相结合的一种高新技术。
MIM始于20世纪70年代末,过去由于缺少合适的粉末及原料价格太高、知识平台不完善、技术不成熟、人们了解和市场接受时间不长、生产(包括模具制造周期太长、投资不够等原因,其发展和应用较为缓慢。
为解决MIM技术的难点,促进MIM技术实用化,80年代中期美国制定了一个高级粉末加工计划,研究内容涵括了与注射成形有关的18个课题。
随后日本、德国等也积极开展MIM的开发研究。
随着MIM研究的不断深入以及新型粘结剂的开发、制粉技术和脱脂工艺的不断进步,到90年代初已实现产业化。
经过20多年的努力,目前MIM已成为国际粉末冶金领域发燕尾服迅速、最有前途的一种新型近净成形技术,被誉为“国际最热门的金属零部件成形技术”之一。
1 MIM工艺和技术特点MIM的基本工艺如图1所示。
它首先是选择符合MIM要求和金属粉末和粘结剂,然后在一定温度下采用适当的方法将粉末和粘结剂混炼成均匀的注射成形喂料,经制粒后在注射成形机上注射成形,获得的成形坯经脱脂处理后烧结致密化最终产品。
MIM工艺包括产品设计、模具设计、质量检测、混炼、注射、脱脂、烧结、二次加工等8个重要环节。