积分中值定理的推广与应用
- 格式:doc
- 大小:1.11 MB
- 文档页数:27
积分中值定理与推广积分中值定理区间问题一、积分中值定理的基本概念1.1 积分中值定理的定义积分中值定理是微积分中的重要定理之一,它是对函数在闭区间上的平均值与极限值之间的关系进行了精确的描述。
积分中值定理的内容主要包括了两个部分:第一部分是零点定理,即如果函数在闭区间上连续,并且在该闭区间上取得了最大值和最小值,那么在该闭区间上一定存在至少一个点使得函数的导数等于零;第二部分是平均值定理,即如果一个函数在一个闭区间上连续,那么一定存在至少一个点,使得该点的导数等于函数在该区间上的平均增量。
积分中值定理的内容简单而深刻,它为我们理解函数在闭区间上的性质提供了重要的依据。
1.2 积分中值定理的应用积分中值定理在实际问题中有着广泛的应用,它不仅可以帮助我们理解函数的性质,还可以为我们提供在实际问题中对函数的特定取值进行估计的依据。
比如在物理学中,积分中值定理可以用来描述物体在某一时刻的速度与位移之间的关系;在经济学中,积分中值定理可以用来解释市场上产品的供求关系;在生物学中,积分中值定理可以用来分析生物体在生长过程中的变化规律等等。
积分中值定理是微积分中的基础定理之一,它在我们的日常生活和各个学科领域中都有着重要的地位。
二、推广积分中值定理区间问题2.1 区间问题的提出在积分中值定理的基础上,我们可以进一步进行推广,即考虑函数在开区间上的性质。
具体来说,我们可以考虑以下问题:如果一个函数在一个开区间上连续,那么它在该开区间上是否一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量呢?这个问题就是推广积分中值定理区间问题。
2.2 区间问题的解决针对区间问题,我们可以通过微积分中的基本原理进行研究。
我们可以利用函数的连续性和导数的存在性来证明函数在开区间上的平均增量一定存在,然后利用积分中值定理的零点定理和平均值定理来证明在该开区间上一定存在着一个点,使得该点的导数等于函数在该开区间上的平均增量。
积分中值定理的证明及其推广我们来介绍积分中值定理的基本概念。
积分中值定理是微积分中的一个重要定理,它表明在某些条件下,函数在一个闭区间上的平均值等于函数在该区间上的某一点的函数值。
具体而言,如果函数f(x)在闭区间[a, b]上连续,那么存在一个点c,使得f(c)等于函数在[a, b]上的平均值。
下面我们来证明积分中值定理。
根据积分的定义,我们可以将闭区间[a, b]分成无穷多个小区间,并在每个小区间上取一个代表点xi。
然后,我们将各个小区间的长度相加,并乘以各个代表点的函数值,得到一个和S。
同样,我们可以将函数在整个闭区间[a, b]上的积分记为I。
根据积分的定义,我们知道I可以看作是S的极限,当小区间的数量趋向于无穷大时,S趋向于I。
现在,我们要证明存在一个点c,使得f(c)等于函数在[a, b]上的平均值。
假设函数在闭区间[a, b]上的最大值为M,最小值为m。
根据连续函数的性质,我们知道函数在闭区间[a, b]上一定可以取到最大值和最小值。
那么我们可以将函数的取值范围限制在[m, M]之间。
根据取值范围的限制,我们知道S的值介于[m(b-a), M(b-a)]之间。
而I的值等于函数在闭区间[a, b]上的平均值乘以区间长度(b-a)。
由于函数在闭区间[a, b]上连续,根据介值定理,我们知道函数在[m, M]之间可以取到任何一个值。
因此,存在一个点c,使得f(c)等于函数在闭区间[a, b]上的平均值。
至此,我们完成了积分中值定理的证明。
接下来,我们来讨论积分中值定理的推广应用。
积分中值定理的推广应用非常广泛,其中一个重要的应用是求解定积分。
根据积分中值定理,我们可以通过求解函数在闭区间上的平均值来求解定积分。
具体而言,我们可以将函数在闭区间上的平均值乘以区间的长度,得到定积分的值。
除了求解定积分,积分中值定理还可以应用于证明其他数学定理。
例如,我们可以利用积分中值定理证明柯西-施瓦茨不等式,该不等式是复变函数中的重要定理,用于限制复变函数的积分值。
衡阳师范学院毕业论文(设计)题目:积分中值定理的推广及应用学号:姓名:年级:学院:信息科学技术学院系别:数学系专业:信息与计算科学指导教师:完成日期:年月日摘要本论文讲述的主要内容是积分中值定理及其应用,我们将它主要分为以下几个方面:积分中值定理、积分中值定理的推广、积分中值定理中值点ξ的渐进性,积分中值定理的应用。
有关ξ点的渐进性,我们对第一积分中值定理的ξ点的做了详细的讨论,给出详细清楚的证明过程。
而第二积分中值定理的渐进性问题只证明了其中的一种情形,其它证明过程只做简要说明。
对于应用,我们给出了一些较简单的情形如估计积分值,求含有定积分的极限,确定积分号,比较积分大小,证明函数的单调性还有对阿贝尔判别法和狄理克莱判别法这两个定理的证明。
我们讨论了定积分中值定理、第一积分中值定理、第二积分中值定理,而且还给出了这些定理的详细证明过程。
在此基础上,我们还讨论了在几何形体Ω上的黎曼积分第一中值定理,它使得积分中值定理更加一般化,此情形对于讨论一般实际问题有很显著作用。
在积分中值定理的推广方面,我们由最初的在闭区间[,]f x的积分中值a b讨论函数()定理情形转换为在开区间(,)a b上讨论函数()f x上的积分中值定理,这个变化对于解决一些实际的数学问题更为方便。
不仅如此,我们还将几何形体Ω上的黎曼积分第一中值定理推广到第一、第二曲线型积分中定理和第一、第二曲面型积分中值定理情形。
关键词:积分中值定理;推广;应用;渐进性AbstractThe main content of this paper are the mean-value theorem and its application, it will be mainly divided into the following respects: integral mean-value theorem, the generalation of integral mean-value theorem, the asymptotic property of the “intermediate point”of integral median point, the application of integral mean-value theorem.About the Progressive of ξpoint, we have discussed the ξpoint of the mean-value theorem in detail and give clear proof of the process. While the gradual issues of the secondintegral mean value theorem has been demonstrated one of these situations. And the otherprocess of proving has been expressed in brief.According to application,we presented a simple situation, for example, estimate integralvalue ,solve the limits of definite integral, define integral sign, compare the magnitude of integralvalue, prove the monotonic of function and Abel test and Dirichlet testWe have discussed the definite integral mean-value theorem, the first mean value theorem,the second integral mean-value theorem, and have given a detailed proof of these theoremsprocess. On this basis, we also have discussed the Riemann first integral mean-value theorem onthe geometryΩ. It makes the integral mean-value theorem is more general, the case has asignificant role in the discussion of practical issues in general.In the promotion of integral mean value theorem, we have discussed the integralmean-value theorem of function ()a b in the case off x in the initial closed interval [,]discussing it in the open interval(,)a b, the change has more convenience in solving some practical mathematical problem. In addition, we will promote the Riemann first integral mean-value theorem on the geometryΩto the situation of the first and second type curve in integral theorem and The second type surface integral mean-value theorem.Key words: integral mean-value; theorem promotion ;apply;progressive目录1 引言 (1)2 积分中值定理的证明 (2)2.1 定积分中值定理 (2)2.2 积分第一中值定理 (3)2.3 积分第二中值定理 (3)2.4 几何形体上黎曼积分第一中值定理 (6)3 积分中值定理的推广 (9)3.1 定积分中值定理的推广 (9)3.2 定积分第一中值定理的推广 (9)3.3 定积分第二中值定理的推广 (11)3.4 第一曲线积分中值定理 (12)3.5 第二曲线积分中值定理 (12)3.6 第一曲面积分中值定理 (13)3.7 第二曲面积分中值定理 (14)4 第一积分中值定理中值点的渐进性 (16)5 第二积分中值定理中值点的渐进性 (20)6 积分中值定理的应用 (23)6.1 估计积分值 (23)6.2 求含定积分的极限 (24)6.3 确定积分号 (24)6.4 比较积分大小 (25)6.5 证明函数的单调性 (25)6.6 证明定理 (25)7 结论 (29)谢辞 (30)参考文献 (31)1引言随着时代的发展,数学也跟着时代步伐大迈步前进。
积分第一中值定理的推广研究积分第一中值定理是微积分中的重要定理,它描述了定积分在函数连续条件下的一种性质。
在实际应用中,我们经常需要对函数在某个区间上的平均值进行研究,而积分第一中值定理提供了帮助。
该定理在某些特定情况下可能不适用,因此我们有必要进行进一步的研究,对其进行推广。
我们来回顾一下积分第一中值定理的内容。
设函数f(x)在闭区间[a, b]上连续,那么在区间[a, b]上存在一点c,使得定积分∫[a, b] f(x) dx 等于函数f(x)在[c, d]上的平均值,即∫[a, b] f(x) dx = f(c) * (b - a).这个定理是微积分中的重要性质,它告诉我们,如果函数在某个区间上连续,那么在这个区间上的定积分就等于函数在某一点上的值乘以这个区间的长度。
这个性质在实际问题中有很多应用,比如在统计学中,我们经常需要求解某个变量在某个区间上的平均值,而积分第一中值定理提供了一种便捷的方法。
在对积分第一中值定理进行推广研究时,我们可以考虑以下几个方面:1. 函数的可导性:积分第一中值定理要求函数在闭区间上连续,但如果函数在闭区间上可导,我们是否可以得到类似的性质呢?换句话说,在可导的条件下,定积分是否仍然等于函数在某个点上的值乘以区间长度呢?这需要我们对可导函数的性质进行深入研究,寻找可能的推广定理。
2. 函数的间断点:在实际问题中,我们经常遇到函数在某些点上不连续的情况,这时积分第一中值定理是不适用的。
我们可以尝试寻找一种更一般的条件,使得函数在某些点上可以是间断的,但定积分仍然具有某种性质。
这样的推广定理对于实际问题的解决会有很大帮助。
3. 特殊函数的适用性:在实际问题中,我们经常需要研究特殊的函数,比如带有参数的函数或者带有特殊性质的函数。
我们可以尝试将积分第一中值定理推广到这些特殊函数的情况下,研究它们的性质和适用条件。
目录摘要····································································错误!未定义书签。
关键词····································································错误!未定义书签。
积分中值定理推广一、引言积分中值定理是微积分中的重要定理之一,它可以用来证明许多重要的数学结论。
本文将对积分中值定理进行推广,探讨其更广泛的应用。
二、积分中值定理首先,我们需要回顾一下积分中值定理的基本形式。
设$f(x)$在$[a,b]$上连续,则存在$c\in(a,b)$使得$\int_a^bf(x)dx=f(c)(b-a)$。
这个定理的意义是:在一个区间上,函数的平均值等于它在某个点处的函数值。
这个结论非常直观易懂,并且具有广泛的应用。
三、一般化积分中值定理然而,在实际问题中,我们经常遇到不连续或不可导的函数。
此时,我们需要将积分中值定理进行推广。
设$f(x)$在$[a,b]$上满足以下条件:1. $f(x)$在$(a,b)$内可导;2. $\lim\limits_{x\to a^+}f(x)$和$\lim\limits_{x\to b^-}f(x)$存在;3. $\int_a^bf'(x)dx$存在。
则存在$c\in(a,b)$使得$\int_a^bf'(x)dx=f(c)-f(a)+f(b)-f(c)=f(b)-f(a)$。
这个结论的意义是:在一个区间上,函数的平均变化率等于它在某个点处的导数值。
四、推广应用这个定理可以用来证明许多重要的数学结论。
下面列举几个例子。
1. 泰勒展开式设$f(x)$在$x_0$处$n$阶可导,则存在$c\in(x_0,x)$使得$f(x)=\sum_{k=0}^{n-1}\dfrac{f^{(k)}(x_0)}{k!}(x-x_0)^k+\dfrac{f^{(n)}(c)}{n!}(x-x_0)^n$。
这个结论可以通过将$f(x)$在$x_0$处展开为$n$次泰勒多项式,然后应用一般化积分中值定理得到。
2. 柯西中值定理设$f(x)$和$g(x)$在$[a,b]$上连续且在$(a,b)$内可导,并且$g'(x)\neq 0$,则存在$c\in(a,b)$使得$\dfrac{f(b)-f(a)}{g(b)-g(a)}=\dfrac{f'(c)}{g'(c)}$。
㊀㊀㊀㊀数学学习与研究㊀2022 31积分中值定理的推广及应用积分中值定理的推广及应用Һ丁建华㊀(甘肃有色冶金职业技术学院教育系,甘肃㊀金昌㊀737100)㊀㊀ʌ摘要ɔ本文首先对积分中值定理的几何特征进行详细介绍,并对该定理中f(x)在[a,b]上恒为常数㊁f(x)在[a,b]上不为常数函数做出一定的补充,并证明此结论也是成立的;其次,对第一积分中值定理和第二积分中值定理进行了推广,并进一步证明了结论的准确性;最后,通过不等式的证明㊁极限的求值进一步验证了改进结论的正确性.ʌ关键词ɔ中值定理;连续性;不等式一㊁积分中值定理的几何特征与补充积分中值定理的几何意义可以理解为:若函数f(x)在闭区间[a,b]上非负连续时,定积分ʏbaf(x)dx在几何上可以表示为y=f(x),x=a,x=b及x轴所围成的曲边梯形面积(如图1,定积分ʏbaf(x)dx表示曲边梯形AabB的面积).根据闭区间上连续函数的性质,f(x)在[a,b]上存在最大值M和最小值m,即∀xɪ[a,b],有mɤf(x)ɤM,从而m(b-a)ɤʏbaf(x)dxɤM(b-a).它可以化为mɤ1b-aʏbaf(x)dxɤM.由连续函数的介值定理,则至少有这样的一个点ξɪ[a,b],使得f(ξ)=1b-aʏbaf(x)dx,则ʏbaf(x)dx=f(ξ)(b-a).根据上面知识点,我们可以获得数学分析中常用的重要积分学性质和定理.积分中值定理㊀若函数f(x)在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得ʏbaf(x)dx=f(ξ)(b-a)(aɤξɤb).这里要求函数f(x)在[a,b]上连续即可,对函数没有严格要求.进一步地,我们可将f(x)在[a,b]上连续的这一条件更改为f(x)在[a,b]上可积,其结论仍然成立.当f(x)在[a,b]上连续且非负时,积分公式ʏbaf(x)dx=f(ξ)(b-a)有着明显的几何意义,即y=f(x)在[a,b]上的曲边梯形面积等于以图1所示的f(ξ)为高㊁[a,b]为底的矩形面积,即以f(ξ)为高的矩形AabD的面积.㊀图1通过对上面图1进一步分析,我们可以发现定理中的ξɪ[a,b]可以改为ξɪ(a,b),事实上,若ξ仅取在[a,b]的端点上,不妨设ξ=a,则可从图2中看出,曲边梯形AabB的面积ʏbaf(x)dx与矩形AabD的面积不可能相等.㊀图2本文给出如下两种证明.证法一:若函数f(x)在闭区间[a,b]上恒为常数,则ξ取(a,b)内任意一点,结论都是成立的.若f(x)在[a,b]上为一个变量函数,设M,m分别为f(x)在[a,b]上的最大值与最小值,则存在x0ɪ(a,b),使得mɤf(x0)ɤM.事实上,若这样的x0不存在,则在[a,b]上必存在一点x1,使得f(x)在a,x1[]上恒有f(x)=m或f(x)=M(),在[x1,b]上恒有f(x)=M(或f(x)=m).这样一来,x1是间断点,与f(x)在区间[a,b]上连续矛盾.又f(x)在x0连续,则存在δ>0,x0-δ,x0+δ()⊂[a,b],当x-x0<δ时,有f(x)-f(x0)<M-f(x0)2和f(x)-f(x0)<f(x0)-m2,从而M-f(x0)>M-f(x0)2>0,f(x0)-m>f(x0)-m2>0,于是ʏx0+δx0-δ[M-f(x)]dxȡʏx0+δx0-δM-f(x0)2éëêùûúdx,即ʏx0+δx0-δf(x)dxɤM-f(x0)2ʏx0+δx0-δdx,又f(x0)<M,ʏx0+δx0-δf(x)dx<Mʏx0+δx0-δdx,同理有ʏx0+δx0-δf(x)dx>mʏx0+δx0-δdx,于是ʏbaf(x)dx=ʏx0-δaf(x)dx+ʏx0+δx0-δf(x)dx+ʏbx0+δf(x)dx<Mʏx0-δadx+Mʏx0+δx0-δdx+Mʏbx0+δdx=M(b-a).同理可得ʏbaf(x)dx>m(b-a),㊀㊀㊀㊀㊀数学学习与研究㊀2022 31因此m(b-a)<ʏbaf(x)dx<M(b-a),即m<1b-aʏbaf(x)dx<M.由介值定理,存在ξɪ(a,b),使得f(ξ)=1b-aʏbaf(x)dx,即ʏbaf(x)dx=f(ξ)(b-a),其中ξɪ(a,b).证法二:作辅助函数F(x)=ʏxaf(t)dt,xɪ[a,b],则F(x)是[a,b]上的可微函数,且Fᶄ(x)=f(x),由微分中值定理,至少存在一点ξɪ(a,b),使得F(a)-F(b)=Fᶄ(ξ)(b-a).注意到,F(b)=ʏbaf(x)dx,F(a)=0,则有ʏbaf(x)dx=f(ξ)(b-a),ξɪ(a,b).于是,我们可以进一步将积分中值定理进行推广.设f(x),g(x)在[a,b]上连续,g(x)在[a,b]上不能等于零,同时符号不会改变,在这样特殊的情形下,可以得到如下的结论,ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).令F(x)=ʏxaf(t)g(t)dt,G(x)=ʏxag(t)dt,则由微分学的柯西中值定理知,F(b)-f(a)G(b)-G(a)=Fᶄ(ξ)G(ξ),ξɪ(a,b),即有ʏbaf(x)g(x)dxʏbag(x)dx=f(ξ)g(ξ)g(ξ),ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx,ξɪ(a,b).但当g(x)在[a,b]只是可积分,并且恒为正或恒为负时,前面我们进行推导的思路完全行不通,即不可能成立,因为可积不变号时,g(x)可以等于零,我们就不能使用上面的结论了.二㊁第一㊁第二积分中值定理的推广及其证明积分第一中值定理设函数f(x)在[a,b]上连续,g(x)在[a,b]上可积不变号,则在[a,b]存在一点ξ,使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.积分第二中值定理设(ⅰ)g(x)在[a,b]上连续;(ⅱ)f(x)在[a,b]上单调递增且连续;(ⅲ)f(x)ȡ0,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(b)ʏbξg(x)dx.推论1.若积分第二中值定理中的递增改为递减,其他条件不变的情况下,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx.2.若积分第二中值定理中的f(x)ȡ0去掉,则必有ξɪ[a,b],使得ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbξg(x)dx.当ξ所在区间[a,b]变为(a,b),其余条件㊁结论不变,我们就可以将积分中值定理进一步推广.接下来,我们进一步证明积分中值定理的推广定理,先验证积分第一中值定理的推广.证明㊀由于f(x)在[a,b]上连续.设M为f(x)在[a,b]上的最大值,m为f(x)在[a,b]上的最小值,即有mɤf(x)ɤM,又由于g(x)在[a,b]上定号,不妨令g(x)ȡ0(g(x)ɤ0的情况同理),从而有mf(x)ɤf(x)g(x)ɤMg(x),即mʏbag(x)dxɤMʏbag(x)dx.(1)ʏbag(x)dx=0,由上面不等式的结论可知,ʏbaf(x)g(x)dx=0,因此有ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(2)ʏbag(x)dx>0.(ⅰ)如果mʏbag(x)dx<ʏbaf(x)g(x)dx<Mʏbag(x)dx,即m<ʏbaf(x)g(x)dxʏbag(x)dx<M时,由闭区间上连续函数的介值定理我们可以知道,有一ξɪ(a,b),使得f(ξ)=ʏbaf(x)g(x)dxʏbag(x)dx,即ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx.(ⅱ)如果mʏbag(x)dx=ʏbaf(x)g(x)dx,(a)假如有一ξɪ(a,b),都有f(ξ)=m,我们可以得到mʏbag(x)dx=f(ξ)ʏbag(x)dx结论成立.(b)除此之外,对任意的xɪ(a,b),都有f(x)>m,而由ʏbag(x)dx>0,必定存在充分小的数η,使得ʏb-ηa+ηg(x)dx>0(倘若不然的话,对于任意的正数η,都有ʏb-ηa+ηg(x)dxɤ0,从而ʏbag(x)dx=limηң0ʏb-ηa+ηg(x)dxɤ0与ʏbag(x)dx>0矛盾).于是得到0=ʏba[f(x)-m]g(x)dxȡʏb-ηa+η[f(x)-m]g(x)dx.利用原积分中值定理,得ʏb-ηa+η[f(x)-m]g(x)dx=[f(ξᶄ)-m]ʏb-ηa+ηg(x)dx>0,ξᶄɪ[a+η,b-η]⊂(a,b).与之比较,知矛盾.(ⅲ)Mʏbag(x)dx=ʏbaf(x)g(x)dx,这个证明类似于证㊀㊀㊀㊀数学学习与研究㊀2022 31明(ⅱ)的过程.综上所述,存在ξɪ(a,b),使得ʏbaf(x)g(x)dx=f(ξ)ʏbag(x)dx成立.证毕!根据积分第一中值定理的推广证明,我们同样可以对积分第二中值定理的推广进行证明.接下来,我们试证积分第二中值定理的推广结果.证明㊀由f(x)在[a,b]上连续,F(x)=ʏxaf(t)dt在[a,b]上可导,从而有ʏbaf(x)g(x)dx=ʏbag(x)dF(x)=g(b)F(b)-ʏbaF(x)gᶄ(x)dx-g(a)F(a)=g(b)ʏbaf(x)dx-ʏbaF(x)gᶄ(x)dx.对于ʏbaF(x)gᶄ(x)dx应用推广的第一积分中值定理,得到ʏbaF(x)gᶄ(x)dx=F(ξ)[g(b)-g(a)],其中ξɪ(a,b),从而有ʏbaF(x)gᶄ(x)dx=g(b)ʏbaf(x)dx-F(ξ)[g(b)-g(a)]=g(b)ʏξaf(x)dx+ʏbξf(x)dx[]-ʏξaf(x)dx[g(b)-g(a)]=ʏbaf(x)g(x)dx=f(a)ʏξag(x)dx+f(b)ʏbag(x)dx.证毕!三㊁积分中值定理的应用例1㊀证明下列积分不等式:(1)π2<ʏπ2011-12sin2xdx<π2;(2)2e-14<ʏ20ex2-xdx<2e2.证明㊀(1)由积分中值定理,有π2<ʏπ2011-12sin2xdx=11-12sin2ξ㊃π2,其中ξɪ0,π2(),当ξɪ0,π2()时,有0<sin2ξ<1,从而1<11-12sin2ξ<2,因此有π2<ʏπ2011-12sin2ξdx<π2.证毕.(2)由定积分性质,有ʏ20ex2-xdx=ʏ120ex2-xdx+ʏ212ex2-xdx=12eξ21-ξ1+32eξ22-ξ2,其中ξ1ɪ0,12(),ξ2ɪ12,2(),又ex在-ɕ,+ɕ()上严格单调递增,而f(x)=x2-x在0,12[]上严格单调递减,在12,2[]上严格单调递增,所以,当ξ1ɪ0,12()时,e-14<eξ21-ξ1<1;当ξ2ɪ12,2()时,e-14<eξ22-ξ2<e2.从而12eξ21-ξ1+32eξ22-ξ2>12e-14+32e-14=2e-14,12eξ21-ξ1+32eξ22-ξ2<12+32e2<2e2,因此2e-14<ʏ20ex2-xdx<2e2.如果ξ取自任意闭区间,使得积分中值定理成立,则需要将例1的证明结果做进一步的讨论.由此可见,对积分中值定理进行改进或者推广对我们的学习很有帮助,当然,我们也要合理使用该定理,否则就会出现错误的结论.例2㊀证明:limnңɕʏ10xn1+xdx=0.如果利用积分中值定理,得ʏ10xn1+xdx=ξn1+ξ,其中ξɪ0,1(),从而limnңɕʏ10xn1+xdx=limnңɕʏ10ξn1+ξdx=0,这是错误的,因为ξ与n有关.正确的解法是:因为0ɤxn1+xɤxn,xɪ0,1[],所以0ɤʏ10xn1+xdxɤʏ10xndx,而ʏ10xndx=11+n,limnңɕ11+n=0,因此limnңɕʏ10xn1+xdx=0.证毕!ʌ参考文献ɔ[1]华东师范大学数学系.数学分析(第四版)[M].北京:高等教育出版社,2010.[2]黎金环,刘丽霞,朱佑彬.积分中值定理在一道极限题的应用分析[J].高等数学研究,2021(2).[3]同济大学数学教研室.高等数学[M].北京:高等教育出版社,1993.[4]郝玉芹,时立文,欧阳占瑞.对积分中值定理结论的一点改动[J].河北能源职业技术学院学报,2007(3).[5]周冰洁.巧用积分中值定理[J].现代职业教育,2019(31).[6]余小飞.积分中值定理在积分不等式中的应用[J].当代教育实践与教学研究,2017(8).。
2015考研数学:积分中值定理及其推广和应用分析来源:文都教育在考研数学中,积分中值定理是一个有用的分析证明工具,考试中经常会用到。
积分中值定理有3种情形:基本的积分中值定理、推广的积分中值定理、两个函数相乘时的积分中值定理。
一般高等数学教材上对第一种情形的积分中值定理都有介绍说明,但对后两种情形可能没有相应说明。
为了使各位考生对积分中值定理有一个更深刻的理解和更灵活的运用,那么,老师对积分中值定理及其推广和应用分析做一个全面的分析介绍,供各位考生参考。
基本的积分中值定理:设函数()f x 在[,]a b 上连续,则至少存在一点[,]a b ξ∈,使()()()baf x dx f b a ξ=-⎰证明:设()f x 在[,]a b 上的最大和最小值分别为,M m ,则()()bb baaam f x M mdx f x dx Mdx ≤≤⇒≤≤⇒⎰⎰⎰1()ba m f x dx Mb a≤≤-⎰,由连续函数的介值定理得,至少存在一点[,]a b ξ∈,使1()()ba f x dx fb aξ=-⎰,即()()()b a f x dx f b a ξ=-⎰ 推广的积分中值定理:设函数()f x 在[,]a b 上连续,则至少存在一点(,)a b ξ∈,使()()()baf x dx f b a ξ=-⎰证明:令()()xax f t dt ϕ=⎰,则()()x f x ϕ'=,由拉格朗日中值定理得,至少存在一点(,)a b ξ∈,使()()()()b a b a ϕϕϕξ'-=-,即()()()b af x dx f b a ξ=-⎰注:虽然由定理2知,存在(,)a b ξ∈,使()()()baf x dx f b a ξ=-⎰,但这并不排除存在[,]a b η∈,使()()()baf x dx f b a η=-⎰,即a η=或b 的可能性。
例如:(),[,]f x c x a b =∈,c 是常数,此时,对于任何[,]a b η∈,都有()()()baf x dx f b a η=-⎰成立。
中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。
微分中值定理即罗尔定理.拉格朗日中值定理和柯西中值定理,1般高等数学教科书上均有介绍,这里不再累述。
积分中值定理有积分第1中值定理和积分第2中值定理。
积分第1中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在1点ξ,使得))(()(a b f dx x f ba -=⎰ξ。
积分第2中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在1点ξ,使得⎰⎰=babadx x g f dx x g x f )()()()(ξ。
1.微分中值定理的应用方法与技巧3大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于3大中值定理的款件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式.不等式,分析其结构特征,结合所给的款件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这1过程要求我们非常熟悉3大中值定理的款件和结论,并且掌握1定的函数构造技巧。
例1.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。
证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a ba+='+')()(ηϕξϕ成立。
证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。
任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。
积分中值定理的推广证明稿子一嗨呀,亲爱的小伙伴们!今天咱们来聊聊积分中值定理的推广证明。
积分中值定理大家都不陌生吧,可它的推广就更有意思啦!你想啊,原本简单的定理,一推广,那应用范围可就更广了。
咱们先来说说为什么要推广它。
其实就是为了能在更多复杂的情况下,也能找到那个神奇的“中值”。
就好像在一堆乱麻中,找到那根能解开谜题的关键线索。
证明这个推广可不容易呢!得一点点地分析,一点点地推导。
不过别担心,跟着思路走,也没那么可怕。
比如说,咱们得先弄清楚原定理的条件和结论,然后看看怎么把新的条件加进去,让定理变得更强大。
这过程就像是搭积木,一块一块地往上加,搭出一个漂亮的城堡。
有时候可能会遇到困难,感觉走不下去了,但别放弃呀!多想想,多试试,说不定灵感就来了。
等咱们真的把这个推广证明出来,那种成就感,简直爆棚!就像攻克了一座超级难爬的山峰,站在山顶,风光无限好。
怎么样,是不是有点小期待跟着我一起去探索这个神奇的证明之旅啦?稿子二嘿,朋友们!今天咱们来侃侃积分中值定理的推广证明。
积分中值定理,听起来就很厉害对不对?那它的推广就更牛啦!想象一下,原本的定理就像一个小工具,能解决一些问题。
但推广之后,它就变成了一个超级强大的武器,能应对更多更难的挑战。
咱们开始证明之前,得先在脑子里有个大概的框架。
就像盖房子,先有个设计图。
然后呢,一步一步来,每一步都要走得稳稳的。
可能会遇到一些弯弯曲曲的路,但是别怕,坚持走下去。
比如说,要用到一些巧妙的数学方法和技巧,这就像是打开宝藏的钥匙。
有时候,还得回头看看走过的路,检查一下有没有遗漏什么。
证明的过程中,可能会觉得有点头疼,但是别灰心。
因为一旦成功,那种喜悦是无法形容的。
就好像在黑暗中摸索了好久,突然看到了一丝光亮,然后顺着那光亮,找到了出口。
当我们真的完成了这个推广证明,就会发现数学的世界真是太奇妙啦!好啦,小伙伴们,准备好和我一起在这个数学的海洋里畅游了吗?。