基于ANSYSWorkbench的渐开线斜齿圆柱齿轮疲劳寿命分析
- 格式:doc
- 大小:1.31 MB
- 文档页数:5
基于Catia和Ansys Workbench直升机减速系统渐开线斜齿圆柱齿轮模态分析王航超;陈振中【摘要】基于Catia软件对直升机减速系统的渐开线斜齿圆柱齿轮进行标准参数化三维建模、尺寸标注,并通过An-sys Workbench软件中Modal模块对渐开线斜齿圆柱齿轮进行无阻尼自由振动的模态分析,得到渐开线斜齿圆柱齿轮前五阶固有频率和振型,避免外加载荷的频率接近渐开线斜齿圆柱齿轮的固有频率而发生共振现象,为渐开线斜齿圆柱齿的设计以及进行进一步动力学分析提供参考.【期刊名称】《西安航空技术高等专科学校学报》【年(卷),期】2018(036)001【总页数】5页(P24-27,71)【关键词】Catia;AnsysWorkbench;渐开线斜齿圆柱齿轮;Modal模块;自由振动;模态分析【作者】王航超;陈振中【作者单位】沈阳航空航天大学民用航空学院,沈阳 110000;沈阳航空航天大学民用航空学院,沈阳 110000【正文语种】中文【中图分类】V214.3+30 引言齿轮传动具有传动效率高、传动比精确以及传动平稳等优点,因此齿轮作为传动零件被广泛地应用于各种机械传动结构中。
在航空航天领域,直升机传动系统一般由主减速器、中间减速器、尾减速器、动力输入轴、主旋翼轴以及尾传动轴组成。
其中,主减速器主要由齿轮减速器、调节运动方向的锥齿轮传动、离合器、驻车制动装置以及润滑系统等组成。
正常工况下,飞机发动机的转速一般可达2000~3000r/min,如果将此转速直接输出给旋翼,旋翼会由于转速过高而产生激波,造成破坏,因此,主转速器的作用就是把一台或者多台发动机的功率合并到一起,再按照一定的传动比降低转速,分别传递给旋翼、尾浆以及相关部件。
所以,主减速器是直升机传动系统的重要组成部分,其功能对直升机的性能有很大影响。
在齿轮减速器中,齿轮又是其主要传动零件,齿轮在啮合传动过程中会产生机械振动,齿轮啮合结构一般可以承受轻微的振动,但是一旦啮合结构所受激励的频率(外载频率)接近其固有频率时,就会产生振幅增大、剧烈振动的共振现象。
基于ANSYS软件的齿轮疲劳有限元分析报告一、概述本次大作业主要利用ANSYS软件对齿轮的疲劳进行分析,计算出齿轮的最大寿命。
然后与实际情况进行比较,证明分析的正确性,从而为齿轮的优化分析提供了充分的理论依据,并且通过对ANSYS软件的实际操作深刻体会有限元分析方法的基本思想,对有限元分析方法的实际应用有一个大致的认识。
二、问题分析如下图所示为某齿轮三维模型,参考图示形状,自定义尺寸,并建立一对啮合齿,施加50N*M扭矩进行齿轮接触分析,随后进行疲劳分析,分析齿轮寿命,材料为40Cr。
图1 齿轮三、有限元建模寿命分析之前需要进行强度分析,在Windows“开始”菜单中执行ANSYS—Workbench 命令。
创建项目A,进行静力学分析,双击左侧的static structure即可图 2 强度分析项目如图 3所示,40Cr材料的杨氏模量为2.1e11Pa,泊松比为0.3,密度7800kg/m3,两对齿轮的材料一致。
图 3 材料定义双击Geometry进入几何模型建立模块,进行几何建模。
只需要建立齿轮的端面然后拉伸即可,另一对齿轮采用该齿轮进行对称偏移获取,首先建立齿轮端面草绘,为保证结构对称,只建立一半截面,如下图所示:拉伸截面,并对称建立整个单齿,如下所示:同理建立另一齿轮,最终模型如下所示进入Workbench进行材料设置,其中齿轮分别设置材料为结构钢。
进行网格划分,设置网格尺寸为2mm,最终有限元网格模型如下图所示:图7 网格设置图8 网格模型模拟实际情况,从动齿内圈固定,主动齿施加扭矩,如下图所示图9 载荷约束四、有限元计算结果(1)位移变化,如图12所示,结果最大变形为0.2mm,图12 位移云图(2)等效应力计算结果,如图3所示,最大等效应力为467.4MPa图13 等效应力云图添加Fatigue tool进行疲劳分析,Fatigue设置如下寿命云图如下所示,应力最大区域,寿命最小,该齿轮最多可以使用14794次,此后便会发生裂纹破坏。
基于ANSYS的减速器斜齿_直齿圆柱齿轮的模态分析_陈淑玲减速器是一种常见的传动装置,用于调节旋转速度和输出扭矩。
其中,斜齿和直齿圆柱齿轮是减速器中常见的传动元件。
为了提高减速器的可靠性和使用寿命,对其进行模态分析十分重要。
本文将基于ANSYS软件,对减速器中的斜齿和直齿圆柱齿轮进行模态分析,以评估其振动特性和在工作过程中的可靠性。
模态分析是结构动力学的一种分析方法,通过计算和分析结构体系的固有振动频率和模态形式,可以了解结构的振动特性、动力响应以及自由振动和迫振动下的振动形态等信息。
首先,我们需要准备减速器的结构模型。
利用CAD软件绘制减速器的斜齿和直齿圆柱齿轮的三维模型,并保存为.STEP或者.IGES等与ANSYS兼容的格式。
接下来,打开ANSYS软件,通过“Geometry”模块导入保存的减速器模型。
然后,根据需要设置几何尺寸、材料属性和约束条件等。
在完成几何和材料属性的设置后,选择“Modal”模块进行模态分析。
首先,选择减速器结构模型,并设置模态分析的参数,包括求解器类型、分析类型(自由振动或迫振动)、模态数目等。
在求解过程中,ANSYS会自动计算减速器的固有频率和振动模态形式。
通过分析得到的模态结果,可以了解减速器在不同频率下的振动形态和相应的振动模态。
最后,根据模态分析结果,可以评估减速器的振动特性,包括主频率、模态形式、振动幅值等。
如果存在与工作频率相接近的主频率,可能会导致共振现象,从而影响减速器的正常工作。
在设计和使用减速器时,需要根据模态分析结果合理地选择材料和结构参数,以提高减速器的可靠性和使用寿命。
综上所述,基于ANSYS的减速器斜齿和直齿圆柱齿轮的模态分析是评估减速器振动特性和可靠性的重要方法。
通过模态分析,可以了解减速器在不同频率下的振动形态和相应的振动模态,并根据分析结果合理地选择材料和结构参数,以提高减速器的可靠性和使用寿命。
基于ANSYS的齿轮仿真分析齿轮是一种常见的机械传动元件,广泛应用于工业生产中的各种机械设备中。
齿轮的工作性能直接影响着整个传动系统的性能和可靠性。
为了确保齿轮的正常工作和延长使用寿命,需要对齿轮进行仿真分析。
本文将介绍基于ANSYS软件的齿轮仿真分析方法和流程。
首先,进行齿轮的几何建模。
使用ANSYS软件中的几何建模工具,根据实际齿轮的参数进行几何建模。
包括齿轮的齿数、模数、齿宽等参数。
建立三维模型后,对齿轮进行网格划分,生成有限元模型。
接下来,进行材料属性的定义。
根据实际齿轮的材料,定义材料属性。
包括弹性模量、泊松比、材料密度等参数。
这些参数将被用于后续的载荷和刚度分析。
然后,进行齿轮的载荷分析。
齿轮在工作过程中受到来自外界的载荷作用,主要包括径向力、切向力和轴向力等。
通过ANSYS中的载荷工具,对齿轮进行载荷加载。
可以根据实际工况设置载荷大小和方向。
进行齿轮的接触分析。
齿轮的接触是齿轮传动中的重要性能指标之一、通过ANSYS中的接触分析工具,可以计算齿轮接触面上的应力分布、接触区域和接触压力等参数。
这些参数对于齿轮的寿命和工作性能有重要影响。
进行齿轮的动力学分析。
齿轮在传动过程中会产生振动和噪声。
通过ANSYS中的动力学分析工具,可以计算齿轮的振动模态、固有频率和振动幅度等参数。
这些参数对于齿轮的运行平稳性和噪声控制有重要意义。
最后,进行疲劳分析。
齿轮在长时间使用过程中,容易出现疲劳破坏。
通过ANSYS中的疲劳分析工具,可以预测齿轮的寿命和疲劳破坏位置。
通过疲劳分析结果,可以调整齿轮的设计参数,提高其工作寿命。
综上所述,基于ANSYS的齿轮仿真分析包括几何建模、材料属性定义、载荷分析、接触分析、动力学分析和疲劳分析等步骤。
通过这些分析,可以评估齿轮的工作性能,指导齿轮的设计和改进。
同时,齿轮仿真分析可以帮助优化整个传动系统的工作性能和可靠性,提高机械设备的制造水平和整体效益。
基于渐开线齿轮轮廓修形的疲劳寿命分析
吕建锋;聂晓根;盛裕民;黄汉阳
【期刊名称】《机械制造与自动化》
【年(卷),期】2024(53)1
【摘要】提出一种新的齿轮渐开线齿廓修形方法,通过UG软件对修形前后齿轮进行建模,基于疲劳寿命理论,利用Workbench和Fatigue Tool方法建立齿轮CAE 模型,完成齿轮接触动力学和疲劳寿命仿真分析。
仿真结果表明:修形前后齿轮的最大等效应力和等效应变都出现在齿轮节线和齿根处,且修形齿轮的数据与结果都优于标准齿轮。
【总页数】5页(P24-28)
【作者】吕建锋;聂晓根;盛裕民;黄汉阳
【作者单位】福州大学机械工程及自动化学院
【正文语种】中文
【中图分类】TH161
【相关文献】
1.大重合度对数修形斜齿轮接触与相对疲劳寿命分析
2.基于ANSYS Workbench 对渐开线直齿圆柱齿轮接触疲劳寿命分析
3.基于疲劳寿命的小模数塑料齿轮齿顶修形方法研究
4.修形斜齿轮成形磨削中的砂轮廓形优化方法和齿形误差分析
5.环面蜗杆修型的实质——兼论与渐开线齿轮修形的区别
因版权原因,仅展示原文概要,查看原文内容请购买。
2013-08-29 17:16 by:有限元来源:广州有道有限元ANSYS Workbench 疲劳分析本章将介绍疲劳模块拓展功能的使用:–使用者要先学习第4章线性静态结构分析.•在这部分中将包括以下内容:–疲劳概述–恒定振幅下的通用疲劳程序,比例载荷情况–变振幅下的疲劳程序,比例载荷情况–恒定振幅下的疲劳程序,非比例载荷情况•上述功能适用于ANSYS DesignSpacelicenses和附带疲劳模块的更高级的licenses.A. 疲劳概述•结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关•疲劳通常分为两类:–高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的. 因此,应力通常比材料的极限强度低. 应力疲劳(Stress-based)用于高周疲劳.–低周疲劳是在循环次数相对较低时发生的。
塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。
一般认为应变疲劳(strain-based)应该用于低周疲劳计算.•在设计仿真中, 疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳. 接下来,我们将对基于应力疲劳理论的处理方法进行讨论.…恒定振幅载荷•在前面曾提到, 疲劳是由于重复加载引起:–当最大和最小的应力水平恒定时, 称为恒定振幅载荷. 我们将针对这种最简单的形式,首先进行讨论.–否则,则称为变化振幅或非恒定振幅载荷…成比例载荷•载荷可以是比例载荷, 也可以非比例载荷:–比例载荷, 是指主应力的比例是恒定的,并且主应力的削减不随时间变化. 这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算.–相反, 非比例载荷没有隐含各应力之间相互的关系,典型情况包括:•在两个不同载荷工况间的交替变化•交变载荷叠加在静载荷上•非线性边界条件…应力定义•考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:–应力范围Δσ定义为(σmax-σmin)–平均应力σm定义为(σmax+σmin)/2–应力幅或交变应力σa是Δσ/2–应力比R 是σmin/ σmax–当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷. 这就是σm= 0 ,R = -1的情况.–当施加载荷后又撤除该载荷,将发生脉动循环载荷. 这就是σm= σmax/2 , R = 0的情况.…应力-寿命曲线•载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:–若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效–如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少–应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系•S-N曲线是通过对试件做疲劳测试得到的–弯曲或轴向测试反映的是单轴的应力状态–影响S-N 曲线的因素很多, 其中的一些需要的注意,如下:–材料的延展性, 材料的加工工艺–几何形状信息,包括表面光滑度、残余应力以及存在的应力集中–载荷环境, 包括平均应力、温度和化学环境•例如,压缩平均应力比零平均应力的疲劳寿命长,相反,拉伸平均应力比零平均应力的疲劳寿命短.•对压缩和拉伸平均应力,平均应力将分别提高和降低S-N曲线.•因此,记住以下几点:–一个部件通常经受多轴应力状态.如果疲劳数据(S-N 曲线)是从反映单轴应力状态的测试中得到的,那么在计算寿命时就要注意•设计仿真为用户提供了如何把结果和S-N 曲线相关联的选择,包括多轴应力的选择•双轴应力结果有助于计算在给定位置的情况–平均应力影响疲劳寿命,并且变换在S-N曲线的上方位置与下方位置(反映出在给定应力幅下的寿命长短)•对于不同的平均应力或应力比值,设计仿真允许输入多重S-N曲线(实验数据)•如果没有太多的多重S-N曲线(实验数据),那么设计仿真也允许采用多种不同的平均应力修正理论–早先曾提到影响疲劳寿命的其他因素,也可以在设计仿真中可以用一个修正因子来解释…总结•疲劳模块允许用户采用基于应力理论的处理方法,来解决高周疲劳问题.•以下情况可以用疲劳模块来处理:–恒定振幅,比例载荷(参考B节)–变化振幅,比例载荷(参考C节)–恒定振幅,非比例载荷(参考D节)•需要输入的数据是材料的S-N曲线:–S-N曲线是疲劳实验中获得,而且可能本质上是单轴的,但在实际的分析中,部件可能处于多轴应力状态–S-N曲线的绘制取决于许多因素, 包括平均应力. 在不同平均应力值作用下的S-N曲线的应力值可以直接输入, 或可以执行通过平均应力修正理论实现.B. 疲劳程序(基本情况)•进行疲劳分析是基于线性静力分析, 所以不必对所有的步骤进行详尽的阐述.–疲劳分析是在线性静力分析之后,通过设计仿真自动执行的.•对疲劳工具的添加,无论在求解之前还是之后,都没有关系, 因为疲劳计算不并依赖应力分析计算.•尽管疲劳与循环或重复载荷有关, 但使用的结果却基于线性静力分析,而不是谐分析. 尽管在模型中也可能存在非线性,处理时就要谨慎了,因为疲劳分析是假设线性行为的.–在本节中,将涵盖关于恒定振幅、比例载荷的情况. 而变化振幅、比例载荷的情况和恒定振幅、非比例载荷的情况,将分别在以后的C 和D节中逐一讨论.…疲劳程序•下面用黄色斜体字体所描述的步骤,对于包含疲劳工具的应力分析是很特殊的:–模型–指定材料特性,包括S-N曲线–定义接触区域(若采用的话)–定义网格控制(可选的)–包括载荷和支撑–(设定)需要的结果,包括Fatigue tool–求解模型–查看结果…几何•疲劳计算只支持体和面•线模型目前还不能输出应力结果,所以疲劳计算对于线是忽略的.–线仍然可以包括在模型中以给结构提供刚性, 但在疲劳分析并不计算线模型…材料特性•由于有线性静力分析,所以需要用到杨氏模量和泊松比–如果有惯性载荷,则需要输入质量密度–如果有热载荷,则需要输入热膨胀系数和热传导率–如果使用应力工具结果(Stress Tool result),那么就需要输入应力极限数据,而且这个数据也是用于平均应力修正理论疲劳分析.•疲劳模块也需要使用到在工程数据分支下的材料特性当中S-N曲线数据–数据类型在“疲劳特性”(“Fatigue Properties”)下会说明–S-N曲线数据是在材料特性分支条下的“交变应力与循环”(“Alternating Stress vs. Cycles”)选项中输入的•如果S-N曲线材料数据可用于不同的平均应力或应力比下的情况, 那么多重S-N曲线也可以输入到程序中•添加和修改疲劳材料特性:•在材料特性的工作列表中,可以定义下列类型和输入的S-N曲线–插入的图表可以是线性的(“Linear”)、半对数的(“Semi-Log”即linear for stress, log for cycles)或双对数曲线(“Log-Log”)–记得曾提到的,S-N曲线取决于平均应力。
基于ANSYS Workbench的渐开线斜齿圆柱齿轮疲劳寿命分析
作者:黄志荣
来源:《科学与信息化》2019年第27期
摘要基于三维造型软件Pro/ENGINEER对斜齿圆柱齿轮参数化数学模型的建立,将该齿轮的数学模型导入到有限元分析软件ANSYS Workbench中。
在ANSYS Workbench环境下设置齿轮的工况,对齿轮进行瞬时静态结构分析,再设定齿轮的材料(34CrAlNi7-10)属性以及该材料的S-N曲线,对齿轮疲劳寿命进行分析,获取齿轮在此工况下的寿命,对齿轮的寿命有合理的预测。
关键词三维造型软件Pro/ENGINEER;斜齿圆柱齿轮参数;ANSYS Workbench
1 过程及方法
1.1 在Pro/ENGINEER中创建参数化齿轮
利用Pro/ENGINEER中的方程曲线、关系及阵列等功能,创建了渐开线斜齿圆柱齿轮参数化三维实体模型,同时将一对齿轮啮合装配,生成一对啮合的渐开线斜齿圆柱齿轮。
1.2 斜齿圆柱齿轮有限元分析环境
ANSYS Workbench基于比较成熟的有限元分析软件ANSYS的基础上研发的。
利用ANSYS Workbench与CAD的数据接口将Pro/ENGINEER中创建的一对啮合齿轮导入到ANSYS Workbench,并且在ANSYS Workbench中建立静态结构分析的项目示意图。
1.3 斜齿圆柱齿轮静力学分析
(1)定义齿轮的材料属性及划分网格
在静力学分析之前,定义主动齿轮和从动齿轮的材料均为34CrAlNi7-10,材料属性如表一所示。
配合好的齿轮导入ANSYS Workbench在其啮合处会自动为其添加接触,我们设置为绑定接触,如图1所示。
在ANSYS Workbench中划分网格是能够自动进行的,我们对啮合的齿轮先采用自动划分网格,然后对啮合的吃面用Refinement和size功能進行细化。
啮合过程中受力最明显的点是在啮合面上,所以对啮合面细化网格可以提高啮合面处的计算精度。
网格模型如图二所示。
(2)添加约束条件和施加载荷
在ANSYS Workbench仿真环境中,给主动轮和从动轮施加标准的地球重力;由于主动齿轮围绕其中心轴旋转,完成与从动齿轮的啮合,故它围绕中心轴的切线方向应设置为自由的,可在主动齿轮中心施加“Cylindrical Support”(圆柱约束),并将“Tangential”(切向)设置为“Free”(自由);在从动轮的中心施加“Fixed Support”(固定约束);再在主动齿轮的轮轴上加载大小为2700Nm的力矩,从动轮在阻力矩的作用下平衡,对主动轮产生一个反力矩。
各个约束与力如图3所示。
(3)求解计算
啮合齿轮的静态等效应力如图四所示。
1.4斜齿圆柱齿轮接触疲劳寿命分析
对于等幅循环载荷,可以利用材料的S-N曲线来估算零部件在一定应力水平下的疲劳寿命。
本文中对齿轮瞬时的静力学分析,假设其为脉动循环载荷。
(1)我们可以查得,34CrAlNi7-10的接触疲劳强度的S-N曲线满足以下方程:
式中 N——某应力水平下材料破坏时的循环次数
S——加载的应力水平
由斜齿轮的等效应力分布图可以获得最大的接触应力为1197.6MPa,计算得
由于主动齿轮有44个轮齿,转速为1500r/min,每天工作24小时,全年开机,则主动齿轮每年的循环次数为
故齿轮的接触疲劳寿命为
(2)我们可以查得,20CrMnTi的弯曲疲劳强度的S-N曲线满足以下方程:
式中 N——某应力水平下材料破坏时的循环次数
S——加载的应力水平
由等效应力图分析知道,齿轮的弯曲疲劳破坏一般发生在从动齿轮,由从动齿轮齿根处的等效应力分布可知弯曲应力约为400Mpa,计算得
则齿的弯曲疲劳轮寿命为
综上所述,对于接触疲劳强度计算,由于点蚀破坏发生后只引起噪声、振动增大,并不立即导致不能继续工作的后果,但对于弯曲疲劳强度来说,如果一旦发生断齿,就会引起严重的事故,故可以取齿轮的寿命为
利用ANSYSWorkbench中的“Faigut tool”可以分析齿轮的疲劳寿命,其安全系数分布情况如图5所示。
此结果可以为齿轮强度及预测齿轮寿命提供可靠的依据。