函数的单调性与导数讲义
- 格式:docx
- 大小:83.61 KB
- 文档页数:5
导数与函数的单调性解析与归纳导数与函数的单调性在微积分中占据着重要的地位,它们能够帮助我们更深入地了解函数的性质。
本文将围绕导数与函数的单调性展开讨论,并对其中的解析与归纳进行详细阐述。
一、导数的定义与计算方法函数的导数可以理解为函数在某一点上的变化率。
导数的定义可以用极限来表达,即函数在某点处的导数等于该点附近的函数值变化量与自变量变化量的比值,在数学中可以表示为:\[ f'(x) = \lim_{{\Delta x\to 0}}\frac{{f(x+\Delta x)-f(x)}}{{\Delta x}} \]具体计算导数的方法有多种,如基本的导数运算法则、链式法则、高阶导数等。
这些计算方法能够帮助我们在具体问题中快速求得函数的导数。
二、导数与单调性的关系函数的单调性指的是函数在定义域上的增减性质。
导数与函数的单调性有着密切的联系,具体而言,函数在某一区间上单调递增的条件是其导函数大于零,而单调递减的条件是导函数小于零。
通过导数的符号变化,我们可以判断函数的单调性。
三、导数与函数单调性的解析和证明为了判断函数的单调性,我们需要分析函数的导数在定义域内的符号变化。
具体解析单调性的方法有以下几个步骤:1. 求得函数的导数;2. 找出导数的零点,即导数为零的点,这些点即为函数可能改变单调性的位置;3. 针对导函数的零点,作出符号变化表,利用导函数的符号变化可以得出函数的单调性。
举个例子,考虑函数 $f(x) = x^3 - 3x^2 + 2x$,我们可以按照上述步骤解析其单调性:1. 求导得到 $f'(x) = 3x^2 - 6x + 2$;2. 根据 $f'(x) = 0$,我们可以解得导数的零点为 $x_1 = 1-\frac{{\sqrt{3}}}{{3}}$ 和 $x_2 = 1+\frac{{\sqrt{3}}}{{3}}$;3. 绘制导数的符号变化表:\[\begin{array}{ccccc}x & (-\infty, x_1) & x_1 & (x_1, x_2) & x_2 \\f'(x) & \text{负} & 0 & \text{正} & \text{负} \\\end{array}\]根据符号变化表可以得出函数在 $(-\infty, x_1)$ 单调递减,在 $(x_1, x_2)$ 单调递增,在 $(x_2, +\infty)$ 单调递减。
第九讲:导数与函数的单调性【考点梳理】【典型题型讲解】考点一:求函数的单调区间(不含参)【典例例题】例1.函数()ln f x x x =的单调递减区间是( ).A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e ⎛⎫-∞ ⎪⎝⎭C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭函数单调区间的求法:解不等式法,列表格法【变式训练】2.函数ln 2f x x x =+-的单调递增区间为( )A .(),3-∞B .(),1-∞C .()1,+∞D .()1,23.已知函数f (x )满足()()()2212e 02x f x f f x x -'=-+,则f (x )的单调递减区间为( ) A .(-∞,0) B .(1,+∞) C .(-∞,1)D .(0,+∞) 4.函数()()3e x f x x =-的单调增区间是( )A .()2-∞,B .()03,C .()14,D .()2+∞,5.函数(2)e ,0()2,0x x x f x x x ⎧-≥=⎨--<⎩的单调递减区间为__________. 【典型题型讲解】考点二:已知含量参函数在区间上单调或不单调或存在单调区间,求参数范围【典例例题】例1.如果函数()22ln f x x a x =-在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,则a 的取值范围是( )A .1a <B .1a ≥C .1a >D .1a ≤(1)已知函数在区间上单调递增或单调递减,转化为导函数恒大于等于或恒小于等于零求解,先分析导函数的形式及图像特点,如一次函数最值落在端点,开口向上的抛物线最大值落在端点,开口向下的抛物线最小值落在端点等.(2)已知区间上函数不单调,转化为导数在区间内存在变号零点,通常用分离变量法求解参变量范围.(3)已知函数在区间上存在单调递增或递减区间,转化为导函数在区间上大于零或小于零有解.【变式训练】1.若函数()2()e x f x x ax a =-+在区间(1,0)-内单调递减,则实数a 的取值范围是( ) A .(,3]-∞ B .[3,)+∞ C .[1,)+∞ D .(,1]-∞2.已知函数()32391f x x mx mx =-++在()1,+∞上为单调递增函数,则实数m 的取值范围为( )A .(),1-∞-B .[]1,1-C .[]1,3D .[]1,3-2.已知函数()()41x f x ax x e =+-在区间[]1,3上不是单调函数,则实数a 的取值范围是( )A .2,416e e ⎛⎫-- ⎪⎝⎭B .2,416e e ⎛⎤-- ⎥⎝⎦C .32,3616e e ⎛⎫-- ⎪⎝⎭D .3,416e e ⎛⎫-- ⎪⎝⎭3.已知函数()2()()x f x e x bx b R =-∈在区间1,22⎡⎤⎢⎥⎣⎦上存在单调递增区间,则实数b 的取值范围是( ) A .8(,)3-∞ B .5(,)6-∞ C .35(,)26- D .8(,)3+∞ 4.已知函数()ln 3f x ax x =++在区间()1,2上不单调,则实数a 的取值范围为( )A .12,23⎛⎫ ⎪⎝⎭B .1,12⎛⎫ ⎪⎝⎭C .11,2⎛⎫-- ⎪⎝⎭D .21,32⎛⎫-- ⎪⎝⎭5.函数321()53f x x x ax =-+-在区间[1,2]-上不单调,则实数a 的取值范围是( ) A .(-∞,-3]B .(-3,1)C .[1,+∞)D .(-∞,-3]∪[1,+∞)考点三:含参问题讨论单调性【典例例题】例3.已知函数[]21()2ln ln(1),02=-+-≠f x k x x kx k .讨论()f x 的单调性;例4.已知函数2()4ln ,f x x x a x a =-+∈R ,函数()f x 的导函数为()'f x .讨论函数()f x 的单调性;【方法技巧与总结】1.关于含参函数单调性的讨论问题,要根据导函数的情况来作出选择,通过对新函数零点个数的讨论,从而得到原函数对应导数的正负,最终判断原函数的增减.(注意定义域的间断情况).2.需要求二阶导的题目,往往通过二阶导的正负来判断一阶导函数的单调性,结合一阶导函数端点处的函数值或零点可判断一阶导函数正负区间段.3.利用草稿图像辅助说明.【变式训练】1.已知函数()axf x=. (1)当1a =时,求函数()f x 在(1,(1))f 处的切线方程;(2)求函数()f x 的单调区间;2.(2022·广东深圳·高三期末)已知定义在R 上的函数()()1e -=-∈ax f x x a R .(1)求()f x 的单调递增区间;(2)对于()0,x ∀∈+∞,若不等式()()21ln f x x x ax ≥--恒成立,求a 的取值范围.3.已知函数221()2ln ()2f x a x x ax a R =-++∈. (1)当1a =时,求曲线()y f x =在(1,(1))f 处的切线方程;(2)求函数()f x 的单调区间;4.已知函数()()2ln 21f x x ax a x =+++讨论f (x )的单调性;5.已知函数()()()211ln 2f x x ax ax x a R =+-+∈,记()f x 的导函数为()g x 讨论()g x 的单调性;6.(2022·广东深圳·一模)已知函数()()22ln 121f x x a x ax =-+-+(a R ∈).(1)求函数()f x 的单调区间;(2)若函数()f x 有两个零点1x ,2x .(i )求实数a 的取值范围;(ii )求证:12x x +>【巩固练习】一、单选题1.已知函数()sin 2cos f x a x x =+在ππ,34x ⎡⎤∈--⎢⎥⎣⎦上单调递增,则a 的取值范围为( ) A .0a ≥ B .22a -≤≤ C .2a ≥- D .0a ≥或2a ≤-2.已知函数()3ln 2f x x x =--,则不等式()()2325f x f x ->-的解集为( ) A .()4,2-B .()2,2-C .()(),22,∞∞--⋃+D .()(),42,-∞-+∞ 3.“函数sin y ax x =-在R 上是增函数”是“0a >”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件4.已知函数()()1e x f x x mx =--在区间[]2,4上存在单调减区间,则实数m 的取值范围为( )A .()22e ,+∞B .(),e -∞C .()20,2e D .()0,e 二、多选题5.已知()ln x f x x=,下列说法正确的是( ) A .()f x 在1x =处的切线方程为1y x =+B .()f x 的单调递减区间为(),e +∞C .()f x 的极大值为1eD .方程()1f x =-有两个不同的解6.已知函数()f x 的定义域为(0,)+∞,其导函数为()f x ',对于任意,()0x ∈+∞,都有()ln ()0x xf x f x '+>,则使不等式1()ln 1f x x x +>成立的x 的值可以为( ) A .12B .1C .2D .3三、填空题 7.写出一个具有性质①①①的函数()f x =____________. ①()f x 的定义域为()0,+∞;①()()()1212f x x f x f x =+;①当()0,x ∈+∞时,()0f x '>.四、解答题8.已知函数()ln R k f x x k k x=--∈, (1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e) 内无零点,求k 的取值范围.9.已知函数()21ln 2f x x a x ax =--()0a >. (1)讨论()f x 的单调性;(2)若()f x 恰有一个零点,求a 的值.10.已知函数2()(1)=--x f x k x e x ,其中k ①R.当k 2≤时,求函数()f x 的单调区间;11.已知函数()e x f x ax -=+.讨论()f x 的单调性;12.已知函数()ln e xx a f x +=.当1a =时,判断()f x 的单调性;。
导数与函数的单调性导数与函数的单调性是微积分中的重要概念,它们能够帮助我们理解函数的变化趋势以及函数在不同区间的单调性。
在本文中,我们将探讨导数与函数的单调性之间的关系,并介绍如何通过导数来确定函数的单调性。
一、导数的定义与意义导数描述了函数在某一点的变化率。
对于函数f(x)来说,其导数可以用以下形式表示:f'(x) = lim┬(h→0)〖(f(x+h)-f(x))/h 〗其中,h表示自变量x的增量。
导数的几何意义是函数曲线在某一点处的切线的斜率。
二、导数与函数的单调性导数在函数上的正负性与函数的单调性密切相关。
具体而言,当导数大于0时,函数是递增的;当导数小于0时,函数是递减的。
三、通过导数确定函数的单调性要通过导数确定函数的单调性,我们需要进行以下几个步骤:1. 求取函数的导数。
2. 解方程 f'(x) = 0,求得导数的零点。
3. 在导数的零点处画出数轴,将数轴分为小区间。
4. 取各个小区间上的代表点,代入原函数并求出函数值。
5. 通过函数值的正负确定函数在小区间上的单调性。
举例来说,我们考虑函数f(x) = x^2,进行上述步骤:1. 求取导数:f'(x) = 2x2. 解方程 f'(x) = 0:2x = 0解得 x = 0。
3. 在数轴上画出导数的零点x = 0,并将数轴分为三个小区间:(-∞,0),(0,+∞)。
4. 取小区间上的代表点,例如取小区间 (-∞,0) 的代表点 x = -1,取小区间 (0,+∞) 的代表点 x = 1。
5. 分别代入原函数 f(x) = x^2,求出函数值:f(-1) = (-1)^2 = 1f(1) = (1)^2 = 1根据函数值的正负性,我们可以得出以下结论:在小区间 (-∞,0) 上,函数递增;在小区间 (0,+∞) 上,函数递增。
结论:函数f(x) = x^2 在整个定义域上都是递增的。
通过上述例子,我们可以看出导数与函数的单调性之间的联系。
高考数学总复习考点知识及题型专题讲义十三 导数与函数的单调性知识梳理1.函数的单调性与导数在区间(a ,b )内,函数的单调性与其导数的正负有如下关系:如果f ′(x )>0,那么函数y =f (x )为该区间上的增函数;如果f ′(x )<0,那么函数y =f (x )为该区间上的减函数.二者关系:(1)f ′(x )>0(或<0)是f (x )在(a ,b )内单调递增(或递减)的充分不必要条件,这是因为f ′(x )>0能推出f (x )为该区间上的增函数,但反之不一定.如函数f (x )=x 3在R 上单调递增,但f ′(x )=3x 2≥0,所以f ′(x )>0是f (x )为增函数的充分不必要.(2)f ′(x )≥0(或≤0)是f (x )在(a ,b )内单调递增(或递减)的必要不充分条件(f ′(x )=0不恒成立).典例剖析题型一 利用导数证明函数的单调性例1 求证函数y =x +1x在[1, +∞)内为增函数. 解析 y ′=1-1x 2=x 2-1x 2 当x >1时,x 2-1>0,∴y ′>0,∴函数y =x +1x在[1, +∞)内为增函数. 变式训练 求证函数y =x 3+x 2+x 在R 上是增函数.解析 y ′=3x 2+2x +1=3(x +13)2+23显然对任意x ∈R ,均有y ′>0,∴函数y =x 3+x 2+x 在R 上是增函数.题型二 求函数的单调区间例2 已知函数f (x )=ln x +k e x(k 为常数,e =2.718 28…是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解析 (1)由f (x )=ln x +k e x, 得f ′(x )=1-kx -x ln x x e x,x ∈(0,+∞), 由于曲线y =f (x )在(1,f (1))处的切线与x 轴平行,所以f ′(1)=0,因此k =1.(2)由(1)得f ′(x )=1x e x(1-x -x ln x ),x ∈(0,+∞), 令h (x )=1-x -x ln x ,x ∈(0,+∞),当x ∈(0,1)时,h (x )>0;当x ∈(1,+∞)时,h (x )<0.又e x >0,所以x ∈(0,1)时,f ′(x )>0;x ∈(1,+∞)时,f ′(x )<0.因此f (x )的单调递增区间为(0,1),单调递减区间为(1,+∞).变式训练 (1)函数f (x )=x ln x的单调递减区间是________. (2) 已知函数f (x )=4x -x 4,x ∈R ,则f (x )的单调递增区间为________.答案 (1) (0,1),(1,e) (2) (-∞,1)解析 (1) f ′(x )=ln x -1ln 2x ,令f ′(x )<0,得⎩⎪⎨⎪⎧ln x -1<0,ln x ≠0,∴0<x <1或1<x <e , 故函数的单调递减区间是(0,1)和(1,e).(2)解 由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增,所以,f (x )的单调递增区间为(-∞,1). 解题要点 求可导函数单调区间的一般步骤和方法(1)确定函数f (x )的定义域;(2)求导数y ′=f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间;(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.题型三 由函数的单调性求参数范围问题例3 已知函数f (x )=x 3-ax -1.(1) 若a =3时,求f (x )的单调区间;(2) 若f (x )在实数集R 上单调递增,求实数a 的取值范围.解析 (1) 当a =3时,f (x )=x 3-3x -1,∴ f ′(x )=3x 2-3,令f ′(x )>0即3x 2-3>0,解得x >1或x <-1,∴ f (x )的单调增区间为(-∞,-1)、(1,+∞),同理可求f (x )的单调减区间为(-1,1).(2) f ′(x )=3x 2-a .∵ f (x )在实数集R 上单调递增,∴ f ′(x )≥0恒成立,即3x 2-a ≥0恒成立,∴ a ≤(3x 2)min .∵ 3x 2的最小值为0,∴ a ≤0.变式训练 已知函数f (x )=e x -ax -1.(1)求f (x )的单调增区间;(2)是否存在a ,使f (x )在(-2,3)上为减函数,若存在,求出a 的取值范围,若不存在,请说明理由.解析 f ′(x )=e x -a ,(1)若a ≤0,则f ′(x )=e x -a ≥0,即f (x )在R 上单调递增,若a >0,令e x -a ≥0,则e x ≥a ,x ≥ln a .因此当a ≤0时,f (x )的单调增区间为R ,当a >0时,f (x )的单调增区间为[ln a ,+∞).(2)∵f ′(x )=e x -a ≤0在(-2,3)上恒成立.∴a ≥e x 在x ∈(-2,3)上恒成立.∴e -2<e x <e 3,只需a ≥e 3.当a =e 3时,f ′(x )=e x -e 3<0在x ∈(-2,3)上恒成立,即f (x )在(-2,3)上为减函数,∴a ≥e 3. 故存在实数a ≥e 3,使f (x )在(-2,3)上为减函数.解题要点 已知函数的单调性求参数范围可以转化为不等式恒成立问题,由函数f (x )在区间[a ,b ]内单调递增(或递减),可得f ′(x )≥0(或≤0)在该区间恒成立,而不是f ′(x )>0(或<0)恒成立,“=”不能少,否则漏解.题型四 函数存在单调区间或不单调求参数范围问题例4 设f (x )=-13x 3+12x 2+2ax .若f (x )在⎝⎛⎭⎫23,+∞上存在单调递增区间,求a 的取值范围. 解析 f ′(x )=-x 2+x +2a由题意知f ′(x ) >0在⎝⎛⎭⎫23,+∞上有解,即-x 2+x +2a >0,2a >x 2-x ,令g (x )=x 2-x ,g (x )>g ⎝⎛⎭⎫23=-29.即a >-19. ∴a 的取值范围为⎝⎛⎭⎫-19,+∞. 变式训练 已知函数f (x )=2x 2-ax +ln x 在其定义域上不单调,求实数a 的取值范围. 解析 函数f (x )的定义域为(0,+∞),因为f (x )=2x 2-ax +ln x ,所以f ′(x )=4x -a +1x =1x(4x 2-ax +1). 由函数f (x )在区间(0,+∞)上不单调可知,f ′(x )=0有两个正解,即4x 2-ax +1=0有两个正解,设为x 1,x 2.故有⎩⎨⎧Δ=(-a )2-4×4×1>0,x 1+x 2=a 4>0,x 1x 2=14>0,解得a >4.所以实数a 的取值范围为(4,+∞).解题要点 函数在区间D 上存在单调递增区间,即在区间D 上f ′(x ) >0能成立,分离变量后可求参数范围.需注意,a >f (x )能成立,只需a >f (x )min ,a <f (x )能成立,则a <f (x )max .当堂练习1.函数f (x )=(x -3)e x 的单调递增区间是________.答案 (2,+∞)解析 由题意知,f ′(x )=e x +(x -3)e x =(x -2)e x .由f ′(x )>0得x >2.2.函数f (x )=x 2-2ln x 的单调减区间是________.答案 (0,1)解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x(x >0). ∴当x ∈(0,1)时,f ′(x )<0,f (x )为减函数;当x ∈(1,+∞)时,f ′(x )>0,f (x )为增函数.3. 若函数y =cos x +ax 在⎣⎡⎦⎤-π2,π2上是增函数,则实数a 的取值范围是________. 答案 [1,+∞)解析 y ′=-sin x +a ,若函数在⎣⎡⎦⎤-π2,π2上是增函数,则a ≥sin x 在⎣⎡⎦⎤-π2,π2上恒成立,所以a ≥1,即实数a 的取值范围是[1,+∞).4.函数f (x )=1+x -sin x 在(0,2π)上的单调情况是________.答案 单调递增解析 在(0,2π)上有f ′(x )=1-cos x >0,所以f (x )在(0,2π)上单调递增.5.函数f (x )=e x -x 的单调递增区间是________.答案 (0,+∞)解析 ∵f (x )=e x -x ,∴f ′(x )=e x -1,由f ′(x )>0,得e x -1>0,即x >0.课后作业一、 填空题1.函数y =x 2(x -3)的单调递减区间是________.答案 (0,2)解析 y ′=3x 2-6x ,由y ′<0,得0<x <2.2.函数y =(3-x 2)e x 的单调递增区间是________.答案 (-3,1)解析 y ′=-2x e x +(3-x 2)e x =e x (-x 2-2x +3),由y ′>0⇒x 2+2x -3<0⇒-3<x <1,∴函数y =(3-x 2)e x 的单调递增区间是(-3,1).3.函数f (x )=x +eln x 的单调递增区间为________.答案 (0,+∞)解析 函数定义域为(0,+∞),f ′(x )=1+e x>0,故单调增区间是(0,+∞). 4.函数f (x )=x ln x ,则________.①在(0,+∞)上是增加的 ②在(0,+∞)上是减少的③在(0,1e )上是增加的 ④在(0,1e)上是减少的 答案 ④ 解析 因为函数f (x )=x ln x ,所以f ′(x )=ln x +1,f ′(x )>0,解得x >1e ,则函数的单调增区间为(1e ,+∞),又f ′(x )<0,解得0<x <1e ,则函数的单调减区间为(0,1e),故选④. 5.函数f (x )=x -ln x 的单调递减区间为________.答案 (0,1)解析 函数的定义域是(0,+∞),且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).6.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的________条件. 答案 充分不必要解析 f ′(x )=32x 2+a ,当a ≥0时,f ′(x )≥0恒成立,故“a >0”是“f (x )在R 上单调递增”的充分不必要条件.7.若函数y =a (x 3-x )的单调递减区间为(-33,33),则实数a 的取值范围是________. 答案 a >0解析 y ′=a (3x 2-1),解3x 2-1<0,得-33<x <33. ∴f (x )=x 3-x 在(-33,33)上为减函数. 又y =a (x 3-x )的单调递减区间为(-33,33), ∴a >0. 8.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是________. 答案 1<a ≤2解析 ∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x (x >0),当x -9x≤0时,有0<x ≤3,即在(0,3]上函数f (x )是减函数,∴a -1>0,a +1≤3,解得1<a ≤2.9.函数f (x )=x ln x的单调递减区间是________. 答案 (0,1),(1,e)解析 f ′(x )=ln x -1ln 2x ,令f ′(x )<0,得⎩⎪⎨⎪⎧ln x -1<0,ln x ≠0,∴0<x <1或1<x <e ,故函数的单调递减区间是(0,1)和(1,e).10.若函数f (x )=x 3+ax -2在(1,+∞)上是增函数,则实数a 的取值范围是________. 答案 [-3,+∞)解析 f ′(x )=3x 2+a ,f (x )在区间(1,+∞)上是增函数,则f ′(x )=3x 2+a ≥0在(1,+∞)上恒成立,即a ≥-3x 2在(1,+∞)上恒成立.∴a ≥-3.11.已知函数y =-13x 3+bx 2-(2b +3)x +2-b 在R 上不是单调减函数,则b 的取值范围是________.答案 b <-1或b >3解析 y ′=-x 2+2bx -(2b +3),要使原函数在R 上单调递减,应有y ′≤0恒成立, ∴Δ=4b 2-4(2b +3)=4(b 2-2b -3)≤0,∴-1≤b ≤3,故使该函数在R 上不是单调减函数的b 的取值范围是b <-1或b >3.二、解答题12.(2015天津文节选)已知函数f (x )=4x -x 4,x ∈R .求f (x )的单调区间;解析 由f (x )=4x -x 4,可得f ′(x )=4-4x 3.当f ′(x )>0,即x <1时,函数f (x )单调递增;当f ′(x )<0,即x >1时,函数f (x )单调递减.所以,f (x )的单调递增区间为(-∞,1),单调递减区间为(1,+∞).13.已知函数f (x )=1x +ln x ,求函数f (x )的极值和单调区间. 解析 因为f ′(x )=-1x 2+1x =x -1x2, 令f ′(x )=0,得x =1,又f (x )的定义域为(0,+∞),f ′(x ),f (x )随x 的变化情况如下表:x(0,1) 1 (1,+∞) f ′(x )- 0 + f (x )极小值 所以x =1时,f (x f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).。
导数的应用讲义一、知识梳理1.函数的单调性在某个区间(a,b)内,如果f′(x)>0,那么函数y=f(x)在这个区间内单调递增;如果f′(x)<0,那么函数y =f(x)在这个区间内单调递减.2.函数的极值(1)一般地,求函数y=f(x)的极值的方法解方程f′(x)=0,当f′(x0)=0时:①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③考查f′(x)在方程f′(x)=0的根附近的左右两侧导数值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值.3.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.注意:1.在某区间内f′(x)>0(f′(x)<0)是函数f(x)在此区间上为增(减)函数的充分不必要条件.2.可导函数f(x)在(a,b)上是增(减)函数的充要条件是对∀x∈(a,b),都有f′(x)≥0(f′(x)≤0)且f′(x)在(a,b)上的任何子区间内都不恒为零.3.对于可导函数f(x),f′(x0)=0是函数f(x)在x=x0处有极值的必要不充分条件.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数的极大值不一定比极小值大.()(4)对可导函数f (x ),f ′(x 0)=0是x 0点为极值点的充要条件.( )(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.( )题组二:教材改编2.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下面判断正确的是( )A .在区间(-2,1)上f (x )是增函数B .在区间(1,3)上f (x )是减函数C .在区间(4,5)上f (x )是增函数D .当x =2时,f (x )取到极小值3.[设函数f (x )=2x +ln x ,则( ) A .x =12为f (x )的极大值点 B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点 D .x =2为f (x )的极小值点4.]函数f (x )=x 3-6x 2的单调递减区间为__________.5.函数y =x +2cos x 在区间]2,0[ 上的最大值是__________.题组三:易错自纠6.函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点7.已知定义在实数集R 上的函数f (x )满足f (1)=3,且f (x )的导数f ′(x )在R 上恒有f ′(x )<2(x ∈R ),则不等式f (x )<2x +1的解集为____________.8.设a ∈R ,若函数y =e x +ax 有大于零的极值点,则实数a 的取值范围是________.三、典型例题(一)导数与函数的单调性题型一不含参数的函数的单调性1.函数y =4x 2+1x的单调增区间为 2.已知函数f (x )=x ln x ,则f (x )( )A .在(0,+∞)上单调递增B .在(0,+∞)上单调递减C .在)1,0(e 上单调递增D .在)1,0(e 上单调递减3.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间是______________________. 思维升华:确定函数单调区间的步骤(1)确定函数f (x )的定义域.(2)求f ′(x ).(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间.(4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.题型二:含参数的函数的单调性典例 已知函数f (x )=ln(e x +1)-ax (a >0),讨论函数y =f (x )的单调区间.思维升华:(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.(2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 跟踪训练 已知函数f (x )=e x (ax 2-2x +2)(a >0).试讨论f (x )的单调性.题型三:函数单调性的应用问题命题点1:比较大小或解不等式典例 (1)已知定义在)2,0(π上的函数f (x )的导函数为f ′(x ),且对于任意的x ∈)2,0(π,都有f ′(x )sin x <f (x )cos x ,则( ) A.3f )4(π>2f )3(πB .f )3(π>f (1) C.2f )6(π<f )4(π D.3f )3(π<f )3(π (2)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________.命题点2:根据函数单调性求参数典例:已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0). (1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围;(2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围.引申探究:本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围.2.本例(2)中,若h (x )在[1,4]上存在单调递减区间,求a 的取值范围.思维升华:根据函数单调性求参数的一般思路(1)利用集合间的包含关系处理:y =f (x )在(a ,b )上单调,则区间(a ,b )是相应单调区间的子集.(2)f (x )为增函数的充要条件是对任意的x ∈(a ,b )都有f ′(x )≥0且在(a ,b )内的任一非空子区间上,f ′(x )不恒为零,应注意此时式子中的等号不能省略,否则漏解.(3)函数在某个区间存在单调区间可转化为不等式有解问题.跟踪训练:已知函数f (x )=3x a -2x 2+ln x 在区间[1,2]上为单调函数,求a 的取值范围. 四、反馈练习1.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)2.已知定义在R 上的函数f (x ),其导函数f ′(x )的大致图象如图所示,则下列叙述正确的是( )A .f (b )>f (c )>f (d )B .f (b )>f (a )>f (e )C .f (c )>f (b )>f (a )D .f (c )>f (e )>f (d )3.已知m 是实数,函数f (x )=x 2(x -m ),若f ′(-1)=-1,则函数f (x )的单调增区间是( )A.)0,34(-B.)34,0(C.)34,(--∞,(0,+∞)D.)34,(--∞∪(0,+∞) 4.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)6.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f )21(,c =f (3),则( ) A .a <b <cB .c <b <aC .c <a <bD .b <c <a7.若函数f (x )=x 3+bx 2+cx +d 的单调递减区间为(-1,3),则b +c =________.8.已知函数f (x )(x ∈R )满足f (1)=1,f (x )的导数f ′(x )<12,则不等式f (x 2)<x 22+12的解集为________________. 9.已知g (x )=2x+x 2+2a ln x 在[1,2]上是减函数,则实数a 的取值范围为__________. 10.设函数f ′(x )是奇函数f (x )(x ∈R )的导函数,f (-1)=0,当x >0时,xf ′(x )-f (x )<0,则使得f (x )>0成立的x 的取值范围是____________.11.已知函数f (x )=ln x +k e x(k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求实数k 的值;(2)求函数f (x )的单调区间.12.已知函数f (x )=b ex -1(b ∈R ,e 为自然对数的底数)在点(0,f (0))处的切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.13.已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0),f (2 017)>e 2 017f (0)B .f (1)>e f (0),f (2 017)>e 2 017f (0)C .f (1)>e f (0),f (2 017)<e 2 017f (0)D .f (1)<e f (0),f (2 017)<e 2 017f (0)14.若函数f (x )=-13x 3+12x 2+2ax 在)32[∞+,上存在单调递增区间,则a 的取值范围是________. 15.已知函数f (x )=-12x 2+4x -3ln x 在区间[t ,t +1]上不单调,则t 的取值范围是________. 16.已知函数f (x )=a ln x -ax -3(a ∈R ).(1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m 2在区间(t,3)上总不是单调函数,求m 的取值范围.。