二元一次方程组应用题题型探究二 学生版
- 格式:doc
- 大小:62.00 KB
- 文档页数:8
二元一次方程组应用题经典题型1. 行程问题比如,甲、乙两人相距30千米,若两人同时相向而行,3小时后相遇;若两人同时同向而行,甲6小时可追上乙。
求甲、乙两人的速度。
设甲的速度是x千米/小时,乙的速度是y千米/小时。
相向而行时,根据路程 = 速度和×时间,可得到方程3(x + y)=30;同向而行时,根据路程差 = 速度差×时间,可得到方程6(x - y)=30。
这两个方程组成二元一次方程组,解这个方程组就能求出甲、乙的速度啦。
2. 工程问题有一项工程,甲队单独做需要x天完成,乙队单独做需要y天完成,两队合作需要6天完成,并且甲队做2天的工作量和乙队做3天的工作量相等。
求x和y的值。
把这项工程的工作量看成单位“1”,根据工作效率 = 工作量÷工作时间,甲队的工作效率就是1/x,乙队的工作效率就是1/y。
两队合作的工作效率就是1/6,可得到方程1/x+1/y = 1/6。
又因为甲队做2天的工作量和乙队做3天的工作量相等,即2/x = 3/y。
这样就组成了二元一次方程组,通过解方程组就能得到x和y的值啦。
3. 销售问题某商场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元。
求甲、乙两种商品各购进多少件?设购进甲种商品x件,购进乙种商品y件。
因为总共购进50件商品,所以x + y = 50。
甲种商品每件获利35×20% = 7元,乙种商品每件获利20×15% = 3元,总共获利278元,可得到方程7x+3y = 278。
这两个方程组成二元一次方程组,解方程组就可以求出x和y的值啦。
4. 调配问题有两个仓库,甲仓库有粮食x吨,乙仓库有粮食y吨。
如果从甲仓库调出10吨到乙仓库,那么乙仓库的粮食就是甲仓库的2倍;如果从乙仓库调出5吨到甲仓库,那么两仓库的粮食就相等。
求x和y的值。
根据题意可得到方程组:y + 10 = 2(x - 10)和x + 5 = y - 5。
完整版)二元一次方程组应用题经典题及答案实际问题与二元一次方程组题型归纳(练题答案)类型一:列二元一次方程组解决——行程问题变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲、乙速度分别为x、y千米/时,依题意得:2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时。
类型二:列二元一次方程组解决——工程问题变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元。
若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。
解:设甲、乙公司每周的工钱分别为x、y万元,依题意得:6(x+y)=5.24x+9y=4.8解得:x=0.8,y=0.4若只选一个公司单独完成,小明家应选择乙公司,因为乙公司每周工钱更少,从节约开支的角度考虑更优。
类型三:列二元一次方程组解决——商品销售利润问题变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩。
二元一次方程组应用探索二元一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:一、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.分析:设这个两位数十位上的数为x,个位上的数为y,则这个两位数及新两位数及其之间的关系可用下表表示:解方程组109101027x y x yy x x y+=++⎧⎨+=++⎩,得14xy=⎧⎨=⎩,因此,所求的两位数是14.点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为x,或只设十位上的数为x,那将很难或根本就想象不出关于x的方程.一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为“元”,然后列多元方程组解之.二、利润问题例2一件商品如果按定价打九折出售可以盈利20%;如果打八折出售可以盈利10元,问此商品的定价是多少?分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为x元,进价为y元,则打九折时的卖出价为0.9x元,获利(0.9x-y)元,因此得方程0.9x-y=20%y;打八折时的卖出价为0.8x元,获利(0.8x-y)元,可得方程0.8x-y=10.解方程组0.920%0.810x y yx y-=⎧⎨-=⎩,解得200150xy=⎧⎨=⎩,因此,此商品定价为200元.点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两种方法,一是:利润=卖出价-进价;二是:利润=进价×利润率(盈利百分数).特别注意“利润”和“利润率”是不同的两个概念.三、配套问题例3 某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的螺栓与螺母应满足关系式:每天生产的螺栓数×2=每天生产的螺母数×1.因此,设安排x人生产螺栓,y人生产螺母,则每天可生产螺栓25x个,螺母20y个,依题意,得120502201x y x y +=⎧⎨⨯=⨯⎩,解之,得20100x y =⎧⎨=⎩. 故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量关系是:(1)“二合一”问题:如果a件甲产品和b件乙产品配成一套,那么甲产品数的b倍等于乙产品数的a倍,即a b=甲产品数乙产品数; (2)“三合一”问题:如果甲产品a件,乙产品b件,丙产品c件配成一套,那么各种产品数应满足的相等关系式是:a b c==甲产品数乙产品数丙产品数. 四、行程问题例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩, 因此,巡逻车的速度是80千米/时,犯罪团伙的车的速度是40千米/时.点评:“相向而遇”和“同向追及”是行程问题中最常见的两种题型,在这两种题型中都存在着一个相等关系,这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:“相向而遇”时,两者所走的路程之和等于它们原来的距离;“同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离.五、货运问题典例5 某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积为6立方米,乙种货物每吨的体积为2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:“充分利用这艘船的载重和容积”的意思是“货物的总重量等于船的载重量”且“货物的体积等于船的容积”.设甲种货物装x 吨,乙种货物装y 吨,则300621200x y x y +=⎧⎨+=⎩,整理,得3003600x y x y +=⎧⎨+=⎩,解得150150x y =⎧⎨=⎩, 因此,甲、乙两重货物应各装150吨.点评:由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数或移项、合并同类项等.六、工程问题例 6 某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是x 套,要求的期限是y 天,依题意,得()41505200125y x y x ⎧=⎪⎨⎪-=+⎩,解得337518x y =⎧⎨=⎩. 点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即“工作量=工作时间×工作效率”以及它们的变式“工作时间=工作量÷工作效率,工作效率=工作量÷工作时间”.其次注意当题目与工作量大小、多少无关时,通常用“1”表示总工作量.《二元一次方程组实际问题》赏析【知识链接】列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;(2)找:找出能够表示题意两个相等关系;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案.【典题精析】例1(2006年南京市)某停车场的收费标准如下:中型汽车的停车费为6元/辆,小型汽车的停车费为4元/辆.现在停车场有50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有x 辆,小型汽车有y 辆.由题意,得⎩⎨⎧=+=+.23046,50y x y x解得,⎩⎨⎧==.35,15y x故中型汽车有15辆,小型汽车有35辆.例2(2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:现在该公司收购了140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在15天内刚好加工完140吨蔬菜,则应如何分配加工时间?解:(1)全部直接销售获利为:100×140=14000(元);全部粗加工后销售获利为:250×140=35000(元);尽量精加工,剩余部分直接销售获利为:450×(6×18)+100×(140-6×18)=51800(元).(2)设应安排x 天进行精加工, y 天进行粗加工.由题意,得⎩⎨⎧=+=+.140166,15y x y x 解得,⎩⎨⎧==.5,10y x 故应安排10天进行精加工,5天进行粗加工.【跟踪练习】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元. 计划在年内拆除旧校舍与建造新校舍共7200平方米,在实施中为扩大绿地面积,新建校舍只完成了计划的80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.。
实际问题与二元一次方程组题型归纳知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系. 一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行。
这类问题比较直观,画线段,用图便于理解与分析。
其等量关系式是:两者的行程差=开始时两者相距的路程;;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行。
这类问题也比较直观,因而也画线段图帮助理解与分析。
这类问题的等量关系是:双方所走的路程之和=总路程。
(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速。
注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。
2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损。
打几折就是按标价的十分之几或百分之几十销售。
(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金。
②利息:银行付给顾客的酬金叫做利息。
③本息和:本金与利息的和叫做本息和。
④期数:存入银行的时间叫做期数。
⑤利率:每个期数内的利息与本金的比叫做利率。
⑥利息税:利息的税款叫做利息税。
(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。
专题5.2 二元一次方程组的应用【十大题型】【北师大版】【题型1 行程问题】 (1)【题型2 工程问题】 (3)【题型3 销售、利润问题】 (7)【题型4 数字问题】 (10)【题型5 年龄问题】 (13)【题型6 分配问题】 (15)【题型7 和、差、倍、分问题】 (19)【题型8 几何问题】 (22)【题型9 图表信息问题】 (25)【题型10 方案问题】 (29)【题型1 行程问题】【例1】(2022·黑龙江齐齐哈尔·七年级期末)甲乙二人分别从相距20千米的A,B两地出发,相向而行.如果甲比乙早出发半小时,那么在乙出发后2小时,他们相遇;如果他们同时出发,那么1小时后两人还相距11千米,求甲乙二人每小时各走多少千米?【答案】甲每小时走4千米,乙每小时走5千米【分析】设甲每小时走x千米,乙每小时走y千米,根据题意列出方程组解答即可.【详解】解:设甲每小时走x千米,乙每小时走y千米,根据题意,得(0.5+2)x+2y=20x+y=20−11.整理,得2.5x+2y=20x+y=9.解得x=4y=5.答:甲每小时走4千米,乙每小时走5千米.【点睛】本题考查了二元一次方程组的应用,解决本题的关键是根据题意找到等量关系.【变式1-1】(2022·江苏·无锡市查桥中学七年级阶段练习)甲、乙二人在一个大型环形场地上从A点同时同向匀速跑步,甲的速度是乙的2.5倍,当4分钟时两人首次相遇,此时乙还需要跑300米才跑完第一圈,求甲、乙二人的速度及环形场地的周长.【答案】甲的速度为375米/分,乙的速度为150米/分,环形场地的周长为900米.【分析】设乙的速度为x 米/分,则甲的速度为2.5x 米/分,环形场地的周长为y 米,根据环形问题的数量关系,同时、同地、同向而行首次相遇快者走的路程-慢者走的路程=环形周长建立方程组求出其解即可.【详解】解:设乙的速度为x 米/分,则甲的速度为2.5x 米/分,环形场地的周长为y 米,由题意,得:2.5x ×4−4x =y 4x +300=y ,解得:x =150y =900 ,∴甲的速度为:2.5×150=375米/分;答:甲的速度为375米/分,乙的速度为150米/分,环形场地的周长为900米.【点睛】本题考查了二元一次方程组的应用,解答时运用环形问题的数量关系建立方程是关键.【变式1-2】(2022·安徽·肥西县严店初级中学七年级阶段练习)小北同学早晨骑车去上学,半小时可到达学校,妈妈发现他的数学书丢在家中,在小北出发310小时后乘上出租车去学校送书,出租车每小时的速度比小北骑车的速度快20千米,由于市政建设,出租车到校行驶的路程比小北骑车行驶的路程多1千米,恰好与小北同时到达学校.求小北需要骑行多少千米到学校?【变式1-3】(2022·安徽合肥·七年级期末)甲从A 地出发步行到B 地,乙同时从B 地步行出发至A 地,2小时后在中途相遇,相遇后,甲、乙步行速度都提高了1千米/小时.若设甲刚出发时的速度为a 千米/小时,乙刚出发的速度为b 千米/小时.(1)A 、B 两地的距离可以表示为 千米(用含a ,b 的代数式表示);(2)甲从A到B所用的时间是: 小时(用含a,b的代数式表示);乙从B到A所用的时间是: 小时(用含a,b的代数式表示).(3)若当甲到达B地后立刻按原路向A返行,当乙到达A地后也立刻按原路向B地返行.甲乙二人在第一次相遇后3小时36分钟又再次相遇,请问AB两地的距离为多少?【题型2 工程问题】【例2】(2022·陕西·西安高新一中实验中学八年级期末)某厂的甲、乙两个小组共同生产某种产品,若甲组先生产1天,然后两组又各自生产7天,则两组产品一样多;若甲组先生产了300个产品,然后两组又各自生产了5天,则乙组比甲组多生产200个产品;求两组每天各生产多少个产品?【答案】甲、乙两组每天个各生产700、800个产品【分析】设甲、乙两组每天个各生产x、y个产品,则根据若甲组先生产1天,然后两组又各自生产了7天,则两组产量一样多.若甲组先生产了300个产品,然后两组各自生产5天,则乙组比甲组多生产200个产品两个等量关系列方程组求解即可.【详解】解:设甲、乙两组每天个各生产x、y个产品,根据题意得:(1+7)x=7y300+5x+200=5y解得:x=700 y=800答:甲、乙两组每天个各生产700、800个产品.【点睛】本题考查列二元一次方程组解应用题,掌握列二元一次方程组解应用题的方法与步骤,抓住等量关系是解题关键.【变式2-1】(2022·江苏淮安·七年级期中)一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元.(1)甲、乙两组工作一天,商店应各付多少元;(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用少?(3)若装修完后,商店每天可盈利200元,现有如下三种方式装修:①甲单独做;②乙单独做;③甲乙合做,你认为如何安排施工更有利于商店?(可用(1)、(2)问的条件及结论)【答案】(1)甲组工作一天,商店应付300元,乙组工作一天,商店应付140元(2)单独请乙组,商店所需费用少(3)安排甲乙合作施工更有利于商店【分析】(1)根据题意建立方程组并求解;(2)将单独请甲乙组的费用计算出来,再进行比较,得出答案;(3)将三种方案损失费用计算出来进行比较,得出答案.(1)设甲组工作一天,商店应付x元,乙组工作一天,商店应付y元,依题意得:8x+8y=35206x+12y=3480,解得:x=300y=140.答:甲组工作一天,商店应付300元,乙组工作一天,商店应付140元.(2)300×12=3600(元),140×24=3360(元).∵3600>3360,∴单独请乙组,商店所需费用少.(3)选择①:(300+200)×12=6000(元);选择②:(140+200)×24=8160(元);选择③:(300+140+200)×8=5120(元).∵5120<6000<8160,∴安排甲乙合作施工更有利于商店.【点睛】本题考查了二元一次方程组的实际运用,熟练掌握方程组的实际运用是本题解题关键.【变式2-2】(2022·广西贺州·七年级期末)在某外环公路改建工程中,某路段长6140米,现准备由甲、乙两个工程队拟在25天内(含25天)合作完成,已知两个工程队各有20名工人(设甲、乙两个工程队的工人全部参与生产,甲工程队每人每天工作量相同,乙工程队每人每天工作量相同),甲工程队1天、乙工程队2天共修路400米;甲工程队2天、乙工程队3天共修路700米.(1)试问:甲、乙两个工程队每天分别修路多少米?(2)甲、乙两个工程队施工8天后,由于工作需要需从甲队调离m人去其他工程工作,总部要求在规定时间内完成,请问:甲工程队最多可以调离多少人?【答案】(1)甲、乙两工程队每天分别修路200米和100米;(2)8人【分析】(1)设甲工程队每天修路x米,乙工程队每天修路y米.,根据题意列出方程组求解即可;(2)设甲工程队最多可以调走m人,根据路段长6140米,在25天内合作完成和甲、乙工程每天修路的米数,列出方程,求出m的值即可;【详解】解:(1)设甲工程队每天修路x米,乙工程队每天修路y米.依题意,得:{x+2y=400, 2x+3y=700.解之得:{x=200, y=100.答:甲、乙两工程队每天分别修路200米和100米.(2)设甲工程队最多可以调走m人.依题意,得:8×(200+100)+(25-8)×100+(25-8)×(200÷20)×(20-m) =6140.解之得:m=8.答:甲工程队最多可以调走8人.【点睛】本题考查了二元一次方程组的应用,读懂题目信息,理清题中的数量关系,找准等量关系列出方程组是解题的关键.【变式2-3】(2022·全国·七年级专题练习)面对某国不断对我国的打压,我国自主品牌抗住压力.以华为手机为例,今年一月份我国某工厂用自主创新的A、B两种机器人组装某款华为手机,每小时一台A种机器人比一台B种机器人多组装50个该款华为手机,每小时10台A种机器人和5台B种机器人共组装3500个该款华为手机.(1)今年一月份,该工厂每小时一台A种机器人、一台B种机器人分别能组装多少个该款华为手机?(2)该工厂原有A、B两种机器人的数量相等,因市场销售火爆,二月份该工厂增加了一部分A种机器人并淘汰了一部分B种机器人,这样A种机器人的数量增加了2m%,B种机器人数量减少了m%.同时,该工厂对全部A种机器人进行了升级改造,升级改造后的机器人命名为C种机器人,已知每小时一台C种机器人组装该款华为手机的数量比原一台A种机器人组装该款华为手机的数量增加了15,每小时C种机器人和B种机器人组装该款华为手机的数量之和比A种机器人和B种机器人组装该款华为手机的数量之和提高了20%,求m的值.【答案】(1)A种机器人每小时组装250个该款华为手机,B种机器人每小时组装200个该款华为手机;(2)m的值为6.25.【分析】(1)设A种机器人每小时组装a个该款华为手机,B种机器人每小时组装b个该款华为手机,列出方程组解答即可;(2)根据“每小时C种机器人和B种机器人组装该款华为手机的数量之和比A种机器人和B种机器人组装该款华为手机的数量之和提高了20%”题意列出方程解答即可.【详解】解:(1)设A种机器人每小时组装a个该款华为手机,B种机器人每小时组装b个该款华为手机,则a=b+5010a+5b=3500,解得:a=250b=200;答:A种机器人每小时组装250个该款华为手机,B种机器人每小时组装200个该款华为手机;【题型3 销售、利润问题】【例3】(2018·贵州·贵阳乐湾国际实验学校八年级阶段练习)2018年某歌手地表最强巡回演唱会于11月17日在贵阳奥林匹克体育中心举行,小颖购买了一张票价为四位数的场地票(动感地带专属),而小明一张购买了票价为三位数的看台票(动感地带专属).小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.请问小颖和小明购买的演唱会门票各是多少元?【答案】1680元,480元.【分析】设小颖的票价为x元,小明的票价为y元,根据“小颖说,“在你的票价前面多写个1,都还比我的便宜200元”;小明说,“只需在我的票价后多写个0,就比你的贵3120元”.”找到等量关系,列出方程组,解方程组即可.【详解】设小颖的票价为x元,小明的票价为y元,根据题意得:x−(1000+y)=20010y−x=3120解得:x=1680 y=480答:小颖和小明购买的演唱会门票分别为:1680元,480元.【点睛】本题考查二元一次方程组的应用,正确的找到等量关系是解答关键.【变式3-1】(2022·江西吉安·八年级期末)2018年10月,吉州区井冈蜜柚节迎来了四方游客,游客李先生选购了井冈蜜柚和井冈板栗各一箱需要200元.他还准备给4位朋友每人送同样的井冈蜜柚一箱,6位同事每人送同样的井冈板栗一箱,就还需要1040元.(1)求每箱井冈蜜柚和每箱井冈板栗各需要多少元?(2)李先生到收银台才得知井冈蜜柚节期间,井冈蜜柚可以享受6折优惠,井冈板栗可以享受8折优惠,此时李先生比预计的付款少付了多少元?【答案】(1)每箱井冈蜜柚需要80元,每箱井冈板栗需要120元;(2)李先生比预计的付款少付了328元【分析】(1)、根据“井冈蜜柚和井冈板栗各一箱需要200元,4箱井冈蜜柚和6箱井冈板栗需要1040元”列二元一次方程组,解之即可得.(2)根据节省的钱数=原价×数量﹣打折后的价格×数量,即可求出结论.【详解】解:(1)设每箱井冈蜜柚需要x元,每箱井冈板栗需要y元,依题意,得:x+y=2004x+6y=1040,解得:x=80y=120.答:每箱井冈蜜柚需要80元,每箱井冈板栗需要120元.(2)200+1040﹣80×0.6×(4+1)﹣120×0.8×(6+1)=328(元).答:李先生比预计的付款少付了328元.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.【变式3-2】(2022·江苏南通·七年级期末)小瑞去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.(1)若小瑞所带的钱是51元,请分别求出玫瑰和百合单价是多少元?(2)若小瑞所带的钱是m元,且一共只买8支玫瑰,请直接写出小瑞所带的钱还剩下多少元?【答案】(1)玫瑰和百合单价分别是每支2.5元和每支9.5元(2)小瑞所带的钱还剩下31元【分析】(1)设每支玫瑰x元,每支百合y元,利用总价=单价×数量,结合小瑞带的钱数不变,即可得出关于x,y的二元一次方程,化简后可得出;(2)设玫瑰的单价是每支x元,百合单价是每支y元,因为小瑞带的钱为m元,所以列方程5x+3y=m−10①5x+5y=m+4②,用含m的代数式解出x和y,又因为且一共只买8支玫瑰,所以剩下的钱为:m-8x 即可求解;(1)【变式3-3】(2022·广西南宁·七年级期中)为响应国家“足球进收园”的号召,满足学校对足求的需求.某商家第一次购进了38个A类足球和20个B类足球进行销售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.(1)求商家购进一个A类足球和一个B类足球各需多少元?(2)若一个A类足球的售价为110元.两类足球销售完毕,商家要获得1880元的利铜,则B类足球的总售价为多少元?(3)为了回馈客户,商家决定进行打折销售,若商家第二次又以原进价购进A、B两类足球,购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,而B类足球打折销售,若第二次两类足球全部销售完毕,要使得第二次销售获得利润1688元,则B类足球是打几折销售的?【答案】(1)一个A类足球需90元,一个B类足球需108元(2)3280(3)八折【分析】(1)设商家购进一个A类足球需x元,购进一个B类足球需y元,由题意:某商家第一次进了38个A类足球和20个B类足球进行出售,共花费了5580元,已知商家购进一个B类足球的价格是购进一个A类足球价格的1.2倍.列出二元一次方程组,解方程组即可;(2)设B类足球的售价为m元,由题意:一个A类足球的售价为110元,两类足球销售完毕,商家要获得1880元的利润,列出一元一次方程,解方程即可;(3)B类足球是打n折销售的,由题意:购进A类足球的件数不变,而购进B类足球的件数是第一次的2倍,A类足球按原售价销售,使得第二次销售获得利润1688元,列出一元一次方程,解方程即可.(1)解:设商家购进一个A类足球需x元,购进一个B类足球需y元,由题意得:38x+20y=5580y=1.2x,解得:x=90y=108,答:商家购进一个A类足球需90元,购进一个B类足球需108元;(2)解∶设B类足球的售价为m元,由题意得:(110-90)×38+(m-108)×20=1880,解得:m=164,则20×164=3280,答:B类足球的总售价为3280元;(3)解∶设B类足球是打n折销售的,由题意得:(110-90)×38+(164×0.1n-108)×20×2=1688,解得:n=8,答:B类足球是打八折销售的.【点睛】本题考查了二元一次方程组的应用以及一元一次方程的应用,找准等量关系,正确列出二元一次方程组和一元一次方程是解题的关键.【题型4 数字问题】【例4】(2022·甘肃·高台县第三中学八年级期末)一个两位数,其个位上的数是十位上的数的2倍,若交换一下位置,所得新的两位数比原两位数大9,求原两位数.【答案】12【分析】设原数个位数为a,十位数为b,然后根据“个位上的数是十位上的数的2倍”和两数的关系列方程组求出a和b,最后求出原数即可.【详解】解:设原数个位数为a,十位数为b则有:a=2b10a+b−9=10b+a,解得a=2b=1所以原数为10×1+2=12.【点睛】本题主要考查了二元一次方程组的应用,审清题意、找准等量关系、列出方程组是解答本题的关键.【变式4-1】(2018·福建龙岩·七年级期末)已知表内的各横行中,从第二个数起的数都比它左边相邻的数大m;各竖列中,从第二个数起的数都比它上边相邻的数大n.求m,n以及表中x的值.【答案】m=3,n=5,x=11.【分析】根据表内的各横行中,从第二个数起的数都比它左边相邻的数大m得出12+2m=18,解方程求出m 的值;再由各竖列中,从第二个数起的数都比它上边相邻的数大n,得出(12+m)+3n=30,解方程求出n 的值;进而求得x的值.【详解】∵各横行中,从第二个数起的数都比它左边相邻的数大m,∴12+2m=18,解得m=3.又∵各竖列中,从第二个数起的数都比它上边相邻的数大n,∴(12+m)+3n=30,将m=3代入上述方程得15+3n=30,解得n=5.此时x=12﹣2m+n=12﹣2×3+5=11.【点睛】本题考查的是根据题意列二元一次方程组解决数学问题,根据横行和竖列的数值的变化规则,确定相等关系,列出相应的方程是解题的关键.【变式4-2】(2022·全国·九年级专题练习)小杰、小明两人做加法运算,小杰将其中一个加数后面多写了一个零,得和是1275,小明将同一个加数少写了一个零,得和是87,求原来两个加数.【变式4-3】(2022·全国·九年级专题练习)若在一个两位正整数N的个位数字与十位数字之间添上数字 2 ,组成一个新的三位数,我们称这个三位数为N的“诚勤数”,如 34 的“诚勤数”为 324 ;若将一个两位正整数M加 2 后得到一个新数,我们称这个新数为M的“立达数”,如 34 的“立达数”为 36.(1)求证:对任意一个两位正整数A,其“诚勤数”与“立达数”之差能被 6 整除;(2)若一个两位正整数B的“立达数”的各位数字之和是B的各位数字之和的一半,求B的值.【答案】(1)见解析;(2)B的值为68或59.【分析】(1)设A的十位数字为a,个位数字为b,其“诚勤数”为100a+20+b、“立达数”为10a+b+2,作差整理即可得;(2)设B=10a+b,1≤a≤9,0≤b≤9(B加上2后各数字之和变小,说明个位发生了进位),根据““立达数”的各位数字之和是B的各位数字之和的一半”列出关于a、b的方程,求解可得.【题型5 年龄问题】【例5】(2022·江苏·七年级)今年(2022年)4月20日,是云大附中建校95周年暨云大附中恢复办学40周年校庆日,我校初一年级数学兴趣小组的小明同学发现这样一个有趣的巧合;小明的爸爸和爷爷都是云附的老校友,且爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40.已知小明今年13岁,妹妹今年4岁.(1)求今年小明的爸爸和爷爷的年龄分别是多少岁?(要求用二元一次方程组解答)(2)假如小明的爸爸和爷爷都是15岁初中华业的,请问小明的爸爸和爷爷分别是哪一年毕业的云附学子?【答案】(1)爸爸36岁,爷爷76岁(2)爸爸是2001年华业,爷爷是1961年毕业的云附学子【分析】(1)设今年小明的爸爸x岁,爷爷y岁,根据“爸爸和妹妹的年龄差恰好与爷爷和小明的年龄差的和为95,而爸爸的年龄恰好比爷爷的年龄小40”列出二元一次方程组求解即可.(2)用现在年份减去年龄加15即可得到答案.(1)设今年小明的爸爸x岁,爷爷y岁.(x−4)+(y−13)=95y−x=40.解得:x=36 y=76答:今年小明的爸爸36岁,爷爷76岁;(2)2022−36+15=2001(年)2022−76+15=1961(年)小明的爸爸是2001年华业,爷爷是1961年毕业的云附学子.【点睛】本题主要考查了二元一次方程组的应用,正确找出等量关系是解答本题的关键.【变式5-1】(2022·重庆市松树桥中学校七年级阶段练习)7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在哥哥和妹妹的年龄各是多少岁?【答案】现在哥哥10岁,妹妹6岁.【分析】设现在哥哥x岁,妹妹y岁,根据两孩子的对话,可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】解:设现在哥哥x岁,妹妹y岁,根据题意得x+y=16x+2+3(y+2)=34+2解得x=10 y=6答:现在哥哥10岁,妹妹6岁.【点睛】本题考查了二元一次方程组的应用,关键是利用题目信息,将实际问题转化为数学方程解决.【变式5-2】(2022·甘肃酒泉·八年级期末)5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁.那么现在这对母女的年龄分别是多少?【答案】母亲现在年龄35岁,女儿现在7岁【分析】设母亲现在年龄x岁,女儿现在y岁,然后根据5年前母亲的年龄是女儿年龄的15倍,15年后,母亲的年龄比女儿年龄的2倍多6岁,列出方程组求解即可.【详解】解:设母亲现在年龄x岁,女儿现在y岁,则x−5=15(y−5)x+15=2(y+15)+6解得x=35 y=7答:母亲现在年龄35岁,女儿现在7岁.【点睛】本题主要考查了二元一次方程组的应用,解题的关键在于正确理解题意列出方程求解.【变式5-3】(2022·全国·八年级课时练习)聪聪在给妈妈过生日时发现自己的年龄与妈妈的年龄的十位数字与个位数字正好相反.同时,他还发现,过10年,妈妈岁数减1(岁)刚好是自己岁数加1(岁)的2倍;再过1年,他们两人的年龄又一次相反,且十位数字与个位数字的和为7,求聪聪和他妈妈现在的年龄.【答案】聪聪现在的年龄为14岁,妈妈现在的年龄为41岁.【分析】设聪聪的年龄为(10x+y)岁,妈妈的年龄为(10y+x)岁,根据“过10年,妈妈岁数减1(岁)刚好是自己岁数加1(岁)的2倍;再过1年,他们两人的年龄又一次相反,且十位数字与个位数字的和为7”,即可得出关于x,y的二元一次方程,解之即可得出结论.【详解】(1)设聪聪的年龄为(10x+y)岁,则妈妈的年龄为(10y+x)岁,根据题意得:{x+1+y+1=710y+10+x−1=2(10x+10+y+1),解得:{x=1y=4.答:聪聪今年14岁,妈妈今年41岁.【点睛】此题考查二元一次方程组的应用,解题关键在于设聪聪的年龄为(10x+y)岁.【题型6 分配问题】【例6】(2022·河北承德·七年级期末)某企业有A,B两条加工相同原材料的生产线,在一天内,A生产线共加工a吨原材料,加工时间为(4a+1)小时;在一天内,B生产线共加工b吨原材料,加工时间为(2b+3)小时.(1)当a=b=1时,两条生产线的加工时间分别时多少小时?(2)第一天,该企业把5吨原材料分配到A.B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,则分配到两条生产线的的吨数是多少?(3)第二天开工前,该企业按第一天的分配结果分配了5吨原材料后,又给A生产线分配了m吨原材料,给B 生产线分配了n吨原材料,若两条生产线都能在一天内加工完各自分配到的所有原材料,且加工时间相同,则m和n有怎样的数量关系?若此时m与n的和为6吨,则m和n的值分别为多少吨?【答案】(1)两条生产线的的加工时间分别为5小时和5小时(2)分配到A生产线2吨,分配到B生产线3吨(3)m与n的关系为2m=n,当m+n=6吨时,m为2吨,n为4吨【分析】(1)把a=b=1代入(4a+1)和(2b+3),即可求解;(2)设分配到A生产线x吨,则分配到B生产线y吨,根据“把5吨原材料分配到A.B两条生产线,两条生产线都在一天内完成了加工,且加工时间相同,”列出方程组,即可求解;(3)根据“加工时间相同,”可得4(2+m)+1=2(3+n)+3,从而得到2m=n,再由m+n=6,即可求解.(1)解:当a=b=1时,4a+1=5,2b+3=5;即两条生产线的的加工时间分别为5小时和5小时.(2)解∶设分配到A生产线x吨,则分配到B生产线y吨,根据题意得:x+y=54x+1=2y+3,解得x=2y=3,即分配到A生产线2吨,则分配到B生产线3吨;(3)解:根据题意得:4(2+m)+1=2(3+n)+3,整理得:2m=n,∵m+n=6,∴m=2,n=4,答:m与n的关系为2m=n,当m+n=6吨时,m为2吨,n为4吨.【点睛】本题主要考查了二元一次方程组的应用,求代数式的值,明确题意,准确得到等量关系是解题的关键.【变式6-1】(2022·山东菏泽·七年级期中)一套餐桌有一张桌子和六把椅子组成.如果1立方米木料可以制作10张桌子,或制作15把椅子.现有15立方米的木料,请你设计一下,用多少立方米的木料做桌子,多少立方米的木料做椅子,恰好配套成餐桌?【答案】用3立方米的木料做桌子,12立方米的木料做椅子,恰好配套成餐桌.【分析】根据题意找出等量关系:1立方米木料可以制作10张桌子,或制作15把椅子和总共15立方米的木料,设出未知量列方程组计算即可.【详解】解:设用x立方米的木料做桌子,用y立方米的木料做椅子,根据题意,得x+y=156×(10x)=15y,解这个方程组,得x=3y=12,经检验,方程组的解符合题意.所以用3立方米的木料做桌子,12立方米的木料做椅子,恰好配套成餐桌.【点睛】此题考查二元一次方程的应用,难度一般,找准等量关系是关键.【变式6-2】(2022·全国·七年级)我市某包装生产企业承接了一批礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是170cm×40cm的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A型与B型两种板材(不计损耗),如图甲.(单位:cm)(1)列出方程(组),求出图甲中a与b的值;(2)在试生产阶段,若将30张标准板材用裁法一裁剪,4张标准板材用裁法二裁剪,再将得到的A型与B型板材做侧面和底面,做成图乙的竖式(高大于长)与横式(长大于高)两种无盖礼品盒.①两种裁法共生产A型板材_________张,B型板材_______张;②能否在做成若干个上述的两种无盖礼品盆后,恰好把①中的A型板材和B型板材用完?若能,则竖式无盖礼品盒与横式无盖礼品盒分别做了几个?若不能,则最多能做成竖式和横式两种无盖礼品盒共多少个?【答案】(1)60、40;(2)①64,38;②最多能做成竖式和横式两种无盖礼品盒共20个.【分析】(1)由图示列出关于a、b的二元一次方程组求解.(2)①根据已知和图示计算出两种裁法共产生A型板材和B型板材的张数;②根据竖式与横式礼品盒所需要的A、B两种型号板材的张数列出关于x、y的二元一次方程组,求解,即可得出结论.(1)。
元一次方程组应用探索兀一次方程组是最简单的方程组,其应用广泛,尤其是生活、生产实践中的许多问题,大多需要通过设 元、布列二元一次方程组来加以解决,现将常见的几种题型归纳如下:、数字问题例1 一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大 27,求这个两位数.10x y x y 9x 1解方程组y y,得,因此,所求的两位数是14.10y x 10x y 27 y 4点评:由于受一元一次方程先入为主的影响,不少同学习惯于只设一元,然后列一元一次方程求解,虽然 这种方法十有八九可以奏效,但对有些问题是无能为力的,象本题,如果直接设这个两位数为上的数为X ,那将很难或根本就想象不出关于 x 的方程•一般地,与数位上的数字有关的求数问题,一般应设各个数位上的数为 元”,然后列多元方程组解之.二、禾U 润问题例2 一件商品如果按定价打九折出售可以盈利 20% ;如果打八折出售可以盈利 多少?点评:商品销售盈利百分数是相对于进价而言的,不要误为是相对于定价或卖出价.利润的计算一般有两 种方法,一是:利润=卖出价-进价;二是:利润=进价X 利润率(盈利百分数).特别注意 利润”和利润率”是不 同的两个概念.三、配套问题表示:分析:设这个两位数十位上的数为 x ,个位上的数为y ,则这个两位数及新两位数及其之间的关系可用下表 X ,或只设十位 10兀,冋此商品的定价是分析:商品的利润涉及到进价、定价和卖出价,因此,设此商品的定价为X 元, 进价为y 元,则打九折时的卖出价为0.9x 元,获利(0.9x-y )元,因此得方程0.9x-y=20%y ;打八折时的卖出价为 0.8x 元,获利(0.8x-y )元,可得方程0.8x-y=10. 解方程组OSy0.8x y20%y,解得10x 200 y 150,因此,此商品定价为200 元.例3某厂共有120名生产工人,每个工人每天可生产螺栓 25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?分析:要使生产出来的产品配成最多套,只须生产出来的螺栓和螺母全部配上套,根据题意,每天生产的 螺栓与螺母应满足关系式:每天生产的螺栓数疋=每天生产的螺母数 X1.因此,设安排X 人生产螺栓,y 人生产螺母,则每天可生产螺栓 25 X 个,螺母20 y 个,依题意,得X y 120,解之,得X 2050x 2 20y 1 y 100故应安排20人生产螺栓,100人生产螺母.点评:产品配套是工厂生产中基本原则之一,如何分配生产力,使生产出来的产品恰好配套成为主管生产 人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系,其中两种最常见的配套问题的等量 关系是:(1)二合一 ”问题:如果a 件甲产品和b 件乙产品配成一套,那么甲产品数的b 倍等于乙产品数的a 倍,即口数乙产品数a 如果甲产品a 件,乙产品b 件,丙产品C 件配成一套,那么各种产品数应满足的相等四、行程问题例4 在某条高速公路上依次排列着 A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也 是120千米•分别在 A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离 现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住, 巡逻车追赶上•问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则3X y 120,整理,得X y 40,解得X 80x y 120 x y 120y 40因此,巡逻车的速度是 80千米/时,犯罪团伙的车的速度是 40千米/时.点评:相向而遇”和 同向追及”是行程问题中最常见的两种题型, 在这两种题型中都存在着一个相等关系, 这个关系涉及到两者的速度、原来的距离以及行走的时间,具体表现在:相向而遇”时,两者所走的路程之和等于它们原来的距离;(2)关系式是:甲产品数 乙产品数 丙产品数bA 、C 两个加油站驶去,结而另一团伙经过3小时后才被另一辆同向追及”时,快者所走的路程减去慢者所走的路程等于它们原来的距离. 五、货运冋题典例5某船的载重量为300吨,容积为1200立方米,现有甲、乙两种货物要运,其中甲种货物每吨体积 为6立方米,乙种货物每吨的体积为 2立方米,要充分利用这艘船的载重和容积,甲、乙两重货物应各装多少吨?分析:充分利用这艘船的载重和容积”的意思是货物的总重量等于船的载重量”且货物的体积等于船的容 积”.设甲种货物装x 吨,乙种货物装y 吨,则y 300,整理,得x y 300,解得2y 12003x y 600(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数;6xx 150 y 150,因此, 甲、乙两重货物应各装150吨.点评: 由实际问题列出的方程组一般都可以再化简,因此,解实际问题的方程组时要注意先化简,再考虑 消元和解法,这样可以减少计算量,增加准确度.化简时一般是去分母或两边同时除以各项系数的最大公约数 或移项、合并同类项等.六、工程问题例6某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的 组织结构和生产流程,每天可生产这种工作服 200套,这样不仅比规定时间少用4-;现在工厂改进了人员51天,而且比订货量多生产 25套,求订做的工作服是几套?要求的期限是几天?分析:设订做的工作服是 x 套,要求的期限是y 天,依题意,得4150y -xx 33755,解得y 18点评:工程问题与行程问题相类似,关键要抓好三个基本量的关系,即工作量=工作时间 □作效率”以及它们的变式 工作时间=工作量T 作效率,工作效率=工作量勺:作时间”.其次注意当题目与工作量大小、多少无关时,通常用 “ 1表示总工作量.《二元一次方程组实际问题》赏析【知识链接】列二元一次方程组解应用题的一般步骤可概括为 审、找、列、解、答”五步,即:x解得,y找:找出能够表示题意两个相等关系;列:根据这两个相等关系列出必需的代数式,从而列出方程组; 解:解这个方程组,求出两个未知数的值;答:在对求出的方程的解做出是否合理判断的基础上,写出答案 【典题精析】例1 (2006年南京市)某停车场的收费标准如下:中型汽车的停车费为 6元/辆,小型汽车的停车费为 4元/辆.现在停车场有 50辆中、小型汽车,这些车共缴纳停车费230元,问中、小型汽车各有多少辆?解析:设中型汽车有 x 辆,小型汽车有y 辆.由题意,得x y 50, 6x 4y 230.解得,x 15'y 35.故中型汽车有15辆,小型汽车有35辆.现在该公司收购了 140吨蔬菜,已知该公司每天能精加工蔬菜6吨或粗加工蔬菜16吨(两种加工不能同时进行).间?15天内刚好加工完140吨蔬菜,则应如何分配加工时解:(1)全部直接销售获利为: 100X 140=14000 (元); 全部粗加工后销售获利为:250X140=35000 (元);尽量精加工,剩余部分直接销售获利为:450X (6X18) + 100X (140-6X18) =51800 (元).(2)设应安排x 天进行精加工,y 天进行粗加工.由题意,得x y 15, 6x 16y140.10,例2( 2006年四川省眉山市)某蔬菜公司收购蔬菜进行销售的获利情况如下表所示:(1)如果要求在18天内全部销售完这140吨蔬菜,请完成下列表格:(2)如果先进行精加工,然后进行粗加工,要求在故应安排10天进行精加工,5天进行粗加工.【跟踪练习】为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍,建造新校舍,拆除旧校舍每平方米需80元,建新校舍每平方米需700元.计划在年内拆除旧校舍与建造新校舍共7200平方米,在80%,而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积(1)求:原计划拆、建面积各是多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米?答案:(1)原计划拆、建面积各是4800平方米、2400平方米;(2)可绿化面积为1488平方米.拓展训练:解下列方程:(1) 3(y 2) x 12(x 1) 5y 8X y⑵ 2 33x 4y 184x6x15y25y17 023x(4) 2X3y 133 2y 34 2(5) y42x33y 121x⑹23x23y21y2432412x 153x 153y 243y 243x 2y62x 3y 17g 57实施中为扩大绿地面积,新建校舍只完成了计划的黄冈教育@张家界教育中心内部使用。
实际问题与二元一次方程组题型归纳(练习题答案)类型一:列二元一次方程组解决——行程问题【变式1】甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?解:设甲,乙速度分别为x,y千米/时,依题意得:(2.5+2)x+2.5y=363x+(3+2)y=36解得:x=6,y=3.6答:甲的速度是6千米/每小时,乙的速度是3.6千米/每小时。
【变式2】两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中的速度和水流速度。
解:设这艘轮船在静水中的速度x千米/小时,则水流速度y千米/小时,有:20(x-y)=28014(x+y)=280解得:x=17,y=3答:这艘轮船在静水中的速度17千米/小时、水流速度3千米/小时,类型二:列二元一次方程组解决——工程问题【变式】小明家准备装修一套新住房,若甲、乙两个装饰公司合作6周完成需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周完成,需工钱4.8万元.若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由.解:类型三:列二元一次方程组解决——商品销售利润问题【变式1】(2011湖南衡阳)李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?解:设甲、乙两种蔬菜各种植了x、y亩,依题意得:①x+y=10②2000x+1500y=18000解得:x=6,y=4答:李大叔去年甲、乙两种蔬菜各种植了6亩、4亩类型四:列二元一次方程组解决——银行储蓄问题【变式2】小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元?解:设x为第一种存款的方式,Y第二种方式存款,则X + Y = 4000X * 2.25%* 3 + Y * 2.7%* 3 = 303.75解得:X = 1500,Y = 2500。
二元一次方程组应用题题型探究二 题型归纳(七到十二)
类型七:列二元一次方程组解决——和差倍分问题 较大量=较小量+多余量,总量=倍数×倍量 类型八:列二元一次方程组解决——数字问题 首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示 类型九:列二元一次方程组解决——浓度问题 溶液×浓度=溶质 类型十:列二元一次方程组解决——几何问题 必须掌握几何图形的性质、周长、面积等计算公式 类型十一:列二元一次方程组解决——年龄问题 抓住人与人的岁数是同时增长的 类型十二:列二元一次方程组解决——优化方案问题:
例题探究 7.(2011年北京丰台区中考一摸试题)“爱心”帐篷厂和“温暖”帐篷厂原计划每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,两厂决定在一周内赶制出这批帐篷.为此,全体职工加班加点,“爱心”帐篷厂和“温暖”帐篷厂一周内制作的帐篷数分别达到了原来的1.6倍、1.5倍,恰好按时完成了这项任务.求在赶制帐篷的一周内,“爱心”帐篷厂和“温暖”帐篷厂各生产帐篷多少千顶? 思路点拨:找出已知量和未知量,根据题意知未知量有两个,所以列两个方程,根据计划前后,倍数关系由已知量和未知量列出两个等式,即是两个方程组成的方程组。
举一反三: 【变式1】 (2011年北京门头沟区中考一模试题) “地球一小时”是世界自然基金会在2007年提出的一项倡议.号召个人、社区、企业和政府在每年3月最后一个星期六20时30分—21时30分熄灯一小时,旨在通过一个人人可为的活动,让全球民众共同携手关注气候变化,倡导低碳生活.中国内地去年和今年共有119个城市参加了此项活动,且今年参加活动的城市个数比去年的3倍少13个,问中国内地去年、今年分别有多少个城市参加了此项活动. 【变式2】 游泳池中有一群小朋友,男孩戴蓝色游泳帽,女孩戴红色游泳帽。如果每位男孩看到蓝色与红色的游泳帽一样多,而每位女孩看到蓝色的游泳帽比红色的多1倍,你知道男孩与女孩各有多少人吗? 思路点拨:本题关键之一是:小孩子看游泳帽时 只看到别人的,没看到自己的帽子。关键之二是:两个等式,列等式要看到重点语句,第一句:每位男孩看到蓝色与红色的游泳帽一样多;第二句:每位女孩看到蓝色的游泳帽比红色的多1倍。找到已知量和未知量根据这两句话列两个方程。
类型八:列二元一次方程组解决——数字问题 8. 两个两位数的和是68,在较大的两位数的右边接着写较小的两位数,得到一个四位数;在较大的两位数的左边写上较小的两位数,也得到一个四位数,已知前一个四位数比后一个四位数大2178,求这两个两位数。 思路点拨:设较大的两位数为x,较小的两位数为y。 问题1:在较大的两位数的右边写上较小的两位数,所写的数可表示为:100x+y 问题2:在较大数的左边写上较小的数,所写的数可表示为: 100y+x
举一反三: 【变式1】一个两位数,减去它的各位数字之和的3倍,结果是23;这个两位数除以它的各位数字之和,商是5,余数是1,这个两位数是多少?
【变式2】一个两位数,十位上的数字比个位上的数字大5,如果把十位上的数字与个位上的数字交换位置,那么得到的新两位数比原来的两位数的一半还少9,求这个两位数? 类型九:列二元一次方程组解决——浓度问题 9.现有两种酒精溶液,甲种酒精溶液的酒精与水的比是3∶7,乙种酒精溶液的酒精与水的比是4∶1,今要得到酒精与水的比为3∶2的酒精溶液50kg,问甲、乙两种酒精溶液应各取多少? 思路点拨:本题欲求两个未知量,可直接设出两个未知数,然后列出二元一次方程组解决,题中有以下几个相等关系:(1)甲种酒精溶液与乙种酒精溶液的质量之和=50;(2)混合前两种溶液所含纯酒精质量之和=混合后的溶液所含纯酒精的质量;(3)混合前两种溶液所含水的质量之和=混合后溶液所含水的质量;(4)混合前两种溶液所含纯酒精之和与水之和的比=混合后溶液所含纯酒精与水的比。 总结升华:此题的第(1)个相等关系比较明显,关键是正确找到另外一个相等关系,解这类问题常用的相等关系是:混合前后所含溶质相等或混合前后所含溶剂相等。用它们来联系各量之间的关系,列方程组时就显得容易多了。列方程组解应用题,首先要设未知数,多数题目可以直接设未知数,但并不是千篇一律的,问什么就设什么。有时候需要设间接未知数,有时候需要设辅助未知数。
举一反三: 【变式1】要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少? 思路点拨:做此题的关键是找到配制溶液前后保持不变的量,即相等的量。本题主要有两个等量关系,等量关系一:配制盐水前后盐的含量相等;等量关系二:配制盐水前后盐水的总重量相等。
【变式2】一种35%的新农药,如稀释到1.75%时,治虫最有效。用多少千克浓度为35%的农药加水多少千克,才能配成1.75%的农药800千克?
类型十:列二元一次方程组解决——几何问题 10.如图,用8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?
思路点拨:初看这道题目中没有提供任何相等关系,但是题目提供的图形隐含着矩形两条宽相等,两条长相等,我们设每个小长方形的长为x,宽为y,就可以列出关于x、y的二元一次方程组。 总结升华:几何应用题的相等关系一般隐藏在某些图形的性质中,解答这类问题时应注意认真分析图形特点,找出图形的位置关系和数量关系,再列出方程求解。
举一反三: 【变式1】用长48厘米的铁丝弯成一个矩形,若将此矩形的长边剪掉3厘米,补到较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少? 思路点拨:此题隐含两个可用的等量关系,其一长方形的周长为铁丝的长48厘米,第二个等量关系是长方形的长剪掉3厘米补到短边去,得到正方形,即长边截掉3厘米等于短边加上3厘米。
【变式2】一块矩形草坪的长比宽的2倍多10m,它的周长是132m,则长和宽分别为多少? 类型十一:列二元一次方程组解决——年龄问题 11.今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,求现在父亲和儿子的年龄各是多少? 思路点拨:解本题的关键是理解“6年后”这几个字的含义,即6年后父子俩都长了6岁。今年父亲的年龄是儿子的5倍,6年后父亲的年龄是儿子的3倍,根据这两个相等关系列方程。 总结升华:解决年龄问题,要注意一点:一个人的年龄变化(增大、减小)了,其他人也一样增大或减小,并且增大(或减小)的岁数是相同的(相同的时间内)。
举一反三: 【变式1】今年,小李的年龄是他爷爷的五分之一.小李发现,12年之后,他的年龄变成爷爷的三分之一.试求出今年小李的年龄. 思路点拨:本题的关键是两句话,第一句:小李的年龄是他爷爷的五分之一;第二句:他的年龄变成爷爷的三分之一。把未知数设出来,已知量和未知量根据这两句话列两个方程。
类型十二:列二元一次方程组解决——优化方案问题:
12.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元;经粗加工后销售,每吨利润可达4500元;经精加工后销售,每吨利润涨至7500元. 当地一家农工商公司收获这种蔬菜140吨,该公司加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨;如果进行细加工,每天可加工6吨. 但两种加工方式不能同时进行. 受季节条件的限制,公司必须在15天之内将这批蔬菜全部销售或加工完毕,为此公司研制了三种加工方案 方案一:将蔬菜全部进行粗加工; 方案二:尽可能多的对蔬菜进行精加工,没来得及加工的蔬菜在市场上直接销售; 方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好在15天完成 你认为选择哪种方案获利最多?为什么? 思路点拨:如何对蔬菜进行加工,获利最大,是生产经营者一直思考的问题. 本题正是基于这一点,对绿色蔬菜的精、粗加工制定了三种可行方案,供同学们自助探索,互相交流,尝试解决,并在探索和解决问题的过程中,体会应用数学知识解决实际问题的乐趣. 举一反三: 【变式】某商场计划拨款9万元从厂家购进50台电视机,已知厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元。 (1)若商场同时购进其中两种不同型号的电视机50台,用去9万元,请你研究一下商场的进货方案; (2)若商场销售一台甲、乙、丙电视机分别可获利150元、200元、250元,在以上的方案中,为使获利最多,你选择哪种进货方案?
课后习题 (和差倍问题)学校的篮球比足球数的2倍少3个,篮球数与足球数的比为3:2,求这两种球队各是多少个?
(和差倍问题)一次篮,排球比赛,共有48个队,520名运动员参加,其中篮球队每队10名,排球队每队12名,求篮,排球各有多少队参赛 ?
(数字问题)一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数
(数字问题)一个两位数,十位上的数字比个位上的数字小1,十位上的数字与个位上的数字之和是这个两位数的51,求这个两位数. (浓度问题)有含盐20%的盐水5千克,要配制成含盐8%的盐水,需加水多少千克。 (浓度问题)今需将浓度为80%和15%的两种农药配制成浓度为20%的农药4千克,问两种农药应各取多少千克?
(几何分配问题)如图:用8块相同的长方形拼成一个宽为48厘米的大长方形,每块小长方形的长和宽分别是多少? 解:设小长方形的长是x厘米,宽是y厘米 题中的两个相等关系 : 1、小长方形的长+ =大长方形的宽 可列方程为: 2、小长方形的长= 可列方程为:
(年龄问题)甲比乙大15岁,5年前甲的年龄是乙的年龄的两倍,乙现在的年龄是________.
(年龄问题)小华的爸爸现在的年龄比小华大25岁,8年后小华爸爸的年龄是小华的3倍多5岁,求小华现在的年龄
(优化问题)我省某地生产的一种绿色蔬菜,在市场上若直接销售,每吨利润为1000元,经粗加工后销售,每吨利润可达4500元,经精加工后销售每吨获利7500元。 当地一家农工商企业收购这种蔬菜140吨,该企业加工厂的生产能力是:如果对蔬菜进行粗加工,每天可以加工16吨,如果进行细加工,每天可以加工6吨,但两种加工方式