配位场理论
- 格式:docx
- 大小:17.26 KB
- 文档页数:1
第三章配位场理论和络合物结构一、重点1.本章应始终抓住对中心原子d轨道对称性的分析,使学生会分析中心原子d轨道在各种场中的分裂情况,并通过晶体场与分子轨道的结果对比(如:它们都能解释d 轨道的分裂能),使同学们认识到它们之所以有一致的结论,关键在于它们都是从中心原子的d轨道对称性来考虑问题的。
2.晶体场理论二、基本要求1.掌握晶体场理论的基本思想、内容及应用。
2.会分析d轨道的分裂情况,会计算晶体场稳定化能,能利用姜——泰勒效应分析和解决问题。
3.了解分子轨道理论的思想,掌握它的基本结论。
三、基本内容配位化合物的一般概念1.配位化合物(络合物)络合单元:由中心过渡金属的原子或离子及其周围的分子和离子(称配体)按一定的组成和空间构型组合成的结构单元叫络合单元。
中心离子M:通常是含d电子的过渡金属原子或离子,具有空的价轨道。
配位体L:分子或离子,含孤对电子或 键L→M络离子: 带电荷的络合单元叫络离子,如[Fe(CN)6]4-,[Co(NH3)6]3+等,络合物: 络离子与带异性电荷的离子组成的化合物叫络合物。
不带电荷的络合单元本身就是络合物。
如Ni(CO)4,PtCl2(NH3)2等。
金属配位化合物的配位数常见的有2、4、6、8,最常见是4和6两种:配位数为4的常见几何构型为正四面体和平面正方形;配位数为6的常为正八面体构型。
2、络合物的磁性:如果具有自旋未成对电子,络合物具有顺磁性。
磁矩大小ββμμ+=μ,)2n (n 为玻尔磁子。
根据磁矩大小可以分成高自旋,低自旋络合物。
3、络合物的化学键理论 价键理论; 晶体场理论; 分子轨道理论;配位场理论:晶体场理论+分子轨道理论结果 4、配位化合物命名命名方式与无机盐类似:NaCl →[Co(NH3)6]Cl3 氯化六氨合钴(© ) Na2SO4 →K2[PtCl6] 六氯合铂(™)酸钾内界次序:阴离子→中性配位→合→中心离子(罗马数字)K[Co(NH3)2(NO2)4] 四硝基二氨合钴(®)酸钾 K4[Fe(CN)6] 六氰合铁(®)酸钾NH4[Cr(NH3)2(SCN)4] 四硫氰根二氨合钴(©)酸铵 [Cu(NH3)4]SO4 硫酸四氨合铜(®)[Pt(NH3)4(NO2)Cl]CO3碳酸一氯一硝基四氨合铂(™) Na[Co(CO)4] 四羰基合钴(-∇)酸钠 K4[Ni(CN)4] 四氰合钴(0)酸钾5、配合物的空间结构1)几何构型1.配位数(C.N )=4,配体采用四面体空间结构,中心原子轨道采用sp3 杂化。
配位化学之配位场理论与络合物结构络合物的价键理论价键理论是三十年代初由L.Pauling在杂化理论基础上提出的。
他认为:络合物的中央离子与配位体之间的化学键可分为电价配键和共价配键,相应的络合物称电价络合物和共价络合物。
一、电价配键与电价络合物带正电的中央离子与带负电或有偶极矩的配体之间靠静电引力结合,称电价配键。
中央离子与配位体间的静电作用不影响中央离子的电子层结构,所以中央离子的电子层结构和自由离子一样,服从洪特规则。
如:[FeF6]3-、[Fe(H2O)6]2+、[Ni(NH3)6]2+、[Co(NH3)6]2+等,它们在形成络合物前后,自旋未成对电子数不变(分别为n=5,4,2,3),分子的磁性由中央离子的电子排布决定,所以电价络和物是高自旋络合物。
二、共价配键和共价络合物中央离子以空的价轨道接受配位体的孤对电子所形成的键叫共价配键。
从络合物的几何构型看,中央离子提供杂化轨道。
过渡金属元素的离子,(n-1)d ns,np能级接近,(n-1)d部分占据,ns,np为空的,可以形成:d2sp3 dsp2d4sp3杂化几何构型:正八面体、平面正方形、正十二面体此外还有sp3sp2 sp 杂化正四面体正三角形直线型为了形成尽可能多的配键,d轨道电子重排,使自旋未成对电子个数减少,一般为低自旋络合物。
如[Fe(CN)6]3-自由Fe3+3d5 __ __ __ __ __————3d 4s 4p当它与六个CN-配位时,五个d电子被挤到3个轨道,空出两个d轨道形成d2sp3杂化轨道。
参加杂化的基函数为:dx2-y2、dz2、s、px、py、pz。
因为如果把中心离子位于八面体中心,六个配体位于x、y、z轴的正、负方向上,则dx2-y2 和dz2 是直接指向配体的轨道。
形成的六个杂化的空轨道指向正八面体的六个顶点,可接受六个CN-中的π电子形成六个共价配键。
这种违背洪特规则的电子排布,会使体系能量有所升高,但形成六个d2sp3杂化空轨道,形成6个共价配键,使体系能量大大降低。
配位场理论
有三种理论用于说明和解释配合物的结构和性能:价键理论、晶体场理论和分子轨道理论。
30年代初,鲍林将价键理论应用于配合物结构,能够解释一些
问题,但有些问题不能解释。
到50年代,引入晶体场理论和分子轨
道理论解释配合物中的化学结合和化学结构,形成了配位场理论。
配位场理论是晶体场理论的发展,其实质是配位化合物的分子轨道理论。
配位场理论在处理中心金属原子在其周围配体所产生的场作用下,金属原子轨道能级发生变化时,以分子理论轨道方法为主,采用类似的原子轨道线性组合等数学方法,根据配体场的对称性进行简化,并吸收晶体场理论的成果,阐明配位化合物的结构和性质。
在配位场理论中,中心离子的d轨道分裂及能级变化与晶体场相同。
在有些配合物中,中心离子(通常也称中心原子)周围被按照一定对称性分布的配位体所包围而形成一个结构单元。
配位场就是配位体对中心离子(这里大多是指过渡金属络合物)作用的静电势场。
由于配位体有各种对称性排布,遂有各种类型的配位场,如四面体配位化合物形成的四面体场,八面体配位化合物形成的八面体场等。
随着无机和有机配合物合成的日益增多和各种结构与性能的研究,配位场理论不断发展,成为近代重要的化学键理论之一,是理论物理和理论化学的一个重要分支。
它在解释配位化合物的结构与性能关系、催化反应机理,激光物质的工作原理以及晶体的物理性质等方面都得到广泛的应用。