二次函数复习题1
- 格式:doc
- 大小:252.50 KB
- 文档页数:9
初中数学二次函数知识点总复习含解析(1)一、选择题1.如图,二次函数y =ax 2+bx +c 的图象过点A (3,0),对称轴为直线x =1,给出以下结论:①abc <0;②3a +c =0;③ax 2+bx ≤a +b ;④若M (﹣0.5,y 1)、N (2.5,y 2)为函数图象上的两点,则y 1<y 2.其中正确的是( )A .①③④B .①②3④C .①②③D .②③④【答案】C 【解析】 【分析】根据二次函数的图象与性质即可求出答案. 【详解】解:①由图象可知:a <0,c >0, 由对称轴可知:2ba->0, ∴b >0,∴abc <0,故①正确; ②由对称轴可知:2ba-=1, ∴b =﹣2a ,∵抛物线过点(3,0), ∴0=9a+3b+c , ∴9a ﹣6a+c =0, ∴3a+c =0,故②正确;③当x =1时,y 取最大值,y 的最大值为a+b+c , 当x 取全体实数时,ax 2+bx+c≤a+b+c , 即ax 2+bx≤a+b ,故③正确;④(﹣0.5,y 1)关于对称轴x =1的对称点为(2.5,y 1): ∴y 1=y 2,故④错误; 故选:C . 【点睛】本题考查二次函数,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.2.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是( )A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0【答案】A【解析】【分析】【详解】解:∵二次函数的图象开口向上,∴a>0.∵对称轴在y轴的左边,∴b2a-<0.∴b>0.∵图象与y轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b﹣2=0.∴a=2﹣b,b=2﹣a.∴y=ax2+(2﹣a)x﹣2.把x=﹣1代入得:y=a﹣(2﹣a)﹣2=2a﹣4,∵b>0,∴b=2﹣a>0.∴a<2.∵a>0,∴0<a<2.∴0<2a<4.∴﹣4<2a﹣4<0,即﹣4<P<0.故选A.【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.3.抛物线y=-x2+bx+3的对称轴为直线x=-1.若关于x的一元二次方程-x2+bx+3﹣t=0(t为实数)在﹣2<x<3的范围内有实数根,则t的取值范围是()A.-12<t≤3B.-12<t<4 C.-12<t≤4D.-12<t<3【答案】C【解析】【分析】根据给出的对称轴求出函数解析式为y=-x2−2x+3,将一元二次方程-x2+bx+3−t=0的实数根看做是y=-x2−2x+3与函数y=t的交点,再由﹣2<x<3确定y的取值范围即可求解.【详解】解:∵y=-x2+bx+3的对称轴为直线x=-1,∴b=−2,∴y=-x2−2x+3,∴一元二次方程-x2+bx+3−t=0的实数根可以看做是y=-x2−2x+3与函数y=t的交点,∵当x =−1时,y =4;当x =3时,y =-12,∴函数y =-x 2−2x +3在﹣2<x <3的范围内-12<y≤4, ∴-12<t≤4, 故选:C . 【点睛】本题考查二次函数的图象及性质,能够将方程的实数根问题转化为二次函数与直线的交点问题是解题关键.4.已知抛物线2y ax bx c =++与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线一定过原点;②方程()200++=≠ax bx c a 的解为0x =或4;③0a b c -+<;④当04x <<时,20ax bx c ++<;⑤当2x <时,y 随x 增大而增大.其中结论正确的个数有( )A .1B .2C .3D .4【答案】D 【解析】 【分析】根据题意,求得,,a b c ,根据二次函数的图像和性质,结合选项进行逐一分析,即可判断. 【详解】 由题可知22ba-=,与x 轴的一个交点坐标为(4,0),则另一个交点坐标为()0,0, 故可得1640a b c ++=,0c =, 故可得4,0a b c -== ①因为0c =,故①正确;②因为二次函数过点()()0,0,4,0,故②正确; ③当1x =-时,函数值为0a b c -+<,故③正确; ④由图可知,当04x <<时,0y <,故④正确; ⑤由图可知,当2x <时,y 随x 增大而减小,故⑤错误; 故选:D. 【点睛】本题考查二次函数的图像和性质,涉及二次函数的增减性,属综合中档题.5.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.6.将抛物线y =x 2﹣4x +1向左平移至顶点落在y 轴上,如图所示,则两条抛物线.直线y =﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.7.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D分析:A 、把m=-3代入[2m ,1-m ,-1-m],求得[a ,b ,c],求得解析式,利用顶点坐标公式解答即可;B 、令函数值为0,求得与x 轴交点坐标,利用两点间距离公式解决问题;C 、首先求得对称轴,利用二次函数的性质解答即可;D 、根据特征数的特点,直接得出x 的值,进一步验证即可解答. 详解:因为函数y=ax 2+bx+c 的特征数为[2m ,1﹣m ,﹣1﹣m]; A 、当m=﹣3时,y=﹣6x 2+4x+2=﹣6(x ﹣13)2+83,顶点坐标是(13,83);此结论正确;B 、当m >0时,令y=0,有2mx 2+(1﹣m )x+(﹣1﹣m )=0,解得:x 1=1,x 2=﹣12﹣12m, |x 2﹣x 1|=32+12m >32,所以当m >0时,函数图象截x 轴所得的线段长度大于32,此结论正确;C 、当x=1时,y=2mx 2+(1﹣m )x+(﹣1﹣m )=2m+(1﹣m )+(﹣1﹣m )=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的. 故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.8.已知抛物线y =x 2+(2a +1)x +a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限, 故选:D . 【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.9.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁【答案】B 【解析】 【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得121b b c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.10.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C 【解析】 【分析】根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决. 【详解】 由图象可得, a >0,b >0,c <0, ∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确, 当x =﹣1时,y =a ﹣b +c <0, 由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确,∵12b a ->-,a >0,得122b a >>,故③正确, 故选C . 【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.11.如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD=AD=3时,这两个二次函数的最大值之和等于()A .5B .453C .3D .4【答案】A 【解析】 【分析】 【详解】过B 作BF ⊥OA 于F ,过D 作DE ⊥OA 于E ,过C 作CM ⊥OA 于M ,∵BF ⊥OA ,DE ⊥OA ,CM ⊥OA , ∴BF ∥DE ∥CM . ∵OD=AD=3,DE ⊥OA ,∴OE=EA=12OA=2. 由勾股定理得:DE=5.设P (2x ,0),根据二次函数的对称性得出OF=PF=x , ∵BF ∥DE ∥CM ,∴△OBF ∽△ODE ,△ACM ∽△ADE . ∴BF OF CM AMDE OE DE AE ==,,即x 2x 2255-==,,解得:()52x 5BF ?x CM 22-==,. ∴BF+CM=5. 故选A .12.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( ) ①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ; ②c =a+3; ③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2ba-=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质13.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.14.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表: x … 2- 1- 0 1 2 …且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0B .1C .2D .3【答案】C【解析】【分析】 首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解.【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ;∵当x=0时y=c=-2 ∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确;∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x ∵当12x =-时,与其对应的函数值0y >. ∴3204a ->,∴a 83>; ∵当x=-1和x=2时的函数值分别为m 和n ,∴m=n=2a-2,∴m+n=4a-4203>;故③错误 故选:C .【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量x 与函数值y 的值结合二次函数的性质逐条分析给定的结论是关键.15.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( )A .1y <2y <3yB .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C【解析】【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可.【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -,y 2=(-3)2+4×(-3)m - =9-12m - =3m --,y 3=12+4×m - 1=1+4m - =5m -,∵-3m -<m -<5m -,∴y 2<y 1<y 3.故选:C.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.16.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.17.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .【答案】D【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断. 解:当0≤t≤4时,S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF=4•4﹣•4•(4﹣t )﹣•4•(4﹣t )﹣•t•t=﹣t 2+4t=﹣(t ﹣4)2+8;当4<t≤8时,S=•(8﹣t )2=(t ﹣8)2.故选D .考点:动点问题的函数图象.18.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .本题考查二次函数的性质.19.在函数2yx=,3y x=+,2y x=的图象中,是中心对称图形,且对称中心是原点的图象共有()A.0个B.1个C.2个D.3个【答案】B【解析】【分析】根据中心对称图形的定义与函数的图象即可求解.【详解】y=x+3的图象是中心对称图形,但对称中心不是原点;y=x2图象不是中心对称图形;只有函数2yx=符合条件.故选:B.【点睛】本题考查函数的图象性质与中心对称图形的性质,熟练掌握相关知识是解题的关键.20.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.。
九下期末复习资料(一)——《二次函数》【例题讲解】例1:二次函数y=a x 2+b x+c (a ≠0)的图象如图所示,根据图象回答下列问题.(1)如图1,若抛物线经过点A (-3,0),对称轴是直线x =-1,与y 轴的交点坐标为(0,3)①求抛物线的解析式;①写出它的顶点坐标;①写出它与坐标轴的交点坐标;①当x 取何值时,抛物线中y 随x 增大而增大;①已知A (-2, y 1),B (2, y 2)为函数图象上的两个点,请比较y 1和y 2的大小关系; ①已知-3≤x ≤-2,求y 的取值范围;①写出方程ax 2+bx +c =0的根;①写出不等式ax 2+bx +c <0的解集;①若方程ax 2+bx +c =k 无实数根,写出k 的取值范围.(2)二次函数y =ax 2+bx +c 的图象如图1所示,抛物线经过点A (-3,0),对称轴是直线x =-1,下列结论:①abc >0;①2a ﹣b <0;①a ﹣b +c <0;①9a +3b +c <0,其中正确的有 .(3)如图1,抛物线y =ax 2+bx +c (a <0)经过(2, n ),(-4, n )两点,若点M (x 1, y 1),点N (x 2, y 2)也在抛物线上,且满足x 1<x 2,x 1+x 2>-2,则 y 1,y 2的大小关系 . (4)如图2,抛物线y =ax 2+bx +c (a <0)与直线y =kx +n 相交于点C (−52,74)、C (0,3)两点,则关于x 的不等式ax 2+bx +c <kx +n 的解集是 .BC图1 图2例2:如图,抛物线y=a x2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.例3:如图,隧道的截面由抛物线DEC和矩形ABCD构成,矩形的长AB为4m,宽BC为3m,以DC所在的直线为x轴,线段CD的中垂线为y轴,建立平面直角坐标系.y轴是抛物线的对称轴,最高点E到地面距离为4米.(1)求出抛物线的解析式.(2)在距离地面13米高处,隧道的宽度是多少?4(3)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高3.6米,宽2.4米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.【课内练习】1.已知函数y=(m−2)x m2−2+2x−7是二次函数,则m的值为()A.±2B.2C.-2D.m为全体实数2.一台机器原价100万元,若每年的折旧率是x,两年后这台机器约为y万元,则y与x的函数关系式为()A.y=100(1﹣x)B.y=100﹣x2C.y=100(1+x)2D.y=100(1﹣x)23.抛物线y=ax2经过点(2,-8),则a=.4.若二次函数y=x2−6x+9的图象经过A(−1,y1),B(1,y2),C(3,y3)三点,则y1,y 2,y3大小关系为.5.抛物线y=x2-4x+5,当0≤x≤3时,y的取值范围是.6.写出抛物线y=﹣x2+4x的开口方向、对称轴、顶点坐标和最大值.7.如图,利用一面墙(墙的长度为20m),用34m长的篱笆围成两个鸡场,中间用一道篱笆隔开,每个鸡场均留一道1m宽的门,设AB的长为x米.(1)若两个鸡场的面积之和为S,求S关于x的关系式;(2)两个鸡场面积之和S有最大值吗?若有,求出这个最大值.【课后作业】1.抛物线y=−(x+1)2−1的顶点坐标为()A.(1,1)B.(1,-1)C.(-1,1)D.(-1,-1)2.若二次函数y=2(x−1)2−1的图象如图所示,则坐标原点可能是()A.点A B.点B C.点C D.点D3. 某超市将进价为40元件的商品按50元/件出售时,每月可售出500件.经试销发现,该商品售价每上涨1元,其月销量就减少10件.超市为了每月获利8000元,则每件应涨价多少元?若设每件应涨价x元,则依据题意可列方程为()A.(50−40+x)(500−x)=8000B.(40+x)(500−10x)=8000C.(50−40+x)(500−10x)=8000D.(50−x)(500−10x)=8000第2题图第4题图第5题图4.如图,将一个含45°的直角三角板ABC放在平面直角坐标系的第一象限,使直角顶点A的坐标为(1,0),点C在y轴上.过点A,C作抛物线y=2x2+bx+c,且点A为抛物线的顶点.要使这条抛物线经过点B,那么抛物线要沿对称轴向下平移()A.5个单位B.6个单位C.7个单位D.8个单位5.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(-1,0)和B,与y轴交于点C.下列结论:①abc<0;①2a+b>0;①4a-2b+c>0;①3a+c>0.其中错误的结论个数为()A.1个B.2个C.3个D.4个6.已知抛物线y=x2+bx+c经过点A(m,n),B(4﹣m,n),且抛物线与x轴有交点,则c的最大值为()A.0B.2C.4 D.87.已知二次函数y=﹣x2+2x+3,当自变量x的值满足a<x≤2时,函数y的最大值与最小值的差为1,则a的值可以为()A.−12B.12C.﹣1D.18.抛物线y=−(x+1)2−1的顶点坐标为.9.将二次函数y=−x2+6x−8用配方法化成y=(x−ℎ)2+k的形式为y=.10.已知二次函数y=ax2+4x+3(a≠0)的顶点在x轴上,则a= .11.如图,二次函数y=ax2+bx+c的图象与x轴交于(﹣2,0)和(4,0)两点,当函数值y>0时,自变量x的取值范围是.12.若关于x的函数y=x2−2x+k+1的图象与x轴只有1个交点,则k的值是.13.已知二次函数y=x2﹣x﹣6.求二次函数的图象与坐标轴的交点所构成的三角形的面积.14.已知二次函数y=C x2+bx+c(其中a、b、c为常数,且C≠0)的自变量x的值与它对应的函数值y如下表所示:(1)该二次函数图象的对称轴是直线.(2)如果n=−2,求此二次函数的解析式及其图像与y轴的交点坐标.15.已知抛物线y=−x2+bx+c如图所示,它与x轴的一个交点的坐标为A(−1,0),与y轴的交点坐标为C(0,3).(1)求抛物线对应的函数表达式及与x轴的另一个交点B的坐标;(2)根据图象回答:当x取何值时,y<0;(3)在抛物线的对称轴上有一动点P,求PA+PC的最小值,并求当PA+PC取最小值时点P的坐标.。
二次函数练习题(1)A 卷一、选择题(每题5分,共30分)1.二次函数y=x 2+bx+c,若b+c=0,则它的图象一定过点( )A.(-1,-1)B.(1,-1)C.(-1,1)D.(1,1)2.若直线y=ax+b(ab≠0)不过第三象限,则抛物线y=ax 2+bx 的顶点所在的象限是( )A.一B.二C.三D.四3.函数y=ax 2+bx+c 中,若ac<0,则它的图象与x 轴的位置关系为( )A.无交点B.有1个交点;C.有两个交点D.不确定4.抛物线与x 轴交点的横坐标为-2和1,且过点(2,8),它的关系式为( )A.y=2x 2-2x-4;B.y=-2x 2+2x-4;C.y=x 2+x-2;D.y=2x 2+2x-45.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A.5B.4C.3D.26.二次函数y=ax 2+bx+c 与一次函数y=ax+c 在同一坐标系内的图象可能是图3所示的( )二、填空题:(每题5分,共30分)1.若抛物线y=x 2+(m-1)x+(m+3)顶点在y 轴上,则m=_______.2.把抛物线y=12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________. 3.抛物线y=ax 2+12x-19顶点横坐标是3,则a=____________.4.若y=(a-1)231a x -是关于x 的二次函数,则a=____________.5.二次函数y=mx 2-3x+2m-m2的图象经过点(-1,-1),则m=_________.6.已知点(2,5),(4,5)是抛物线y=ax 2+bx+c 上的两点, 则这条抛物线的对称轴是______.三、解答题(共40分)1.已知二次函数的图象的对称轴为x=2,函数的最小值为3,且图象经过点(- 1,5),求此二次函数图象的关系式.2.二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C,如图2所示,AC= ,BC= ∠ACB=90°,求二次函数图象的关系式. 3.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--, 这两个二次函数的图象中的一条与x 轴交于A, B 两个不同的点.图1 Cx B A Oy 图2 图3(l)试判断哪个二次函数的图象经过A, B两点;(2)若A点坐标为(-1, 0),试求B点坐标;(3)在(2)的条件下,对于经过A, B两点的二次函数,当x取何值时,y的值随x值的增大而减小?(B卷)拓广提高(30分)时间:45分钟满分:30分一、选择题(每题4分,共8分)1.把二次函数y=3x2的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式为( )A.y=3(x-2)2+1B.y=3(x+2)2-1C.y=3(x-2)2-1D.y=3(x+2)2+12.已知二次函数y=x2-2mx+m-1的图象经过原点,与x轴的另一个交点为A, 抛物线的顶点为B,则△OAB的面积为( ) A.32B.2;C.1;D.12二、填空题:(每题2分,共20分)1.已知二次函数y=2x2-mx-4的图象与x轴的两个交点的横坐标的倒数和为2,则m=_________.2.二次函数y= ax2+ bx+ c 的图象如图5所示, 则这个二次函数的关系式为_________,当______时,y=3,根据图象回答:当x______时,y>0.三、解答题1.(1)请你画出函数y=12x2-4x+10的图象, 由图象你能发现这个函数具有哪些性质?(2)通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴、顶点坐标,这个函数有最大值还是最小值?这个值是多少?2.根据下列条件,分别求出对应的二次函数关系式.(1)已知抛物线的顶点是(-1,-2),且过点(1,10);(2)已知抛物线过三点:(0,-2),(1,0),(2,3).(C卷)新题推荐(20分)1.如图6所示,△ABC中,BC=4,∠B=45°,M、N分别是AB、AC上的点,MN∥BC.设MN=x,△MNC的面积为S.(1)求出S与x之间的函数关系式,并写出自变量x的取值范围.(2)是否存在平行于BC的线段MN,使△MNC的面积等于2? 若存在,请求出MN的长; 若不存在,请说明理由.2.如图7,已知直线12y x=-与抛物线2164y x=-+交于A B,两点.图5BMAN图6。
第22章《二次函数》章节复习资料【1】一.选择题(共10小题)1.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.2.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个3.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.4.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个5.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.6.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=77.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣18.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2 D.抛物线的对称轴是x=﹣9.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,010.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m二.填空题(共10小题)11.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.12.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是(填入正确结论的序号).13.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为.14.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.15.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是.16.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线.17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为元时,该服装店平均每天销售利润最大.18.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为.19.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为m2.三.解答题(共7小题)21.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)22.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?23.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.24.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.26.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?27.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.第22章《二次函数》章节复习资料【1】参考答案与试题解析一.选择题(共10小题)1.在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a的图象可能是()A.B.C.D.【解答】解:当a<0时,二次函数顶点在y轴负半轴,一次函数经过一、二、四象限;当a>0时,二次函数顶点在y轴正半轴,一次函数经过一、二、三象限.故选C.2.如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a >b,④4ac﹣b2<0;其中正确的结论有()A.1个B.2个C.3个D.4个【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.3.如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线x=t截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的()A.B.C.D.【解答】解:∵Rt△AOB中,AB⊥OB,且AB=OB=3,∴∠AOB=∠A=45°,∵CD⊥OB,∴CD∥AB,∴∠OCD=∠A,∴∠AOD=∠OCD=45°,∴OD=CD=t,∴S△OCD=×OD×CD=t2(0≤t≤3),即S=t2(0≤t≤3).故S与t之间的函数关系的图象应为定义域为[0,3]、开口向上的二次函数图象;故选D.4.如图是二次函数y=ax2+bx+c的图象,下列结论:①二次三项式ax2+bx+c的最大值为4;②4a+2b+c<0;③一元二次方程ax2+bx+c=1的两根之和为﹣1;④使y≤3成立的x的取值范围是x≥0.其中正确的个数有()A.1个B.2个C.3个D.4个【解答】解:∵抛物线的顶点坐标为(﹣1,4),∴二次三项式ax2+bx+c的最大值为4,①正确;∵x=2时,y<0,∴4a+2b+c<0,②正确;根据抛物线的对称性可知,一元二次方程ax2+bx+c=1的两根之和为﹣2,③错误;使y≤3成立的x的取值范围是x≥0或x≤﹣2,④错误,故选:B.5.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.6.若二次函数y=x2+mx的对称轴是x=3,则关于x的方程x2+mx=7的解为()A.x1=0,x2=6 B.x1=1,x2=7 C.x1=1,x2=﹣7 D.x1=﹣1,x2=7【解答】解:∵二次函数y=x2+mx的对称轴是x=3,∴﹣=3,解得m=﹣6,∴关于x的方程x2+mx=7可化为x2﹣6x﹣7=0,即(x+1)(x﹣7)=0,解得x1=﹣1,x2=7.故选D.7.已知二次函数y=x2+(m﹣1)x+1,当x>1时,y随x的增大而增大,而m的取值范围是()A.m=﹣1 B.m=3 C.m≤﹣1 D.m≥﹣1【解答】解:抛物线的对称轴为直线x=﹣,∵当x>1时,y的值随x值的增大而增大,由图象可知:﹣≤1,解得m≥﹣1.故选D.8.二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 …y … 4 0 ﹣2 ﹣2 0 4 …下列说法正确的是()A.抛物线的开口向下B.当x>﹣3时,y随x的增大而增大C.二次函数的最小值是﹣2D.抛物线的对称轴是x=﹣【解答】解:将点(﹣4,0)、(﹣1,0)、(0,4)代入到二次函数y=ax2+bx+c中,得:,解得:,∴二次函数的解析式为y=x2+5x+4.A、a=1>0,抛物线开口向上,A不正确;B、﹣=﹣,当x≥﹣时,y随x的增大而增大,B不正确;C、y=x2+5x+4=﹣,二次函数的最小值是﹣,C不正确;D、﹣=﹣,抛物线的对称轴是x=﹣,D正确.故选D.9.在二次函数y=x2﹣2x﹣3中,当0≤x≤3时,y的最大值和最小值分别是()A.0,﹣4 B.0,﹣3 C.﹣3,﹣4 D.0,0【解答】解:抛物线的对称轴是x=1,则当x=1时,y=1﹣2﹣3=﹣4,是最小值;当x=3时,y=9﹣6﹣3=0是最大值.故选A.10.二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0 B.0<y<m C.y>m D.y=m【解答】解:∵对称轴是x=,0<x1<故由对称性<x2<1当x=a时,y<0,则a的范围是x1<a<x2,所以a﹣1<0,当x时y随x的增大而减小,当x=0时函数值是m.因而当x=a﹣1<0时,函数值y一定大于m.故选C.二.填空题(共10小题)11.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.【解答】解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.12.已知二次函数y=ax2+bx+c的图象如图所示,有以下结论:①abc>0,②a﹣b+c<0,③2a=b,④4a+2b+c>0,⑤若点(﹣2,y1)和(﹣,y2)在该图象上,则y1>y2.其中正确的结论是②④(填入正确结论的序号).【解答】解:∵二次函数开口向下,且与y轴的交点在x轴上方,∴a<0,c>0,∵对称轴为x=1,∴﹣=1,∴b=﹣2a>0,∴abc<0,故①、③都不正确;∵当x=﹣1时,y<0,∴a﹣b+c<0,故②正确;由抛物线的对称性可知抛物线与x轴的另一交点在2和3之间,∴当x=2时,y>0,∴4a+2b+c>0,故④正确;∵抛物线开口向下,对称轴为x=1,∴当x<1时,y随x的增大而增大,∵﹣2<﹣,∴y1<y2,故⑤不正确;综上可知正确的为②④,故答案为:②④.13.如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连结BD,则对角线BD的最小值为1.【解答】解:∵y=x2﹣2x+2=(x﹣1)2+1,∴抛物线的顶点坐标为(1,1),∵四边形ABCD为矩形,∴BD=AC,而AC⊥x轴,∴AC的长等于点A的纵坐标,当点A在抛物线的顶点时,点A到x轴的距离最小,最小值为1,∴对角线BD的最小值为1.故答案为1.14.如图是一个横断面为抛物线形状的拱桥,当水面宽4米时,拱顶(拱桥洞的最高点)离水面2米,水面下降1米时,水面的宽度为米.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O 为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降1米,通过抛物线在图上的观察可转化为:当y=﹣1时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣1代入抛物线解析式得出:﹣1=﹣0.5x2+2,解得:x=,所以水面宽度增加到米,故答案为:.15.已知二次函数y=x2+2mx+2,当x>2时,y的值随x值的增大而增大,则实数m的取值范围是m≥﹣2.【解答】解:抛物线的对称轴为直线x=﹣=﹣m,∵当x>2时,y的值随x值的增大而增大,∴﹣m≤2,解得m≥﹣2.故答案为:m≥﹣2.16.抛物线y=a(x+1)(x﹣3)(a≠0)的对称轴是直线x=1.【解答】解:y=a(x+1)(x﹣3)=ax2﹣2ax﹣3a由公式得,抛物线的对称轴为x=1.17.某服装店购进单价为15元童装若干件,销售一段时间后发现:当销售价为25元时平均每天能售出8件,而当销售价每降低2元,平均每天能多售出4件,当每件的定价为22元时,该服装店平均每天的销售利润最大.【解答】解:设定价为x元,根据题意得:y=(x﹣15)[8+2(25﹣x)]=﹣2x2+88x﹣870∴y=﹣2x2+88x﹣870,=﹣2(x﹣22)2+98∵a=﹣2<0,∴抛物线开口向下,∴当x=22时,y最大值=98.故答案为:22.18.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).19.若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为﹣1或2或1.【解答】解:∵函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1.故答案为:﹣1或2或1.20.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为75m2.【解答】解:设垂直于墙的材料长为x米,则平行于墙的材料长为27+3﹣3x=30﹣3x,则总面积S=x(30﹣3x)=﹣3x2+30x=﹣3(x﹣5)2+75,故饲养室的最大面积为75平方米,故答案为:75.三.解答题(共7小题)21.如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;(3)若点P在第一象限内的抛物线上,且S△ABP=4S△COE,求P点坐标.注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S△ABP=4S△COE,∴2y=4×,∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).22.某超市销售樱桃,已知樱桃的进价为15元/千克,如果售价为20元/千克,那么每天可售出250千克,如果售价为25元/千克,那么每天可获利2000元,经调查发现:每天的销售量y(千克)与售价x(元/千克)之间存在一次函数关系.(1)求y与x之间的函数关系式;(2)若樱桃的售价不得高于28元/千克,请问售价定为多少时,该超市每天销售樱桃所获的利润最大?最大利润是多少元?【解答】解:(1)当x=25时,y=2000÷(25﹣15)=200(千克),设y与x的函数关系式为:y=kx+b,把(20,250),(25,200)代入得:,解得:,∴y与x的函数关系式为:y=﹣10x+450;(2)设每天获利W元,W=(x﹣15)(﹣10x+450)=﹣10x2+600x﹣6750=﹣10(x﹣30)2+2250,∵a=﹣10<0,∴开口向下,∵对称轴为x=30,∴在x≤28时,W随x的增大而增大,∴x=28时,W最大值=13×170=2210(元),答:售价为28元时,每天获利最大为2210元.23.如图,抛物线y=x2﹣bx+c交x轴于点A(1,0),交y轴于点B,对称轴是x=2.(1)求抛物线的解析式;(2)点P是抛物线对称轴上的一个动点,是否存在点P,使△PAB的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.【解答】解:(1)由题意得,,解得b=4,c=3,∴抛物线的解析式为.y=x2﹣4x+3;(2)∵点A与点C关于x=2对称,∴连接BC与x=2交于点P,则点P即为所求,根据抛物线的对称性可知,点C的坐标为(3,0),y=x2﹣4x+3与y轴的交点为(0,3),∴设直线BC的解析式为:y=kx+b,,解得,k=﹣1,b=3,∴直线BC的解析式为:y=﹣x+3,则直线BC与x=2的交点坐标为:(2,1)∴点P的坐标为:(2,1).24.为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?【解答】解:(1)由题意得,y=700﹣20(x﹣45)=﹣20x+1600;(2)P=(x﹣40)(﹣20x+1600)=﹣20x2+2400x﹣64000=﹣20(x﹣60)2+8000,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;(3)由题意,得﹣20(x﹣60)2+8000=6000,解得x1=50,x2=70.∵抛物线P=﹣20(x﹣60)2+8000的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润.又∵x≤58,∴50≤x≤58.∵在y=﹣20x+1600中,k=﹣20<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和四边形ABCD的面积.【解答】解:(1)由已知得:C(0,4),B(4,4),把B与C坐标代入y=﹣x2+bx+c得:,解得:b=2,c=4,则解析式为y=﹣x2+2x+4;(2)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴抛物线顶点坐标为(2,6),则S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=8+4=12.26.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.27.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.【解答】解:(1)∵二次函数的图象与x轴有两个交点,∴△=22+4m>0∴m>﹣1;(2)∵二次函数的图象过点A(3,0),∴0=﹣9+6+m∴m=3,∴二次函数的解析式为:y=﹣x2+2x+3,令x=0,则y=3,∴B(0,3),设直线AB的解析式为:y=kx+b,∴,解得:,∴直线AB的解析式为:y=﹣x+3,∵抛物线y=﹣x2+2x+3,的对称轴为:x=1,∴把x=1代入y=﹣x+3得y=2,∴P(1,2).。
二次函数练习一一、填空1、二次函数y=-x 2+6x+3的图象顶点为_________对称轴为_________。
2、二次函数y=(x-1)(x+2)的顶点为_________,对称轴为________。
3、二次函数y=2(x+3)(x-1)的x 轴的交点的个数有_______个,交点坐标为____________。
4、y=x 2-3x-4与x 轴的交点坐标是__________,与y 轴交点坐标是____________5、由y=2x 2和y=2x 2+4x-5的顶点坐标和二次项系数可以得出y=2x 2+4x-5的图象可由y=2x 2的图象向__________平移________个单位,再向_______平移______个单位得到。
二、解答:6、求y=2x 2+x-1与x 轴、y 轴交点的坐标。
7、求y=31x 2212--x 的顶点坐标。
8、已知二次函数图象顶点坐标(-3,21)且图象过点(2,211),求二次函数解析式及图象与y 轴的交点坐标。
9、已知二次函数图象与x 轴交点(2,0)(-1,0)与y 轴交点是(0,-1)求解析式及顶点坐标。
10、分析若二次函数y=ax 2+bx+c 经过(1,0)且图象关于直线x=21,对称,那么图象还必定经过哪一点?二次函数练习二一、根据下列条件求关于x的二次函数的解析式= -1,且图象过(0,7)(1)当x=3时,y最小值3(2)图象过点(0,-2)(1,2)且对称轴为直线x=2(3)图象经过(0,1)(1,0)(3,0)(4)当x=1时,y=0;x=0时,y= -2,x=2 时,y=3(5)抛物线顶点坐标为(-1,-2)且通过点(1,10)二、应用题1、用一个长为6分米的铁丝做成一个一条边长为x分米的矩形,设矩形面积是y平方分米,,求①y关于x的函数关系式;②当边长为多少时这个矩形面积最大?2、在一边靠墙的空地上,用砖墙围成三格的矩形场地(如下图)已知砖墙在地面上占地总长度160m,问分隔墙在地面上的长度x为多少时所围场地总面积最大?并求这个最大面积。
初中数学二次函数存在性问题总复习试题(1)姓名:学号:评价:1.(10广东深圳)如图,抛物线y=ax2+c(a>0)经过梯形ABCD的四个顶点,梯形的底AD 在x轴上,其中A(-2,0),B(-1, -3).(1)求抛物线的解析式;(2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;(3)在第(2)问的结论下,抛物线上的点P使S△P AD=4S△ABM成立,求点P的坐标.2. (10北京)在平面直角坐标系xOy 中,抛物线y = -41-m x 2+45mx +m 2-3m +与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。
(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED =PE 。
以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求 OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一 点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。
过Q 点作x 轴的垂线,与直线AB 交于点F 。
延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。
若P 点运动到t 秒时,两个等腰直角三角形分 别有一条直角边恰好落在同一条直线上,求此刻t 的值。
3.(10贵州遵义)如图,已知抛物线)0(2≠++=a c bx ax y 的顶点坐 标为Q ()1,2-,且与y 轴交于点C ()3,0,与x 轴交于A 、B 两 点(点A 在点B 的右侧),点P 是该抛物线上一动点,从点C 沿抛物线向点A 运动(点P 与A 不重合),过点P 作PD ∥y 轴, 交AC 于点D .(1)求该抛物线的函数关系式;(2)当△ADP 是直角三角形时,求点P 的坐标;(3)在问题(2)的结论下,若点E 在x 轴上,点F 在抛物线上, 问是否存在以A 、P 、E 、F 为顶点的平行四边形?若存在, 求点F 的坐标;若不存在,请说明理由.4.(10湖北黄冈)已知抛物线2(0)y ax bx c a =++≠顶点为C (1,1)且过原点O.过抛物线上一点P (x ,y )向直线54y =作垂线,垂足为M ,连FM (如图).(1)求字母a ,b ,c 的值;(2)在直线x =1上有一点3(1,)4F ,求以PM 为底边的等腰三角形PFM 的P 点的坐标,并证明此时△PFM 为正三角形;(3)对抛物线上任意一点P ,是否总存在一点N (1,t ),使PM =PN 恒成立,若存在请求出t 值,若不存在请说明理由.初中数学二次函数存在性问题总复习试题(2)姓名:学号:评价:1错误!未指定书签。
第二十二章 二次函数 复习与检测(一)一.选择题 1.如果函数是二次函数,则m 的取值范围是( )A .m =±2B .m =2C .m =﹣2D .m 为全体实数2.若二次函数y =x 2﹣2x +c 的图象与坐标轴只有两个公共点,则c 应满足的条件是( ) A .c =0B .c =1C .c =0或c =1D .c =0或c =﹣13.已知点A (﹣2,y 1),B (1,y 2)在二次函数y =x 2+2x ﹣m 的图象上,则下列有关y 1和y 2的大小关系的结论中正确的是( )A .y 1=y 2B .y 1<y 2C .y 1>y 2D .与m 的值有关4.已知函数y =ax 和y =a (x +m )2+n ,且a >0,m <0,n <0,则这两个函数图象在同一坐标系内的大致图象是( )A .B .C .D .5.根据下表中关于二次函数y =ax 2+bx +c 的自变量x 与函数y 的对应值,可判断二次函数的图象与x 轴( )x … ﹣1 0 1 2 … y…﹣1﹣2…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D.无交点6.当0≤x≤3,函数y=﹣x2+4x+5的最大值与最小值分别是()A.9,5 B.8,5 C.9,8 D.8,47.在下列﹣2,﹣1,0,1,2,3这6个数中任取一个数记作a,放回去,再从这六个数中任意取一个数记作b,则使得分式方程有整数解,且使得函数y=﹣ax2+bx 的图象经过第一三四象限的所有a+b的值有()A.2个B.4个C.5个D.8个8.矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1),一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3 9.已知抛物线y=ax2+bx+c过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,设M=4a+2b+c,则M的取值范围是()A.﹣9<M<0 B.﹣18<M<0 C.0<M<9 D.﹣9<M<9 10.如图,抛物线y=ax2+bx+c的对称轴为x=﹣1,且过点(,0),有下列结论:①abc>0;②a﹣2b+4c>0;③25a﹣10b+4c=0;④3b+2c>0;其中所有正确的结论是()A.①③B.①③④C.①②③D.①②③④二.填空题11.已知二次函数y=x2﹣2x+m的图象顶点在x轴下方,则m的取值范围是.12.用一段长为24m的篱笆围成一个一边靠墙的矩形养鸡场,若墙长8m,则这个养鸡场最大面积为m2.13.直角坐标系中,点A(﹣3,0)、B(0,﹣3).若函数y=ax2+(2a﹣1)x﹣3与△AOB 的边恰有三个交点,则a的取值范围是.,0)和(1,0),与y轴交于正半轴,且﹣2 14.函数y=ax2+bx+c的图象与x轴交于(x1<﹣1,则下列结论:①b>0;②b<a;③﹣a<c<﹣2a;④对于任意正整数x均有<x1ax2﹣a+bx+b<0,其中正确的有.15.如图,二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于点C,若AC⊥BC,则a的值为.三.解答题16.已知二次函数y=x2+(2m﹣4)x+m2﹣4m﹣5(m是常数,﹣1<m<5)的图象与x轴交于A,B两点(点A在点B的左边),与y轴负半轴交于点C.(1)求二次函数的图象顶点Q的坐标;(2)求△ABC的面积的最大值;(3)当﹣3≤x≤2时,函数的最大值为7,求m的值.17.如图,抛物线y=﹣x2+bx+2与x轴交于A,B两点,与y轴交于C点,且点A的坐标为(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)判断△ABC的形状,并证明你的结论;(3)点M是抛物线对称轴上的一个动点,当△ACM的周长最小时,求点M的坐标.18.在平面直角坐标系xOy中,抛物线y=ax2﹣5a2x+3交y轴于点A,交直线x=6于点B.(1)填空:抛物线的对称轴为x=,点B的纵坐标为(用含a的代数式表示);(2)若直线AB与x轴负方向所夹的角为45°时,抛物线在x轴上方,求a的值;(3)记抛物线在A、B之间的部分为图象G(包含A、B两点),若对于图象G上任意一点P(x p,y p),总有y p≤3,求a的取值范围.19.已知函数y=﹣x2+(m﹣3)x+2m(m为常数).(1)试判断该函数的图象与x轴的公共点的个数;(2)求证:不论m为何值,该函数的图象的顶点都在函数y=x2+4x+6的图象上;(3)若直线y=x与二次函数图象交于A、B两点,当﹣4≤m≤2时,求线段AB的最大值和最小值.20.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克,为了促销,该经营户决定降价销售,经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克,另外,每天的房租等固定成本共24元,设每千克降价x元每天销量为y千克.(1)求y与x的函数关系式;(2)如何定价,才能使每天获得的利润为200元,且使每天的销量较大?21.已知函数y1=x,y2=x2+bx+c,α,β为方程y1﹣y2=0的两个根,点M(t,T)在函数y2的图象上.(1)若α=,β=,求函数y2的解析式;(2)在(1)的条件下,若函数y1与y2的图象的两个交点为A,B,当△ABM的面积为时,求t的值.22.如图,在△AOB中,∠O=90°,AO=18cm,BO=30cm,动点M从点A开始沿边AO以1cm/s 的速度向终点O移动,动点N从点O开始沿边OB以2cm/s的速度向终点B移动,一个点到达终点时,另一个点也停止运动.如果M、N两点分别从A、O两点同时出发,设运动时间为ts时四边形ABNM的面积为Scm2.(1)求S关于t的函数关系式,并直接写出t的取值范围;(2)判断S有最大值还是有最小值,用配方法求出这个值.23.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C 两点的直线的表达式为y=﹣x+3.(1)求抛物线的函数表达式;(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.参考答案一.选择题1.解:由题意得:m﹣2≠0,m2﹣2=2,解得m≠2,且m=±2,∴m=﹣2.故选:C.2.解:∵二次函数y=x2﹣2x+c的图象与坐标轴只有两个公共点,∴二次函数y=x2﹣2x+c的图象与x轴只有一个公共点或者与x轴有两个公共点,其中一个为原点,当二次函数y=x2﹣2x+c的图象与x轴只有一个公共点时,(﹣2)2﹣4×1×c=0,得c=1;当二次函数y=x2﹣2x+c的图象与x轴有两个公共点,其中一个为原点时,则c=0,y=x2﹣2x=x(x﹣2),与x轴两个交点,坐标分别为(0,0),(2,0);由上可得,c的值是1或0,故选:C.3.解:y=x2+2x﹣m=(x+1)2﹣1﹣m,∵点A(﹣2,y1)是二次函数y=(x+1)2﹣1﹣m图象上的点,∴y1=(﹣2+1)2﹣1﹣m=1﹣1﹣m=﹣m;∵点B(1,y2)是二次函数y=(x+1)2﹣1﹣m图象上的点,∴y2=(1+1)2﹣1﹣m=4﹣1﹣m=3﹣m.∴y1<y2.故选:B.4.解:由解析式y=a(x+m)2+n可知,a>0,图象开口向上,其顶点坐标为(﹣m,n),又因为m<0,n<0;所以顶点坐标在第四象限,排除A、D;C中,由二次函数图象可知a<0,而由一次函数的图象可知a>0,两者相矛盾,排除C;选项B正确.故选:B.5.解:根据表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可以发现当x=0,x=2时,y的值都等于﹣<0,又根据二次函数的图象对称性可得:x=1是二次函数y=ax2+bx+c的对称轴,此时y有最小值﹣2,再根据表中的数据,可以判断出y=0时,x<﹣1或x>2,因此判断该二次函数的图象与x轴有两个交点,且它们分别在y轴两侧.故选:B.6.解:y=﹣x2+4x+5=﹣x2+4x﹣4+4+5=﹣(x﹣2)2+9,∴当x=2时,最大值是9,∵0≤x≤3,∴x=0时,最小值是5,故选:A.7.解:∵方程有整数解,∴x=﹣,∵x是整数,∴a﹣2=±1,±2,±4,±8;∴a=﹣6,﹣2,0,1,3,4,6,10,∵分式方程有意义,∴x=﹣≠2,∴a≠﹣2,∴a=﹣6,0,1,3,4,6,10,∵﹣2,﹣1,0,1,2,3这6个数中任取一个数记作a,∴a=0,1,3,∵函数y=﹣ax2+bx的图象经过第一、三、四象限,∴﹣a<0,a、b同号,∴a>0,b>0,∴a=1,3,b=1,2,3,∴符合条件的a+b的值:①1+1=2,②1+2=3,③1+3=4,④3+1=3,⑤3+2=5,⑥3+3=6,有5个值,故选:C.8.解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴透明纸由A点平移至C点,抛物线向左平移了4个单位,向下平移了2个单位;∵透明纸经过A点时,函数表达式为y=x2,∴透明纸经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14故选:A.9.解:将(﹣1,0)与(0,﹣3)代入y=ax2+bx+c,∴0=a﹣b+c,c=﹣3,∴b=a﹣3,∵抛物线顶点在第四象限,∴﹣>0,a>0,∴b<0,∴a<3,∴0<a<3,∴M=4a+2(a﹣3)﹣3=6a﹣9,∴﹣9<M<9,故选:D.10.解:①观察图象可知:a<0,b<0,c>0,∴abc>0,所以①正确;②当x=时,y=0,即a+b+c=0,∴a+2b+4c=0,∴a+4c=﹣2b,∴a﹣2b+4c=﹣4b>0,所以②正确;③因为对称轴x=﹣1,抛物线与x轴的交点(,0),所以与x轴的另一个交点为(﹣,0),当x=﹣时,a﹣b+c=0,∴25a﹣10b+4c=0.所以③正确;④当x=时,a+2b+4c=0,又对称轴:﹣=﹣1,∴b=2a,a=b,b+2b+4c=0,∴b=﹣c.∴3b+2c=﹣c+2c=﹣c<0,∴3b+2c<0.所以④错误.故选:C.二.填空题(共5小题)11.解:因为抛物线图象顶点在x轴下方,且抛物线开口向上,则抛物线与x轴有两个交点,所以(﹣2)2﹣4×1×m>0,解得m<1.故答案为m<1.12.解:设养鸡场长为x米,则宽为(24﹣x),养鸡场面积S=x•(24﹣x)=﹣x2+12x,(0<x≤8),函数对称轴x=12,考虑到0<x≤8,当x=8时,函数取得最大值为64.故答案是64.13.解:∵函数y=ax2+(2a﹣1)x﹣3与△AOB的边恰有三个交点∴必经过(0,﹣3),且a≠0∴要使与△AOB恰好有三个交点∴函数的对称轴为:,①当a>0时,开口向上,对称轴解得a>,则当x=﹣3时,函数y=ax2+(2a﹣1)x﹣3>0,解得a>0②当a<0时,开口向下,要使恰好有三个交点,则有当x=﹣3,y=ax2+(2a﹣1)x﹣3=0,解得a=0,不符合,舍去;当x=,y=ax2+(2a﹣1)x﹣3=0时,即△=b2﹣4ac=0,解得a=,∵函数的对称轴为:,∴a=,综上所述,a>或a=,故答案为:a>或a=,,0),与y轴交于正14.解:∵二次函数y=ax2+bx+c的图象与x轴交于(1,0)和(x1半轴上一点,∴抛物线的开口向下,即a<0,∵﹣2<x<﹣1,1∴﹣<﹣<0,∴a<b,所以②错误;∴b<0,所以①错误;∵x=1时,y=0,∴a+b+c=0,即a+c=﹣b>0,∴c>﹣a,∵x=﹣2时,y<0,∴4a﹣2b+c<0,∴4a+2a+2c+c<0,∴c<﹣2a,∴﹣a<c<﹣2a,所以③正确;设x=m与x=﹣1是对称点,∵﹣<﹣<0,且a<0,∴﹣<0,∴0<m<1,当x=﹣1时,y=a﹣b+c,∴对于任意正整数x均有y=ax2+bx+c,当x>m时,有ax2+bx+c<a﹣b+c,即ax2﹣a+bx+b<0,故④错误;∴其中正确的有③.故答案为:③.15.解:∵∠ACB=90°,CO⊥AB,根据射影定理可得CO2=AO×BO.根据抛物线的解析式可知OC=2,设A(m,0),B(n,0),则m和n是方程ax2+bx+2=0的两个根,所以mn=.∴22=﹣mn=﹣,解得a=﹣.故答案为﹣三.解答题(共8小题)16.解:(1)y=x2+(2m﹣4)x+m2﹣4m﹣5,=x2+2(m﹣2)x+m2﹣4m+4﹣9,=(x+m﹣2)2﹣9,∴Q(2﹣m,﹣9);(2)当x=0时,y=m2﹣4m﹣5=(m﹣2)2﹣9,∴C(0,m2﹣4m﹣5),∵﹣1<m<5,∴m2﹣4m﹣5<0,当y=0时,x2+(2m﹣4)x+m2﹣4m﹣5=0,x 1=﹣m﹣1,x2=5﹣m,∵5﹣m﹣(﹣m﹣1)=6,∴A(﹣m﹣1,0),B(5﹣m,0),且AB=6,∴S△ABC=AB•|y C|==﹣3m2+12m+15=﹣3(m﹣2)2+27,∵﹣3<0,∴当m=2时,△ABC的面积最大为27;(3)∵y=x2+(2m﹣4)x+m2﹣4m﹣5=(x+m﹣2)2﹣9,∴抛物线的对称轴为x=2﹣m,∵=﹣0.5,①当2﹣m≤﹣0.5,即m≥2.5时,根据二次函数的对称性及增减性,当x=2时,函数最大值为7,∴(2+m﹣2)2﹣9=7,解得:m=4或m=﹣4(舍去);②当2﹣m>﹣0.5,即m<2.5时,根据二次函数的对称性及增减性,当x=﹣3时,函数最大值为7,∴(﹣3+m﹣2)2﹣9=7,解得:m=1或m=9(舍去).综上所述,m=4或m=1.17.解:(1)∵点A(1,0)在抛物线y=﹣x2+bx+2上,∴﹣+b+2=0,解得,b=﹣,抛物线的解析式为y=﹣x2﹣x+2,y=﹣x2﹣x+2=﹣(x+)2+,则顶点D的坐标为(﹣,);(2)△ABC是直角三角形,证明:点C的坐标为(0,2),即OC=2,﹣x2﹣x+2=0,解得,x1=﹣4,x2=1,则点B的坐标为(﹣4,0),即OB=4,OA=1,OB=4,∴AB=5,由勾股定理得,AC=,BC=2,AC2+BC2=25=AB2,∴△ABC是直角三角形;(3)由抛物线的性质可知,点A与点B关于对称轴对称,连接BC交对称轴于M,此时△ACM的周长最小,设直线BC的解析式为:y=kx+b,由题意得,,解得,,则直线BC的解析式为:y=x+2,当x=﹣时,y=,∴当M的坐标为(﹣,).18.解:(1)抛物线的对称轴是:x=﹣=a,当x=6时,y=﹣30a2+36a+3,即点B的纵坐标为﹣30a2+36a+3…………………………(4分)故答案为:a,﹣30a2+36a+3;(2)如图,∵∠ACO=45°,∴△ACO是等腰直角三角形,∴OC=OA=3,∴C(﹣3,0),设AC:y=kx+b,则,解得:,∴AC:y=x+3,当x=6时,y=6+3=9,∴B(6,9),把B(6,9)代入y=ax2﹣5a2x+3得:5a2﹣6a+1=0,a 1=1,a2=,当a=1时,抛物线解析式:y=x2﹣5x+3=(x﹣)2﹣,∵﹣<0,且直线AB与x轴正方向所夹的角为45°时,抛物线在x轴上方,∴a=1不符合题意,舍去,∴a=…………………………………………(8分)(3)当x=6时,y=﹣30a2+36a+3,∵y p≤3,即﹣30a2+36a+3≤3,5a2﹣6a≥0a(5a﹣6)≥0∴或解得:a≥或a<0;综上所述:a≥或a<0(各2分)19.(1)解:∵△=(m﹣3)2+8m=(m+1)2+8>0,则该函数图象与x轴的公共点的个数2个,………………………(2分)(2)证明:y =﹣x 2+(m ﹣3)x +2m=﹣(x ﹣)2+ ………………………(4分) 把x =代入y =x 2+4x +6=(x +2)2+2y =(+2)2+2=+2 ………………………(6分) = ………………………(8分)则不论m 为何值,该函数的图象的顶点都在函数y =x 2+4x +6的图象上.(3)过A 作AC ∥x 轴,过B 作BC ∥y 轴,则△ACB 是等腰直角三角形, 设直线y =x 与y =﹣x 2+(m ﹣3)x +2m 的交点为A (x 1,y 1)B (x 2,y 2), 联立方程有:得:x 2﹣(m ﹣4)x ﹣2m =0,……………(9分)∴x 1+x 2=m ﹣4,x 1x 2=﹣2m ,∴(x 1﹣x 2)2=(x 1+x 2)2﹣4x 1x 2,=(m ﹣4)2﹣4(﹣2m ),………………………(10分)=m 2+16,………………………(11分)(也可用求根公式求得该式)∴|AB |=,………………………(12分) ∵﹣4≤m ≤2,∴当m =0时,|AB |有最小值为4,………………………(13分) 当m =﹣4时,|AB |有最大值为8………………………(14分)20.解:(1)∵每千克降价x 元每天销量为y 千克,∴y =200+,即y =200+400x ;(2)设应将每千克小型西瓜的售价降低x 元.根据题意,得[(3﹣2)﹣x](200+)﹣24=200.原式可化为:50x2﹣25x+3=0,解这个方程,得x1=0.2,x2=0.3.为使每天的销量较大,应降价0.3元,即定价2.7元/千克.答:应将每千克小型西瓜的售价定为2.7元/千克.21.(满分10分)解:(1)∵y1﹣y2=0,∴x﹣(x2+bx+c)=0,即x2+(b﹣1)x+c=0∵α,β为方程y1﹣y2=0的两个根,且α=,β=,∴,解得:b=,c=∴y2=x2+x+,…(5分)(2)由A(,)B(,)得:AB==,过M作MF⊥AB于F,过M作ME⊥y轴于E,作MD⊥x轴交y1=x于D,过D作DC⊥x轴于D,设△ABM的高为h,则△MDF是等腰直角三角形,MF=h,∴S△ABM=AB•h=,即h=,即MD=MF=h…(7分)∵CD=EM=DN,∴|t﹣T|=MD=h,由|t﹣T|=h,T=t2+t+,得|﹣t2+t﹣|=,当=﹣时,解得t1=t2=;当=时,解得,t4=∴t的值为或或.(一个答案1分)…(10分)22.解:(1)由题意得,AM=t,ON=2t,则OM=OA﹣AM=18﹣t,四边形ABNM的面积S=△AOB的面积﹣△MON的面积=×18×30﹣×(18﹣t)×2t=t2﹣18t+270(0<t≤15);(2)S=t2﹣18t+270=t2﹣18t+81﹣81+270=(t﹣9)2+189,∵a=1>0,∴S有最小值,这个值是189.23.解:(9分)(1)在y=﹣x+3中,令y=0,得x=3;令x=0,得y=3,∴B(3,0),C(0,3),(1分)∵抛物线y=﹣x2+bx+c经过B、C两点,∴,(2分)解得,∴抛物线的函数表达式为:y=﹣x2+2x+3,(3分)(2)∵P(m,0),PD∥y轴交直线BC于D,交抛物线于E,∴D(m,﹣m+3),E(m,﹣m2+2m+3),∴DE=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m=﹣(m﹣)2+,(4分)∴当m=时,DE有最大值,(5分)∵DG∥x轴,EF∥x轴,∴DG∥EF,同理DE∥GF,∵∠FED=90°,∴四边形DEFG为矩形,∵OB=OC=3,∴∠DBP=∠BDP=∠EDF=∠EFD=45°,∴DE=EF,∴四边形DEFG为正方形,∴S=DE2,∴当m=时,S有最大值;(6分)(3)存在,有两种情况:①当点A′、C′落在抛物线上时,如图1,当y=0时,﹣x2+2x+3=0,x=﹣1或3,∴OA=1,由O′A′=OA=1,O′C′=OC=3,设A′(a,﹣a2+2a+3),则C′(a﹣3,﹣a2+2a+4),∴﹣a2+2a+4=﹣(a﹣3)2+2(a﹣3)+3,解得a=,∴A′(,)(7分)作QN⊥x轴于N,A′M⊥QN于M,连接QA、QA′,则∠AQA′=90°,由旋转得:AQ=A'Q,∵∠ANQ=∠A'MQ=90°,∠QAN=∠A'QM,可证△QAN≌△A′QM,设Q(x,y),则QM=AN=x+1,A′M=QN=y=x+1+=﹣x,解得x=,y=,∴Q(,);(8分)②当点O′、C′落在抛物线上时,如图2,则O′、C′两点关于抛物线的对称轴对称,∵抛物线的对称轴为直线:x=1,由O′C′=OC=3,可知C′(﹣,),作QN⊥O′C′于N,CM⊥QN于M,连接QC、QC′,则∠CQC′=90°,易得△CQM≌△QC′N,设Q(x,y),则QM=C′N=x+,CM=QN=y﹣=x=3﹣(x+)﹣,解得x=,y=,∴Q(,),(9分)综上所述,存在符合条件的点Q,点Q的坐标为(,)或(,).。
2024成都中考数学一轮复习专题二次函数解答压轴题一、解答题1.(2023·浙江绍兴·统考中考真题)已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.2.(2023·浙江·统考中考真题)已知点(),0m -和()3,0m 在二次函数23,(y ax bx a b =++是常数,0)a ≠的图像上.(1)当1m =-时,求a 和b 的值;(2)若二次函数的图像经过点(),3A n 且点A 不在坐标轴上,当21m -<<-时,求n 的取值范围;(3)求证:240b a +=.5(1)求二次函数的表达式;(2)求四边形ACDB 的面积;(3)P 是抛物线上的一点,且在第一象限内,若ACO PBC ∠=∠6.(2023·山东烟台·统考中考真题)如图,抛物线2y ax =+(1)求直线AD 及抛物线的表达式;(2)在抛物线上是否存在点M ,使得ADM △是以若不存在,请说明理由;(3)以点B 为圆心,画半径为2的圆,点P 为7.(2023·江苏苏州·统考中考真题)如图,二次函数268y x x =-+的图像与x 轴分别交于点,A B (点A 在点B 的左侧),直线l 是对称轴.点P 在函数图像上,其横坐标大于4,连接,PA PB ,过点P 作PM l ⊥,垂足为M ,以点M 为圆心,作半径为r 的圆,PT 与M 相切,切点为T .(1)求点,A B 的坐标;(2)若以M 的切线长PT 为边长的正方形的面积与PAB 的面积相等,且M 不经过点()3,2,求PM 长的取值范围.8.(2023·山东东营·统考中考真题)如图,抛物线过点()0,0O ,()10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设(),0B t ,当2t =时,4BC =.(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t =时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.(1)求这条抛物线的函数解析式;(2)P 是抛物线上一动点(不与点A ,B ,C 重合),作①如图,若点P 在第三象限,且tan 2CPD ∠=,求点②直线PD 交直线BC 于点E ,当点E 关于直线PC 周长.10.(2023·四川自贡·统考中考真题)如图,抛物线(1)求抛物线解析式及B ,(2)以A ,B ,C ,D 为顶点的四边形是平行四边形,求点(3)该抛物线对称轴上是否存在点11.(2023·四川达州·统考中考真题)如图,抛物线2y ax bx c =++过点()()()1,0,3,,00,3A B C -.(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出PBC 的最大面积及此时点P 的坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以BC 为边,点B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.12.(2023·四川泸州·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax 2x c =++与坐标轴分别相交于点A ,B ,()0,6C 三点,其对称轴为2x =.(1)求该抛物线的解析式;(2)点F 是该抛物线上位于第一象限的一个动点,直线AF 分别与y 轴,直线BC 交于点D ,E .①当CD CE =时,求CD 的长;②若CAD ,CDE ,CEF △的面积分别为1S ,2S ,3S ,且满足1322S S S +=,求点F 的坐标.(1)求此抛物线的解析式.(2)当点Q与此抛物线的顶点重合时,求m的值.∠的边与x轴平行时,求点P与点Q的纵坐标的差.(3)当PAQ(4)设此抛物线在点A与点P之间部分(包括点A和点P)的最高点与最低点的纵坐标的差为(1)求该抛物线的表达式;(2)点P是直线AC下方抛物线上一动点,过点P作PD(3)在(2)的条件下,将该抛物线向右平移5个单位,Q为平移后的抛物线的对称轴上任意一点.写出所有使得以Q15.(2023·四川凉山·统考中考真题)如图,已知抛物线与x 轴交于()1,0A 和()5,0B -两点,与y 轴交于点C .直线33y x =-+过抛物线的顶点P .(1)求抛物线的函数解析式;(2)若直线()50x m m =-<<与抛物线交于点E ,与直线BC 交于点F .①当EF 取得最大值时,求m 的值和EF 的最大值;②当EFC 是等腰三角形时,求点E 的坐标.16.(2023·四川成都·统考中考真题)如图,在平面直角坐标系xOy 中,已知抛物线2y ax c =+经过点3(4,)P -,与y 轴交于点(0,1)A ,直线(0)y kx k =≠与抛物线交于B ,C 两点.(1)求抛物线的函数表达式;(2)若ABP 是以AB 为腰的等腰三角形,求点B 的坐标;(3)过点(0,)M m 作y 轴的垂线,交直线AB 于点D ,交直线AC 于点E .试探究:是否存在常数m ,使得OD OE ⊥始终成立?若存在,求出m 的值;若不存在,请说明理由.(1)如图2,若抛物线经过原点O .①求该抛物线的函数表达式;②求BE EC的值.(2)连接,PC CPE ∠与BAO ∠能否相等?若能,求符合条件的点P 的横坐标;若不能,试说明理由.(1)求这个二次函数的表达式;(2)在二次函数图象上是否存在点P ,使得由;(3)点Q 是对称轴l 上一点,且点Q 的纵坐标为(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.(1)求抛物线的表达式;(2)当点P在直线AC上方的抛物线上时,连接BP交AC标及PDDB的最大值;(3)过点P作x轴的垂线交直线AC于点M,连接PC,将好落在y轴上时,请直接写出此时点M的坐标.33(1)求点,,D E C 的坐标;(2)F 是线段OE 上一点()OF EF <,连接①求证:DFC △是直角三角形;②DFC ∠的平分线FK 交线段DC 于点K 坐标.28.(2023·江苏扬州·统考中考真题)在平面直角坐标系xOy 中,已知点A 在y 轴正半轴上.(1)如果四个点()()()()0,00,21,11,1-、、、中恰有三个点在二次函数2y ax =(a 为常数,且0a ≠)的图象上.①=a ________;②如图1,已知菱形ABCD 的顶点B 、C 、D 在该二次函数的图象上,且AD y ⊥轴,求菱形的边长;③如图2,已知正方形ABCD 的顶点B 、D 在该二次函数的图象上,点B 、D 在y 轴的同侧,且点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,试探究n m -是否为定值.如果是,求出这个值;如果不是,请说明理由.(2)已知正方形ABCD 的顶点B 、D 在二次函数2y ax =(a 为常数,且0a >)的图象上,点B 在点D 的左侧,设点B 、D 的横坐标分别为m 、n ,直接写出m 、n 满足的等量关系式.(1)请求出抛物线1Q 的表达式.(2)如图1,在y 轴上有一点()0,1D -,点E 在抛物线1Q 上,点F 为坐标平面内一点,是否存在点边形DAEF 为正方形?若存在,请求出点,E F 的坐标;若不存在,请说明理由.(3)如图2,将抛物线1Q 向右平移2个单位,得到抛物线2Q ,抛物线2Q 的顶点为(1)求抛物线的表达式;(2)如图1,直线11:y OP y x x =交BF 于点G ,求BPG BOGS S △△的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于求点P 的横坐标.31.(2023·山东枣庄·统考中考真题)如图,抛物线2y x bx c =-++经过(1,0),(0,3)A C -两点,并交x 轴于另一点B ,点M 是抛物线的顶点,直线AM 与轴交于点D .(1)求该抛物线的表达式;(2)若点H 是x 轴上一动点,分别连接MH ,DH ,求MH DH +的最小值;(3)若点P 是抛物线上一动点,问在对称轴上是否存在点Q ,使得以D ,M ,P ,Q 为顶点的四边形是平行四边形?若存在,请直接..写出所有满足条件的点Q 的坐标;若不存在,请说明理由.32.(2023·湖北随州·统考中考真题)如图1,平面直角坐标系xOy 中,抛物线2y ax bx c =++过点(1,0)A -,(2,0)B 和(0,2)C ,连接BC ,点(,)P m n (0)m >为抛物线上一动点,过点P 作PN x ⊥轴交直线BC 于点M ,交x 轴于点N .(1)直接写出....抛物线和直线BC 的解析式;(2)如图2,连接OM ,当OCM 为等腰三角形时,求m 的值;(3)当P 点在运动过程中,在y 轴上是否存在点Q ,使得以O ,P ,Q 为顶点的三角形与以B ,C ,N 为顶点的三角形相似(其中点P 与点C 相对应),若存在,直接写出....点P 和点Q 的坐标;若不存在,请说明理由.(1)求该抛物线的函数表达式;(2)若点P是直线AB下方抛物线上的一动点,过点交x轴于点D,求与12PK PD+的最大值及此时点2①求证:23DO EO =.②当点E 在线段OB 上,且BE =35.(2023·山西·统考中考真题)如图,二次函数直线与该函数图象交于点()1,3B (1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是第一象限内二次函数图象上的一个动点,过点P 作直线PE 设点P 的横坐标为m .①当12PD OC =时,求m 的值;②当点P 在直线AB 上方时,连接OP ,过点B 作BQ x ⊥轴于点Q ,36.(2023·湖北武汉·统考中考真题)抛物线21:28=--C y x x 交x 轴于,A B 两点(A 在B 的左边),交y 轴于点C .(1)直接写出,,A B C 三点的坐标;(2)如图(1),作直线()04=<<x t t ,分别交x 轴,线段BC ,抛物线1C 于,,D E F 三点,连接CF .若BDE 与CEF △相似,求t 的值;(3)如图(2),将抛物线1C 平移得到抛物线2C ,其顶点为原点.直线2y x =与抛物线2C 交于,O G 两点,过OG 的中点H 作直线MN (异于直线OG )交抛物线2C 于,M N 两点,直线MO 与直线GN 交于点P .问点P 是否在一条定直线上?若是,求该直线的解析式;若不是,请说明理由.(1)直接判断AOB 的形状:AOB 是_________三角形;(2)求证:AOE BOD △≌△;(3)直线EA 交x 轴于点(,0),2C t t >.将经过B ,C 两点的抛物线21y ax =物线2y .①若直线EA 与抛物线1y 有唯一交点,求t 的值;(1)求抛物线的表达式;(2)如图1,点P 是抛物线的对称轴l 上的一个动点,当PAC △(3)如图2,取线段OC 的中点D ,在抛物线上是否存在点若不存在,请说明理由.(1)直接写出结果;b =_____,c =_____,点A 的坐标为_____,tan ABC ∠=______;(2)如图1,当2PCB OCA ∠=∠时,求点P 的坐标;(3)如图2,点D 在y 轴负半轴上,OD OB =,点Q 为抛物线上一点,90QBD ∠=︒,点E ,F 分别为BDQ △的边,DQ DB 上的动点,QE DF =,记BE Q F +的最小值为m .①求m 的值;②设PCB 的面积为S ,若214S m k =-,请直接写出k 的取值范围.(1)求抛物线的解析式.(2)过点M 作x 轴的垂线,与拋物线交于点N .若04t <<,求NED 面积的最大值.(3)抛物线与y 轴交于点C ,点R 为平面直角坐标系上一点,若以B C M R 、、、为顶点的四边形是菱形,请求出所有满足条件的点R 的坐标.41.(2023·四川·统考中考真题)如图1,在平面直角坐标系中,已知二次函数2y ax bx =++交于点()2,0A -,()4,0B ,与y 轴交于点C .(1)求抛物线的解析式;(2)已知E 为抛物线上一点,F 为抛物线对称轴且90BFE ∠=︒,求出点F 的坐标;(3)如图2,P 为第一象限内抛物线上一点,连接运动过程中,12OM ON +是否为定值?若是,求出这个定值;若不是,请说明理由.42.(2023·山东聊城·统考中考真题)如图①,抛物线29y ax bx =+-与x 轴交于点()30A -,,()6,0B ,与y 轴交于点C ,连接AC ,BC .点P 是x 轴上任意一点.(1)求抛物线的表达式;(2)点Q 在抛物线上,若以点A ,C ,P ,Q 为顶点,AC 为一边的四边形为平行四边形时,求点Q 的坐标;(3)如图②,当点(),0P m 从点A 出发沿x 轴向点B 运动时(点P 与点A ,B 不重合),自点P 分别作∥PE BC ,交AC 于点E ,作PD BC ⊥,垂足为点D .当m 为何值时,PED V 面积最大,并求出最大值.43.(2023·湖北荆州·统考中考真题)已知:y 关于x 的函数()()221y a x a x b =-+++.(1)若函数的图象与坐标轴...有两个公共点,且4a b =,则a 的值是___________;(2)如图,若函数的图象为抛物线,与x 轴有两个公共点()2,0A -,()4,0B ,并与动直线:(04)l x m m =<<交于点P ,连接PA ,PB ,PC ,BC ,其中PA 交y 轴于点D ,交BC 于点E .设PBE △的面积为1S ,CDE 的面积为2S .①当点P 为抛物线顶点时,求PBC 的面积;②探究直线l 在运动过程中,12S S -是否存在最大值?若存在,求出这个最大值;若不存在,说明理由.(1)求抛物线的解析式;(2)若32m<<,当m为何值时,四边形CDNP是平行四边形?(3)若32m<,设直线MN交直线BC于点E,是否存在这样的m值,使值;若不存在,请说明理由.(1)求抛物线的表达式;(2)如图1,点D 是线段OC 上的一动点,连接AD 好落在抛物线的对称轴上时,求点D 的坐标;(3)如图2,动点P 在直线AC 上方的抛物线上,过点F ,过点F 作FG x ⊥轴,垂足为G ,求2FG +(1)求二次函数的表达式;(2)如图1,求AOD △周长的最小值;(3)如图2,过动点D 作DP AC ∥交抛物线第一象限部分于点P ,连接,PA PB ,记PAD 与△为S ,当S 取得最大值时,求点P 的坐标,并求出此时S 的最大值.(1)求抛物线和一次函数的解析式.(2)点E ,F 为平面内两点,若以E 、F 、B 、C 为顶点的四边形是正方形,且点E 在点F 的左侧.F 两点是否存在?如果存在,请直接写出所有满足条件的点E 的坐标:如果不存在,请说明理由.(3)将抛物线21y ax bx c =++的图象向右平移8个单位长度得到抛物线2y ,此抛物线的图象与两点(M 点在N 点左侧).点P 是抛物线2y 上的一个动点且在直线NC 下方.已知点P 的横坐标为P 作PD NC ⊥于点D .求m 为何值时,12CD PD +有最大值,最大值是多少?50.(2023·四川南充·统考中考真题)如图1,抛物线23y ax bx =++(0a ≠)与x 轴交于()1,0A -,()3,0B 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,点Q 在x 轴上,以B ,C ,P ,Q 为顶点的四边形为平行四边形,求点P 的坐标;(3)如图2,抛物线顶点为D ,对称轴与x 轴交于点E ,过点()1,3K 的直线(直线KD 除外)与抛物线交于G ,H 两点,直线DG ,DH 分别交x 轴于点M ,N .试探究EM EN ⋅是否为定值,若是,求出该定值;若不是,说明理由.51.(2023·四川宜宾·统考中考真题)如图,抛物线2y ax bx c =++与x 轴交于点()4,0A -、()2,0B ,且经过点()2,6C -.(1)求抛物线的表达式;(2)在x 轴上方的抛物线上任取一点N ,射线AN 、BN 分别与抛物线的对称轴交于点P 、Q ,点Q 关于x 轴的对称点为Q ',求APQ '△的面积;(3)点M 是y 轴上一动点,当AMC ∠最大时,求M 的坐标.52.(2023·四川广安·统考中考真题)如图,二次函数2y x bx c =++的图象交x 轴于点A B ,,交y 轴于点C ,点B 的坐标为()1,0,对称轴是直线=1x -,点P 是x 轴上一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的解析式.(2)若点P 在线段AO 上运动(点P 与点A 、点O 不重合),求四边形ABCN 面积的最大值,并求出此时点P 的坐标.(3)若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M 、N C Q 、、为顶点的四边形是菱形?若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由.53.(2023·江苏连云港·统考中考真题)如图,在平面直角坐标系xOy 中,抛物线21:23L y x x =--的顶点为P .直线l 过点()()0,3M m m ≥-,且平行于x 轴,与抛物线1L 交于A B 、两点(B 在A 的右侧).将抛物线1L 沿直线l 翻折得到抛物线2L ,抛物线2L 交y 轴于点C ,顶点为D .(1)当1m =时,求点D 的坐标;(2)连接BC CD DB 、、,若BCD △为直角三角形,求此时2L 所对应的函数表达式;(3)在(2)的条件下,若BCD △的面积为3,E F 、两点分别在边BC CD 、上运动,且EF CD =,以EF 为一边作正方形EFGH ,连接CG ,写出CG 长度的最小值,并简要说明理由.54.(2023·云南·统考中考真题)数和形是数学研究客观物体的两个方面,数(代数)侧重研究物体数量方(1)求抛物线的函数表达式及顶点坐标;(2)点P为第三象限内抛物线上一点,作直线AC,连接PA 标;(3)设直线135 :4l y kx k=+-交抛物线于点M、N,求证:无论存在一点E,使得MEN∠为直角.(1)求a 的值.(2)将直线BC 向下平移()0m m >个单位长度,交抛物线于在定点D ,无论m 取何值时,都是点D 到直线B C ''的距离最大,若存在,请求出点请说明理由.(3)抛物线上是否存在点P ,使45PBC ACO ∠+∠=︒,若存在,请求出直线58.(2023·湖北十堰·统考中考真题)已知抛物线28y ax bx =++过点()4,8B 和点()8,4C ,与y 轴交于点A .(1)求抛物线的解析式;(2)如图1,连接,AB BC ,点D 在线段AB 上(与点,A B 不重合),点F 是OA 的中点,连接FD ,过点D 作DE FD ⊥交BC 于点E ,连接EF ,当DEF 面积是ADF △面积的3倍时,求点D 的坐标;(3)如图2,点P 是抛物线上对称轴右侧的点,(),0H m 是x 轴正半轴上的动点,若线段OB 上存在点G (与点,O B 不重合),使得GBP HGP BOH ∠=∠=∠,求m 的取值范围.59.(2023·吉林长春·统考中考真题)在平面直角坐标系中,点O 为坐标原点,抛物线22y x bx =-++(b 是常数)经过点(2,2).点A 的坐标为(,0)m ,点B 在该抛物线上,横坐标为1m -.其中0m <.(1)求该抛物线对应的函数表达式及顶点坐标;(2)当点B 在x 轴上时,求点A 的坐标;(3)该抛物线与x 轴的左交点为P ,当抛物线在点P 和点B 之间的部分(包括P 、B 两点)的最高点与最低点的纵坐标之差为2m -时,求m 的值.(4)当点B 在x 轴上方时,过点B 作BC y ⊥轴于点C ,连结AC 、BO .若四边形AOBC 的边和抛物线有两个交点(不包括四边形AOBC 的顶点),设这两个交点分别为点E 、点F ,线段BO 的中点为D .当以点C 、E 、O 、D (或以点C 、F 、O 、D )为顶点的四边形的面积是四边形AOBC 面积的一半时,直接写出所有满足条件的m 的值.60.(2023·湖北·统考中考真题)如图1,在平面直角坐标系xOy 中,已知抛物线()260y ax bx a =+-≠与x 轴交于点()()2,0,6,0A B -,与y 轴交于点C ,顶点为D ,连接BC .(1)抛物线的解析式为__________________;(直接写出结果)(2)在图1中,连接AC 并延长交BD 的延长线于点E ,求CEB ∠的度数;(3)如图2,若动直线l 与抛物线交于,M N 两点(直线l 与BC 不重合),连接,CN BM ,直线CN 与BM 交于点P .当MN BC ∥时,点P 的横坐标是否为定值,请说明理由.61.(2023·黑龙江齐齐哈尔·统考中考真题)综合与探究如图,抛物线2y x bx c =-++上的点A ,C 坐标分别为()0,2,()4,0,抛物线与x 轴负半轴交于点B ,点M 为y 轴负半轴上一点,且2OM =,连接AC ,CM .(1)求点M 的坐标及抛物线的解析式;【基础训练】(1)请分别直接写出抛物线214y x =的焦点坐标和准线l 的方程:___________,___________【技能训练】(2)如图2,已知抛物线21y x =上一点()()000,0P x y x >到焦点F 的距离是它到x 轴距离的参考答案一、解答题222(3)如图,P是抛物线上的一点,且在第一象限,当⊥交BP于连接PB,过C作CE BC∵5OC OB ==,则OCB 为等腰直角三角形,由勾股定理得:52CB =,∵ACO PBC ∠=∠,∴tan tan ACO PBC ∠=∠,即1552CE CE CB ==,∴2CE =由CH BC ⊥,得90BCE ∠=︒,【点拨】此题是一次函数,二次函数及圆的综合题,掌握待定系数法求函数解析式,直角三角形的性质,勾股定理,相似三角形的判定和性质,求两图象的交点坐标,正确掌握各知识点是解题的关键.A7.【答案】(1)()2,0,y=【分析】(1)令0(2)由题意可得抛物线的对称轴为假设M 过点()3,2N ,则有以下两种情况:①如图1:当点M 在点N 的上方,即∴2683m m -+=,解得:m =∵4m >∴5m =;②如图2:当点M 在点N 的上方,即∴2681m m -+=,解得:m =∵4m >∴32m =±;综上,32PM m =-=或2.∴当M 不经过点()3,2时,1【点拨】本题主要考查了二次函数的性质、切线的性质、勾股定理等知识点,掌握分类讨论思想是解答本题的关键.∵直线GH平分矩形ABCD的面积,∴直线GH过点P..由平移的性质可知,四边形OCHG是平行四边形,=.∴PQ CH∵四边形ABCD是矩形,∴P是AC的中点.33⎝∴90,PEC CED ∠=∠=︒。
二次函数专题复习专题一:二次函数的图象与性质本专题涉及二次函数概念,二次函数的图象性质,抛物线平移后的表达式等.试题多以填空题、选择题为主,也有少量的解答题出现.考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-2b a,顶点坐标是(-2b a,244ac b a-).例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.分析:要求m 的值只要将点A (-1,m )的坐标代入y=5x即可.要求c 的值,则只要把点A 的坐标代入y=-x 2+2x+c 即可.求二次函数图象的对称轴和顶点坐标,可以直接代入计算公式,也可以利用配方法进行计算.解答:(1)把x=1,y=m 代入y=5x,得m=-5,所以点A 的坐标为(-1,-5).把x=-1,y=-5代入y=-x 2+2x+c ,得c=-2.(2)因为y=-x 2+2x-2=-(x-1)2-1,所以二次函数的对称轴是直线x=1,顶点坐标是(1,-1). 点评:本题主要涉及二次函数图象的对称轴和顶点坐标的计算,解决问题的方法有两种,可根据表达式的特点灵活选择计算方法.考点2.抛物线与a 、b 、c 的关系抛物线y=ax 2+bx+c 中,当a>0时,开口向上,在对称轴x=-2b a的左侧y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a<0时,开口向下,在对称轴的右侧,y 随x 的增大而增大,在对称轴的右侧,y 随x 的增大而减小.例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限D .第一、三、四象限分析:通过观察图象可以知道a 喝b 的符号,从而可以判断出y=ax-b 的图象一定过的象限.图1解:由图,可知a<0,又由对称轴,可知-2b a>0,∴b>0.∴y=ax-b 的图象一定经过第二、三、四象限. ∴应选C.点评:求解本题时,一定要认真分析题目提供的图象,从图像中捕捉对求解有用的信息. 考点3.二次函数的平移当k>0(k<0)时,抛物线y=ax 2+k (a ≠0)的图象可由抛物线y=ax 2向上(或向下)平移|k|个单位得到;当h>0(h<0)时,抛物线y=a (x-h )2(a ≠0)的图象可由抛物线y=ax 2向右(或向左)平移|h|个单位得到.例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 分析:因为将抛物线向上平移,表明抛物线沿y 轴向上. 解:把抛物线y=3x 2向上平移2个单位, ∴平移后的抛物线的表达式应为y=3x 2+2. ∴应选C.点评:抛物线在左边平面内实施平移变换,其位置发生了改变,但其形状和开口不变,即a 不变. 专题练习一 1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( )A.开口向下,顶点坐标为(5,3)B.开口向上,顶点坐标为(5,3)C.开口向下,顶点坐标为(-5,3)D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有图2_______.(填序号)专题复习二:二次函数表达式的确定本专题主要涉及二次函数的三种表示方法以及根据题目的特点灵活选用方法确定二次函数的表达式.题型多以解答题为主.考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园A B C D ,设A B 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).分析:依题意利用图形的面积公式求解. 解:依题意AD=12(30-x ),所以由长方形的面积公式得y=x ×12(30-x )=-12x 2+15x.点评:本题主要考查从实际问题中建立函数模型求二次函数表达式,这里应注意30米的篱笆只需围三个面,另一面靠墙,不需要篱笆.考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式. 分析:可用顶点式求解.解:设抛物线的表达式为y=a (x+1)2+4,因为抛物线经过B (2,-5),所以-5=a (2+1)2+4,即a=-1.所以抛物线的表达式为y=-(x+1)2+4=-x 2-2x+3.点评:求抛物线的表达式的常用方法是待定系数法.给定的条件不同,所设的表达式的形式也不一样. 例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标.分析:由于该抛物线经过三点,故可用一般式求解,又该抛物线与x 轴的两个交点已知,所以也可以用交点式求解.解:(1)设这个抛物线的解析式为y=ax 2+bx+c (a ≠0). 由题意,得ABC D图1菜园墙⎪⎩⎪⎨⎧=++=++=+-,824,0,024c b a c b a c b a 解得⎪⎩⎪⎨⎧-===.4,2,2c b a所以抛物线的解析式为.4222-+=x x y (2)因为4222-+=x x y =229)21(2-+x ,所以抛物线的顶点坐标为).29,21(--点评:用“待定系数法”求抛物线的表达式是最基本、最重要的方法之一,同学们一定要牢固掌握,同时,要灵活运用二次函数的三种表达式,如本题选用交点式)(1x x a y -=)(2x x -也较方便.专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2) D.y=a (1-x )22.如图2,在平而直角坐标系xOy 中,抛物线y=x 2+bx+c 与x 轴交于A 、B 两点,点A 在x 轴负半轴,点B 在x 轴正半轴,与y 轴交于点C ,且tan ∠ACO=12,CO=BO ,AB=3,则这条抛物线的函数解析式是 .3.对称轴平行于y 轴的抛物线与y 轴交于点(0,-2),且x=1时,y=3;x=-1时y=1, 求此抛物线的关系式.4.推理运算:二次函数的图象经过点(03)A -,,(23)B -,,(10)C -,. (1)求此二次函数的关系式; (2)求此二次函数图象的顶点坐标;(3)填空:把二次函数的图象沿坐标轴方向最.少.平移 个单位,使得该图象的顶点在原点. 专题三:二次函数与一元二次方程的关系本专题主要涉及根据二次函数的图象求一元二次方程的近似根,由图象判断一元二次方程根的情况,由一元二次方程根的情况判断抛物线与x 轴的交点个数等,题型主要填空题、选择题和解答题.考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )图2A.6 6.17x << B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<分析:本题用表格的形式提供了部分信息,对函数、方程之间的关系进行针对性的考查,即方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的解就是函数y=ax 2+bx+c 值为零时对应的自变量x 的取值.解:由于x 轴上表示实数的点是连续的,因此,可以估计方程的解必然在某负数函数值与某正数函数值之间,故由表格提供的数据可选择C.点评:本题主要考查二次函数与一元二次方程的关系,解决问题的思路是通过表格观察函数值在什么范围内由负数变为正数,这个服务就是对应的方程的根的范围.考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.分析:二次函数y=-x 2+3x+m 的图象与x 轴的角度的横坐标即为方程-x 2+3x+m=0的根.观察图象,可知图象与x 轴的一个交点为(4,0),且对称轴为x=32,根据图象与x 轴两个交点关于对称轴x=32对称,所以另一个交点的坐标为(-1,0),由此可得到方程的两个根.解:因为y=-x 2+3x+m 与x 轴的一个交点为(4,0),且图象的对称轴为x=32,所以图象与x 轴的另一个交点为(-1,0).所以方程-x 2+3x+m=0的两根为x 1=-1,x 2=32.点评:本题已知图象的一部分,求相应方程的根,解决问题的关键是根据图象与x 轴两个交点关于对称轴对称,求到图象与x 轴交点的坐标.考点3.抛物线的交点个数与一元二次方程的根的情况当二次函数y=ax 2+bx+c 的图象与x 轴有两个交点时,则一元二次方程ax 2+bx+c=0有两个不相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴有一个交点时,则一元二次方程ax 2+bx+c=0有两个相等的实数根;当二次函数y=ax 2+bx+c 的图象与x 轴没有交点时,则一元二次方程ax 2+bx+c=0没有实数根.反之亦然.例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( )图1A.3B.2C.1D.0分析:要求与x 轴的交点个数,可转化为一元二次方程根的情况来解决. 解:由题意得当y=0时,即为x 2-1=0,∵b 2-4ac=4>0,∴x 2-1=0有两个不相等的实数根, ∴抛物线与x 轴有两个交点. 故选B.点评:二次函数中,当涉及到图象与坐标轴的交点时,注意要考虑与一元二次方程的联系.专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k 的取值范围是________.2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .3.已知函数2y a x b x c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题:(1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)检验结果的合理性,对问题加以拓展等.例 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”图2政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?分析:首先利用利润=(销售单价-成本)×销售量这个公式算术y 与x 的关系;再解一元二次方程;最后利用二次函数的性质求出最大值即可.解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯⎪⎝⎭, 即2224320025y x x =-++.(2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=. 解这个方程,得12100200x x ==,.要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. (3)对于2224320025y x x =-++,当241502225x =-=⎛⎫⨯- ⎪⎝⎭时,150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.点评:本题是一道构建二次函数解决实际问题的决策题,是中考的重要考点.对于第(3)小题的最大利润问题,除了用顶点公式来确定答案外,也可以利用配方法将二次函数的表达式化成顶点式.专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?3.一座拱桥的轮廓是抛物线型(如图1所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m . (1)将抛物线放在所给的直角坐标系中(如图2所示),求抛物线的解析式; (2)求支柱E F 的长度;(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说明你的理由.参考答案 专题练习一 1.A 解析:由y=13-x 2+103x 163-=13-(x-5)2+3,∵13-<0,∴开口向下,顶点坐标为(5,3)2.C 解析:因为a=1>0,所以开口向上,A 正确;把(0,-3)代入y=x 2-2x+c 中,解得c=-3,所以抛物线为y=x 2-2x-3=(x-1)2-4,所以抛物线的对称轴是直线x=1,B 正确;因为a=1>0,所以抛物线有最小值,且当x=1时,最小值为-4,故C 错误;由x 2-2x-3=0得x=1,x=3,所以抛物线与x 轴交点为(-1,0),(3,0),D 正确.3.y=(x+1)2-2 解析:二次函数y=x 2的图象向左平移1个单位长度所得图象的表达式为y=(x+1)2,再向下平移2个单位长度后,所得图象的表达式为y=(x+1)2-2.4.①②③⑤ 解析:因为抛物线开口向上,可知a>0.再由对称轴x=2b a-,所以b<0.又2b a-=3,得3b=-2a ,所以2a+3b=0,所以④错误;由抛物线与y 轴交于负半轴,可知c<0,所以abc>0,所以①、②均正确;观察图形可知x=-1时,y>0,即a-b+c>0,所以③正确;因为x=2时,y>0,即4a+2b+c>0,将3b=-2a 代入4a+2b+c>0,得-4b+c>0,即c-4b>0,所以⑤正确,所以①、②、③、⑤正确.专题练习二1.D 解析:第一次降价后的价格为a (1-x ),第二次降价后的价格为a (1-x )(1-x )=a (1-x )2,所以x图1y=a (1-x )2.2.y=x 2-2x-2 解析:依题意,结合图象,当x=0时,y=c<0,即OC=|c|,又tan ∠ACO=12,CO=BO ,所以OB=OC=|c|,OA=12|c|,而AB=3,所以12|c|+|c|=3,所以c=-2,所以点A 的坐标为(-1,0),所以b=-1.使用这条抛物线的函数表达式为y=x 2-x-2.3.解析:设该抛物线表达式为y=ax 2+bx+c.把(0,-2)、(1,3),(-1,1)分别代入上式,并解得a=4,b=1,c=-2.所以该抛物线的表达式为y=4x 2+x-2.4.解析:(1)设23y ax bx =+-, 把点(23)-,,(10)-,代入得423330.a b a b +-=-⎧⎨--=⎩,解方程组得12.a b =⎧⎨=-⎩, 223y x x ∴=--;(2)2223(1)4y x x x =--=--.∴函数的顶点坐标为(14)-,.(3)要由(1,-4)变为(0,0),则应左移1个单位后,再上移4个单位,故应最少平移5个单位,才能使得该图象的顶点在原点.专项练习三 1.k ≥74-且k ≠0 解析:抛物线与x 轴有交点,即kx 2-7x-7=0有实数根,所以(-7)2-4×(-7)×k≥0,解得k ≥74-且k ≠0.2.x 1=-1,x 2=3 解析:同例3.3.D 解析:因为抛物线y=ax 2+bx+c+2是由抛物线y=ax 2+bx+c 向上平移2个单位所得的图象,而抛物线y=ax 2+bx+c 的最低点的纵坐标为-3,所以抛物线y=ax 2+bx+c+2的最低点的纵坐标为-1,故抛物线y=ax 2+bx+c+2与x 轴有两个交点,且都在y 轴的右侧,所以方程ax 2+bx+c+2=0有两个同号不等实数根.4.解析:(1)因为二次函数y=ax 2+bx+c 的图象与x 轴的两个交点坐标是(1,0),(3,0),所以方程ax 2+bx+c=0的两个根为x 1=1,x 2=3;(2)因为抛物线的开口向下,所以x 轴的上方都满足ax 2+bx+c>0,即表达式ax 2+bx+c>0的解为1<x<3; (3)因为抛物线的对称轴方程是x=2,且a<0,所以当x>2时,y 随x 的增大而减小;(4)因为抛物线的顶点的纵坐标是2,所以要使方程ax 2+bx+c=k 有两个不相等的实数根,只要k<2. 专题训练四1.解析:(1)根据题意,得S=x x⋅-2260=-x 2+30x ,自变量x 的取值范围是0<x<30. (2)∵a=-1<0,∴S 有最大值. 301522(1)b x a∴=-=-=⨯-2243022544(1)ac b S a--===⨯-最大∴当x=15时,S最大=225.答:当x 为15米时,才能使矩形场地面积最大,最大面积是225平方米.2.解析:设每间客房的日租金提高x 个5元(即5x 元),则每天客房出租数会减少6x 间,客房日租金总收入为y=(50+5x)(120-6x)=-30(x-5)2+6750.当x=5时,y 有最大值6750,这时每间客房的日租金为50+5×5=75(元),客房日租金总收入最高为6750元.3.解析:(1)根据题目条件,A B C ,,的坐标分别是(100)(100)(06)-,,,,,. 设抛物线的解析式为2y ax c =+,将B C ,的坐标代入2y ax c =+,得60100c a c =⎧⎨=+⎩,解得3650a c =-=,.所以抛物线的表达式是23650y x =-+.(2)可设(5)F F y ,,于是2356 4.550F y =-⨯+=从而支柱M N 的长度是10 4.5 5.5-=米.(3)设D N 是隔离带的宽,N G 是三辆车的宽度和, 则G 点坐标是(70),.过G 点作G H 垂直A B 交抛物线于H ,则2376 3.06350H y =-⨯+>≈.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.x。
2023年九年级中考数学一轮复习:二次函数一、单选题1.正方形的边长为4,若边长增加x ,那么面积增加y ,则y 关于x 的函数表达式为( )A .216y x =+B .2(4)y x =+C .28y x x =+D .2164y x =-2.若抛物线y=x 2﹣2x+m 与x 轴有两个交点,则m 的取值范围是( )A .m <﹣1B .m <1C .m >﹣1D .m >13.已知下列命题:①抛物线y =3x 2+5x ﹣1与两坐标轴交点的个数为2个;②相等的圆心角所对的弦相等;③任何正多边形都有且只有一个外接圆;④三角形的外心到三角形各顶点的距离相等;⑤圆内接四边形对角相等;真命题的个数有( )A .1个B .2个C .3个D .4个二、填空题4.当﹣7≤x≤a 时,二次函数y =﹣ 12(x+3)2+5恰好有最大值3,则a = . 5.若函数y=a (x ﹣h )2+k 的图象经过原点,最大值为8,且形状与抛物线y=2x 2﹣2x+3相同,则此函数关系式 .6.函数y=x 2+2x+1,当y=0时,x= ;当1<x <2时,y 随x 的增大而 (填写“增大”或“减小”).三、综合题7.九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x (1≤x≤90)天的售价与销量的相关信息如下表:(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于4800元?请直接写出结果.8.如图,①为抛物线形拱桥,在正常水位下测得主拱宽 24m ,最高点离水面 8m ,以水平线 AB 为x 轴, AB 的中点为原点建立直角坐标系(如图②).(1)求抛物线的解析式;(2)桥边有一浮在水面部分高 4m ,最宽处为 18m 的何鱼餐船,试探索此船在正常水位时能否开到桥下,并说明理由.9.已知二次函数 223y x bx b =+- .(1)当该二次函数的图象经过点 ()10A , 时,求该二次函数的表达式;(2)在(1) 的条件下,二次函数图象与x 轴的另一个交点为点B ,与y 轴的交点为点C ,点P 从点A 出发在线段AB 上以每秒2个单位长度的速度向点B 运动,同时点Q 从点B 出发,在线段BC 上以每秒1个单位长度的速度向点C 运动,直到其中一点到达终点时,两点停止运动,求△BPQ 面积的最大值;(3)若对满足 1x ≥ 的任意实数x ,都使得 0y ≥ 成立,求实数b 的取值范围.10.已知:如图,二次函数 2y ax bx c =++ 的图象与x 轴交于A 、B 两点,其中A 点坐标为 ()1,0- ,点 ()C 0,5 ,另抛物线经过点 ()1,8 ,M 为它的顶点.(1)求抛物线的解析式;(2)求 MCB 的面积 MCB S .11.某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后价格调为8.1元/斤,并且两次降价的百分率相同.(2)从第一次降价的第1天算起,第 x 天( x 为整数)的售价、销量及储存和损耗费用的相关信息如表所示;已知该种水果的进价为4.1元/斤,设销售该水果第 x 天的利润为 y 元,求 y 与(115)x x ≤< 之间的函数关系式,并求出第几天时销售利润最大?12.如图,在足够大的空地上有一段长为a 米的旧墙MN ,某人利用旧墙和木栏围成一个矩形菜园ABCD ,其中AD≤MN ,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD 的长;(2)求矩形菜园ABCD 面积的最大值.13.已知二次函数y=﹣(a+b )x 2﹣2cx+a ﹣b ,a ,b ,c 是△ABC 的三边.(1)当抛物线与x 轴只有一个交点时,判断△ABC 的形状并说明理由;(2)当x=﹣ 12 时,该函数有最大值 2a ,判断△ABC 的形状并说明理由. 14.某水产养殖户进行小龙虾养殖. 已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,日销售量 ()y kg 与时间第 t 天之间的函数关系式为 2100y t =+ ( 180t ≤≤ , t 为整数),销售单价 p (元/ kg )与时间第 t 天之间满足一次函数关系如下表:(2)在整个销售旺季的80天里,哪一天的日销售利润最大?最大利润是多少?15.如图,某小区决定要在一块一边靠墙(墙长10米)的空地上用栅栏围成一个矩形绿化带ABCD ,绿化带的一边靠墙,中间用栅栏隔成两个小矩形,所用栅栏总长为36米,设AB 的长为x 米,矩形绿化带的面积为S 平方米.(1)求S 与x 之间的函数关系式,并直接写出x 的取值范围;(2)求围成矩形绿化带ABCD 面积S 的最大值.16.已知 y 关于 x 的二次函数 ()220.y ax bx a =--≠(1)当 24a b ==, 时,求该函数图象的顶点坐标.(2)在(1)条件下, ()P m t , 为该函数图象上的一点,若 p 关于原点的对称点 p ' 也落在该函数图象上,求 m 的值(3)当函数的图象经过点(1,0)时,若 1211322A y B y a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,,, 是该函数图象上的两点,试比较 1y 与 2y 的大小.17.抛物线 245y x x =-++ 与 x 轴交于点 A , B 两点( A 在 B 的左侧),直线 334y x =-+ 与 y 轴交于点 C ,与 x 轴交于点 D .点 P 是 x 轴上方的抛物线上一动点,过点 P 作 PF x ⊥ 轴于点 F ,交直线 CD 于点 E .. (1)求抛物线与x 轴的交点坐标;(2)设点 P 的横坐标为 m ,若 5PE EF = ,求 m 的值;18.已知m,n 是方程x 2-6x+5=0的两个实数根,且m<n ,抛物线y=-x 2+bx+c 的图象经过点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH△x 轴,与抛物线交于H 点,若直线BC 把△PCH分成面积之比为2:3的两部分,请求出P 点的坐标.19.如图,对称轴为直线x=-1的抛物线y=a(x-h) 2-4(a≠0)与x 轴相交于A 、B 两点,与y 轴交于点C ,其中点A 的坐标为(-3,0).(1)求该抛物线的解析式;(2)若点P 在抛物线上,且S △POC =4S △BOC .求点P 的坐标;(3)设点Q 是线段AC 上的动点,作QD△x 轴交抛物线于点D ,求线段QD 长度的最大值.20.如图,已知抛物线 2y x bx c =++ 与x 轴交于点A ,B ,AB=2,与y 轴交于点C ,对称轴为直线x=2.(1)求抛物线的函数表达式;(2)设P 为对称轴上一动点,求△APC 周长的最小值;(3)设D 为抛物线上一点,E 为对称轴上一点,若以点A ,B ,D ,E 为顶点的四边形是菱形,则点D 的坐标为 .21.如图,已知抛物线经过原点O ,顶点为A(1,1),且与直线 -2y x = 交于B ,C 两点.(1)求抛物线的解析式及点C 的坐标;(2)求△ABC 的面积;(3)若点N 为x 轴上的一个动点,过点N 作MN△x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.22.在平面直角坐标系中,函数221y x ax =-- ( a 为常数)的图象与y 轴交于点A .(1)求点A 的坐标.(2)当此函数图象经过点()1,2 时,求此函数的表达式,并写出函数值y 随x 的增大而增大时x 的取值范围.(3)当0x ≤ 时,若函数 221y x ax =-- (a 为常数)的图象的最低点到直线 2y a = 的距离为2,求a 的值.(4)设0a < , Rt EFG 三个顶点的坐标分别为 ()1,1E -- 、 ()1,1F a -- 、 ()0,1G a - .当函数 221y x ax =-- ( a 为常数)的图象与 EFG 的直角边有交点时,交点记为点P .过点P 作y 轴的垂线,与此函数图象的另一个交点为 P ' ( P ' 与P 不重合),过点A 作y 轴的垂线,与此函数图象的另一个交点为 A ' .若 2AA PP '=' ,直接写出a 的值.23.已知,抛物线y =mx 2+ 94x ﹣4m 与x 轴交于点A (﹣4,0)和点B ,与y 轴交于点C .点D (n ,0)为x 轴上一动点,且有﹣4<n <0,过点D 作直线1△x 轴,且与直线AC 交于点M ,与抛物线交于点N ,过点N 作NP △AC 于点P .点E 在第三象限内,且有OE =OD .(1)求m 的值和直线AC 的解析式.(2)若点D 在运动过程中, 12AD +CD 取得最小值时,求此时n 的值. (3)若点△ADM 的周长与△MNP 的周长的比为5△6时,求AE +23CE 的最小值. 24.如图,在平面直角坐标系中,抛物线 223y x x =+- 与 x 轴交于 A 、 B 两点(点 A 在点 B 的左侧),与 y 轴交于点 C .对称轴为直线 l ,点 ()4,D n - 在抛物线上.(1)求直线 CD 的解析式;(2)E 为直线 CD 下方抛物线上的一点,连接 EC 、 ED .当 ECD ∆ 的面积最大时,在直线 l 上取一点 M ,过 M 作 y 轴的垂线,垂足为点 N ,连接 EM 、 BN .若 EM BN = 时,求 EM MN BN ++ 的值;(3)将抛物线 223y x x =+- 沿 x 轴正方向平移得到新抛物线 y ' , y ' 经过原点 O . y ' 与 x 轴的另一个交点为 F .设 P 是抛物线 y ' 上任意一点,点 Q 在直线 l 上, PFQ ∆ 能否成为以点 P 为直角顶点的等腰直角三角形?若能,直接写出点 P 的坐标.若不能,请说明理由.25.如图,已知抛物线 y = 2ax bx c ++ 与 x 轴交于 A -() , B () 两点,与 y 轴交于点 C 0,3() .(1)求抛物线的解析式及顶点 M 坐标;(2)在抛物线的对称轴上找到点 P ,使得 PAC 的周长最小,并求出点 P 的坐标;(3)在(2)的条件下,若点 D 是线段 OC 上的一个动点(不与点 O 、 C 重合).过点 D 作 DE //PC 交 x 轴于点 E .设 CD 的长为 m ,问当 m 取何值时, PDE ABMC 1S S 9 四边形 .答案解析部分1.【答案】C【解析】【解答】解:∵新正方形的边长为x+4,原正方形的边长为4,∴新正方形的面积为(x+4)2,原正方形的面积为16,∴y=(x+4)2-16=x2+8x,故选:C.【分析】根据增加的面积=新的正方形的面积-原正方形的面积,可列出y与x之间的函数解析式.2.【答案】B【解析】【解答】解:∵抛物线y=x2﹣2x+m与x轴有两个交点,∴b2﹣4ac=4﹣4m>0,解得:m<1.故选:B.【分析】直接利用抛物线与x轴交点个数与△的关系求出即可.3.【答案】B【解析】【解答】解:①抛物线y=3x2+5x﹣1与两坐标轴交点的个数为2个,错误,为假命题;②相等的圆心角所对的弦相等,错误,为假命题;③任何正多边形都有且只有一个外接圆,正确,为真命题;④三角形的外心到三角形各顶点的距离相等,正确,为真命题;⑤圆内接四边形对角相等,错误,为假命题;故答案为:B.【分析】根据抛物线与x轴的交点,弧、弦、圆心角的关系,正多边形与圆,三角形外心的性质,圆内接四边形的性质逐一判断即可. 4.【答案】-5【解析】【解答】解:∵抛物线的开口向下,对称轴x=-3,∵x<-3时,y随x的增大而增大,∴当a<-3时,x=a时有最大值,∴y= ﹣12(a+3)2+5=3,解得a=-5,当a>-3时,x=-3时有最大值5,不符合题意,故答案为:-5.【分析】根据抛物线解析式得到顶点坐标(-3,5);然后由抛物线的增减性进行解答.5.【答案】y=﹣2(x﹣2)2+8或y=﹣2(x+2)2+8【解析】【解答】解:∵函数y=a(x﹣h)2+k的图象经过原点,把(0,0)代入解析式,得:ah2+k=0,∵最大值为8,即函数的开口向下,a<0,顶点的纵坐标k=8,又∵形状与抛物线y=﹣2x2﹣2x+3相同,∴二次项系数a=﹣2,把a=﹣2,k=8代入ah2+k=0中,得h=±2,∴函数解析式是:y=﹣2(x﹣2)2+8或y=﹣2(x+2)2+8,故答案为:y=﹣2(x﹣2)2+8或y=﹣2(x+2)2+8.【分析】根据函数y=a(x﹣h)2+k的图象经过原点,把(0,0)代入解析式,得到ah2+k=0,由最大值为8,即函数的开口向下,a<0,得到顶点的纵坐标k=8,由形状与抛物线y=﹣2x2﹣2x+3相同,得到二次项系数a=﹣2,把a=﹣2,k=8代入ah2+k=0中,得到h=±2,得到函数解析式.6.【答案】-1;增大【解析】【解答】解:把y=0代入y=x2+2x+1,得x2+2x+1=0,解得x=﹣1,当x>﹣1时,y随x的增大而增大,∴当1<x<2时,y随x的增大而增大;故答案为﹣1,增大.【分析】将y=0代入y=x2+2x+1,求得x的值即可,根据函数开口向上,当x>﹣1时,y随x的增大而增大.7.【答案】(1)解:当1≤x<50时,y=(200﹣2x)(x+40﹣30)=﹣2x2+180x+2000,当50≤x≤90时,y=(200﹣2x)(90﹣30)=﹣120x+12000,综上所述:y=()() 221802000150120120005090x xx x⎧-++≤≤⎪⎨-+≤≤⎪⎩(2)解:当1≤x<50时,二次函数开口向下,二次函数对称轴为x=45,当x=45时,y最大=﹣2×452+180×45+2000=6050,当50≤x≤90时,y随x的增大而减小,当x=50时,y最大=6000,综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元(3)解:当1≤x<50时,y=﹣2x2+180x+2000≥4800,解得20≤x≤70,因此利润不低于4800元的天数是20≤x <50,共30天; 当50≤x≤90时,y=﹣120x+12000≥4800,解得x≤60, 因此利润不低于4800元的天数是50≤x≤60,共11天,所以该商品在销售过程中,共41天每天销售利润不低于4800元【解析】【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于4800,一次函数值大于或等于48000,可得不等式,根据解不等式组,可得答案. 8.【答案】(1)解:∵AB=24,OC=8∴A (-12,0),B (12,0),C (0,8)设抛物线解析式为 ()()1212y a x x =+-代入C 点坐标,得 ()()8012012a =+- ,解得 118a =- ∴抛物线解析式为 21818y x =-+ ; (2)解:当x=9时,得 2198 3.518y =-⨯+= ∵3.5<4∴不能开到桥下.【解析】【分析】(1)设抛物线解析式为()()1212y a x x =+-,再将点C 代入计算即可;(2)求出当x=9时,y 的值,判断其是否大于4即可。
(2)
17.若A (1,4
13y -),B (2,4
5y -),C (3,4
1y )为二次函数245y x x =+-的
图象上的三点,则1,y 2,y 3y 的大小关系是( ) A .123y y y <<B .213y y y <<C .312y y y <<D .132y y y << 18.若直线y=ax+b 不经过二、四象限,则抛物线y=ax 2+bx+c( ) A.开口向上,对称轴是y 轴 B.开口向下,对称轴是y 轴 C.开口向下,对称轴平行于y 轴 D.开口向上,对称轴平行于y 轴 19.二次函数y=ax 2+bx+c 的值永远为负值的条件是( )
A.a>0,b 2-4ac<0
B.a<0,b 2-4ac>0
C.a>0,b 2-4ac>0
D.a<0,b 2-4ac<0
20.已知二次函数y=ax 2+bx+c,如果a>b>c,且a+b+c=0,则它的图象可能是图所示的( )
21.关于函数y=2x 2-8x,下列叙述中错误的是( )
A.函数图象经过原点
B.函数图象的最低点是(2,-8)
C.函数图象与x 轴的交点为(0,0),(4,0)
D.函数图象的对称轴是直线x=-2
22.二次函数2241y x x =-++的图象如何平移就褥到22y x =-的图像
( )
A.向左平移1个单位,再向上平移3个单位.
B.向右平移1个单位,再向上平移3个单位.
C.向左平移1个单位,再向下平移3个单位.
D.向右平移1个单位,再向下平移3个单位。
23.二次函数y=x2,当-1≤x≤2时,y的取值范围是()
A.-1≤y≤4
B.0≤y≤1
C.0≤y≤4
D.1≤y≤4
二、填空题(每小题3分,共33分)
1.当n=________,m=______时,函数y=(m+n)n x+(m-n)x的图象是抛物
线,且其顶点在原点,此抛物线的开口________.
2..若抛物线y=kx2-2x+1与x轴有两个交点,则k的取值范围是
__________
3.已知抛物线y=x2+(m-1)x-1
的顶点的横坐标是2,则m的值是
4
_______.
4.若二次函数y=ax2+bx+c的图象经过点(0,-1),(5,-1), 则它的对称轴方程是________.
5.在同一坐标系内,抛物线y=ax2与直线y=2x+b相交于A、B两点,若点A 的坐标是(2,4),则点B的坐标是_________.
6.将抛物线y=2x2向右平移2个单位,再向上平移3个单位,那么移动后的抛物线的关系式为__________.
7.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方,则m 的取值范围是_____.
8.二次函数y=2x 2- 4x+ 3 通过配方化为顶点式为y= _________,;当x____时,y 随x 的增大而减小。
9.有一个抛物线形拱桥,其最大高度为16m ,跨度为40m ,现把它的 示意图放在平面直角坐标系中如 图(4),求抛物线的解析式是_______________。
10..如图所示,A 、B 、C 是二次函数y=ax 2+bx+c(a≠0) 的图象上的三点, 根据图中给出的三点位置情况,
可得a 、c 、 △( △= b 2- 4ac) 与零的大小关系是
a_____0,c____0, △_____0,(填入“>”、“<”或“=”)
11.如图是抛物线c
=2的一部分,
y+
+
ax
bx
其对称轴为直线x=1,若其与x轴一交点为B(3,0),
则由图象可知,不等式c
2>0的解集是.
+
bx
ax+
三、解答题.
1.根据下列条件,分别求出对应的二次函数关系式.(每题3分,共6分)
(1)已知抛物线的顶点是(-1,-2),且过点(1,10);
(2)已知抛物线过三点:(0,-2),(1,0),(2,3).
2. (5分)将一条长为20cm的铁丝剪成两段,并以每一段铁丝
的长度为周长各做成一个正方形,怎样截取才能使这两个正方
形面积之和的最小?并求出它们面积之和的最小值。
3.(8分)已知二次函数y=x2-6x+8,
求:(1)抛物线与x轴相交的交点坐标;
(2)抛物线的顶点坐标;
(3)画出此抛物线图象,利用图象回答
下列问题:
①方程x2-6x+8=0的解是什么?
②x取什么值时,函数值大于0?
③x取什么值时,函数值小于0?
4(6分)如图,已知抛物线与x交于A(-1,0)、E(3,0)两点,与y 轴交于点B(0,3)。
(1)求抛物线的解析式;
(2)设抛物线顶点为D,求四边形AEDB
的面
积;
5.(8分).已知抛物线2
A--,和点P (t,0),且t ≠ 0.
y ax bx
=+经过点(33)
(1)若该抛物线的对称轴经过点A,如图,请通过观察图象,指出此时y的最小值,并写出t的值;
(2)若4
t=-,求a、b的值,并指出此时物线的开口方向;
(3)直.接.写出使该抛物线开口向下的t的一个值.
6.(8分)某商品的进价为每件40元.当售价为每件60元时,每星期可卖出300件,现需降价处理,且经市场调查:每降价1元,每星期可多卖出20件.在确保盈利的前提下,解答下列问题:(1)若设每件降价x元、每星期售出商品的利润为y元,请写出y与x的函数关系式,并求出自变量x的取值范围;
(2)当降价多少元时,每星期的利润最大?最大利润是多少?
非考题:附加题
1.跳绳时,绳甩到最高处时的形状是抛物线.正在甩绳的甲、乙两名同学拿绳的手间距AB为6米,到地面的距离AO和BD均为0.9米,身高为1.4米的小丽站在距点O的水平距离为1米的点F处,绳子甩到最高处时刚好通过她的头顶点E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
(1)求该抛物线的解析式;
(2)如果小华站在OD之间,且离点O的距离为3米,当绳子甩到最高处时刚好通过他的头顶,请你算出小华的身高;
(3)如果身高为1.4米的小丽站在OD之间,且离
点O的距离为t米, 绳子甩到最高处时超过
..她的头
顶,请结合图像,写出t
A O
B
D F。