高考数学大一轮复习第十章算法及概率、统计题组58文
- 格式:doc
- 大小:656.04 KB
- 文档页数:14
§10.4随机事件与概率考试要求 1.了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.2.理解事件间的关系与运算.3.掌握古典概型及其计算公式,能计算古典概型中简单随机事件的概率.知识梳理1.样本空间和随机事件(1)样本点和有限样本空间①样本点:随机试验E的每个可能的基本结果称为样本点,常用ω表示.全体样本点的集合称为试验E的样本空间,常用Ω表示.②有限样本空间:如果一个随机试验有n个可能结果ω1,ω2,…,ωn,则称样本空间Ω={ω1,ω2,…,ωn}为有限样本空间.(2)随机事件①定义:将样本空间Ω的子集称为随机事件,简称事件.②表示:一般用大写字母A,B,C,…表示.③随机事件的极端情形:必然事件、不可能事件.2.两个事件的关系和运算含义符号表示包含关系若A发生,则B一定发生A⊆B相等关系B⊇A且A⊇B A=B并事件(和事件)A与B至少有一个发生A∪B或A+B交事件(积事件)A与B同时发生A∩B或AB互斥(互不相容)A与B不能同时发生A∩B=∅互为对立A与B有且仅有一个发生A∩B=∅,且A∪B=Ω3.古典概型的特征(1)有限性:样本空间的样本点只有有限个;(2)等可能性:每个样本点发生的可能性相等.4.古典概型的概率公式一般地,设试验E是古典概型,样本空间Ω包含n个样本点,事件A包含其中的k个样本点,则定义事件A的概率P(A)=kn=n An Ω.其中,n(A)和n(Ω)分别表示事件A和样本空间Ω包含的样本点个数.5.概率的性质性质1:对任意的事件A,都有P(A)≥0;性质2:必然事件的概率为1,不可能事件的概率为0,即P(Ω)=1,P(∅)=0;性质3:如果事件A与事件B互斥,那么P(A∪B)=P(A)+P(B);性质4:如果事件A与事件B互为对立事件,那么P(B)=1-P(A),P(A)=1-P(B);性质5:如果A⊆B,那么P(A)≤P(B),由该性质可得,对于任意事件A,因为∅⊆A⊆Ω,所以0≤P(A)≤1;性质6:设A,B是一个随机试验中的两个事件,有P(A∪B)=P(A)+P(B)-P(A∩B).6.频率与概率(1)频率的稳定性一般地,随着试验次数n的增大,频率偏离概率的幅度会缩小,即事件A发生的频率f n(A)会逐渐稳定于事件A发生的概率P(A),我们称频率的这个性质为频率的稳定性.(2)频率稳定性的作用可以用频率f n(A)估计概率P(A).常用结论1.当随机事件A,B互斥时,不一定对立;当随机事件A,B对立时,一定互斥,即两事件互斥是对立的必要不充分条件.2.若事件A1,A2,…,A n两两互斥,则P(A1∪A2∪…∪A n)=P(A1)+P(A2)+…+P(A n).思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)事件发生的频率与概率是相同的.(×)(2)两个事件的和事件发生是指这两个事件至少有一个发生.(√)(3)从-3,-2,-1,0,1,2中任取一个数,取到的数小于0与不小于0的可能性相同.(√)(4)若A∪B是必然事件,则A与B是对立事件.(×)教材改编题1.一个人打靶时连续射击两次,事件“至多有一次中靶”的互斥事件是()A.至少有一次中靶B.两次都中靶C.只有一次中靶D.两次都不中靶答案B解析射击两次中“至多有一次中靶”即“有一次中靶或两次都不中靶”,与该事件不能同时发生的是“两次都中靶”.2.从某班学生中任意找出一人,如果该同学的身高小于160cm 的概率为0.2,该同学的身高在[160,175](单位:cm)内的概率为0.5,那么该同学的身高超过175cm 的概率为()A .0.2B .0.3C .0.7D .0.8答案B解析由题意知该同学的身高小于160cm 的概率、该同学的身高在[160,175](单位:cm)内的概率和该同学的身高超过175cm 的概率和为1,故所求概率为1-0.2-0.5=0.3.3.(2022·全国乙卷)从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为________.答案310解析从甲、乙等5名同学中随机选3名,有C 35种情况,其中甲、乙都入选有C 13种情况,所以甲、乙都入选的概率P =C 13C 35=310.题型一随机事件命题点1随机事件间关系的判断例1(1)(多选)对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设事件A ={两弹都击中飞机},事件B ={两弹都没击中飞机},事件C ={恰有一弹击中飞机},事件D ={至少有一弹击中飞机},则下列关系正确的是()A .A ∩D =∅B .B ∩D =∅C .A ∪C =D D .A ∪B =B ∪D答案BC解析“恰有一弹击中飞机”指第一枚击中、第二枚没中或第一枚没中、第二枚击中,“至少有一弹击中飞机”包含两种情况,一种是恰有一弹击中,另一种是两弹都击中,故A ∩D ≠∅,B ∩D =∅,A ∪C =D ,A ∪B ≠B ∪D .(2)从装有十个红球和十个白球的罐子里任取两球,下列情况中是互斥而不对立的两个事件的是()A .至少有一个红球;至少有一个白球B .恰有一个红球;都是白球C.至少有一个红球;都是白球D.至多有一个红球;都是红球答案B解析对于A,“至少有一个红球”可能为一个红球、一个白球,“至少有一个白球”可能为一个白球、一个红球,故两事件可能同时发生,所以不是互斥事件;对于B,“恰有一个红球”,则另一个必是白球,与“都是白球”是互斥事件,而任取两球还可能都是红球,故两事件不是对立事件;对于C,“至少有一个红球”为都是红球或一红一白,与“都是白球”显然是对立事件;对于D,“至多有一个红球”为都是白球或一红一白,与“都是红球”是对立事件.命题点2利用互斥、对立事件求概率例2某商场进行有奖销售,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解(1)P(A)=11000,P(B)=101000=1100,P(C)=501000=120.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M =A∪B∪C.∵事件A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)=1+10+501000=611000,故1张奖券的中奖概率为61 1000.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1=989 1000,故1张奖券不中特等奖且不中一等奖的概率为989 1000.思维升华事件关系的运算策略进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析.当事件是由互斥事件组成时,运用互斥事件的概率加法公式.跟踪训练1(1)(多选)抛掷一枚质地均匀的骰子,有如下随机事件:C i=“点数为i”,其中i=1,2,3,4,5,6;D1=“点数不大于2”,D2=“点数不小于2”,D3=“点数大于5”;E=“点数为奇数”;F=“点数为偶数”.下列结论正确的是()A.C1与C2对立B.D1与D2不互斥C.D3⊆F D.E⊇(D1∩D2)答案BC解析对于A,C1=“点数为1”,C2=“点数为2”,C1与C2互斥但不对立,故选项A不正确;对于B,D1=“点数不大于2”,D2=“点数不小于2”,当出现的点数是2时,D1与D2同时发生,所以D1与D2不互斥,故选项B正确;对于C,D3=“点数大于5”表示出现6点,F=“点数为偶数”,所以D3发生时F一定发生,所以D3⊆F,故选项C正确;对于D,D1∩D2表示两个事件同时发生,即出现2点,E=“点数为奇数”,所以D1∩D2发生,事件E不发生,所以E⊇(D1∩D2)不正确,故选项D不正确.(2)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)x3025y10结算时间(分钟/人)1 1.52 2.53已知这100位顾客中一次购物量超过8件的顾客占55%.①确定x,y的值,并估计顾客一次购物的结算时间的平均值;②估计一位顾客一次购物的结算时间不超过2分钟的概率.解①由已知得25+y+10=55,x+30=45,所以x=15,y=20.则顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟).②记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”,则可估计概率约为P (A 1)=15100=320,P (A 2)=30100=310,P (A 3)=25100=14,因为A =A 1∪A 2∪A 3,且A 1,A 2,A 3两两互斥,所以P (A )=P (A 1∪A 2∪A 3)=P (A 1)+P (A 2)+P (A 3)=320+310+14=710,故一位顾客一次购物的结算时间不超过2分钟的概率约为710.题型二古典概型例3(1)(2023·南通质检)我国数学家张益唐在“孪生素数”研究方面取得突破,孪生素数也称为孪生质数,就是指两个相差2的素数,例如5和7.在大于3且不超过20的素数中,随机选取2个不同的数,恰好是一组孪生素数的概率为()A.356B.328C.17D.15答案D解析大于3且不超过20的素数为5,7,11,13,17,19,共6个,随机选取2个不同的数,分别为(5,7),(5,11),(5,13),(5,17),(5,19),(7,11),(7,13),(7,17),(7,19),(11,13),(11,17),(11,19),(13,17),(13,19),(17,19),共15种选法,其中恰好是一组孪生素数的有(5,7),(11,13),(17,19),共3种,故随机选取2个不同的数,恰好是一组孪生素数的概率为315=15.(2)在一次比赛中某队共有甲、乙、丙等5位选手参加,赛前用抽签的方法决定出场顺序,则乙、丙都不与甲相邻出场的概率是()A.110B.15C.25D.310答案D解析在一次比赛中某队共有甲、乙、丙等5位选手参加,赛前用抽签的方法决定出场顺序,样本点总数n =A 55=120,“乙、丙都不与甲相邻出场”包含的样本点个数m =A 22A 33+A 22A 22A 23=36,所以“乙、丙都不与甲相邻出场”的概率P =m n =36120=310.思维升华利用公式法求解古典概型问题的步骤跟踪训练2(1)(2022·全国甲卷)从分别写有1,2,3,4,5,6的6张卡片中无放回地随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15B.13C.25D.23答案C解析从写有1,2,3,4,5,6的6张卡片中无放回地随机抽取2张,共有15种取法,它们分别是(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),其中卡片上的数字之积是4的倍数的是(1,4),(2,4),(2,6),(3,4),(4,5),(4,6),共6种取法,所以所求概率是P =615=25.(2)(2022·宜宾质检)2022年冬奥会在北京、延庆、张家口三个区域布置赛场,北京承办所有冰上项目,延庆和张家口承办所有雪上项目.组委会招聘了包括甲在内的4名志愿者,准备分配到上述3个赛场参与赛后维护服务工作,要求每个赛场至少分到一名志愿者,则志愿者甲正好分到北京赛场的概率为________.答案13解析依题意3个赛场分配的志愿者人数只有1,1,2这种情况,则共有n =C 24A 33=36(种)安排方法,志愿者甲被分配到北京赛场有m =A 33+C 23A 22=12(种)安排方法,所以志愿者甲正好分到北京赛场的概率P =1236=13.题型三概率与统计的综合问题例4北京冬奥会顺利闭幕后,某学校团委组织了一次“奥运会”知识讲座活动,活动结束后随机抽取120名学生对讲座情况进行调查,其中男生与女生的人数之比为1∶1,抽取的学生中男生有40名对讲座活动满意,女生中有30名对讲座活动不满意.(1)完成下面2×2列联表,并依据小概率值α=0.10的独立性检验,能否推断对讲座活动是否满意与性别有关?满意不满意合计男生女生合计120(2)从被调查的对讲座活动满意的学生中,利用比例分配的分层随机抽样方法抽取7名学生,再在这7名学生中抽取3名学生谈谈自己听讲座的心得体会,求其中恰好抽中2名男生与1名女生的概率.参考数据:χ2=n ad -bc 2a +bc +d a +c b +d,其中n =a +b +c +d .α0.100.050.010.0050.001x α2.7063.8416.6357.87910.828解(1)2×2列联表如表所示.满意不满意合计男生402060女生303060合计7050120零假设为H 0:对讲座活动是否满意与性别无关.根据列联表中数据,经计算得χ2=120× 40×30-20×30 260×60×70×50=247≈3.429>2.706=x 0.10,根据小概率值α=0.10的独立性检验,我们推断H 0不成立,即认为对讲座活动是否满意与性别有关.(2)由(1)知,在样本中对讲座活动满意的学生有70人,从中抽取7人,其中“男生满意”的有40×770=4(人),“女生满意”的有30×770=3(人),记“恰好抽中2名男生与1名女生”为事件A ,则P (A )=C 24C 13C 37=1835,所以恰好抽中2名男生与1名女生的概率为1835.思维升华求解古典概型的综合问题的步骤(1)将题目条件中的相关知识转化为事件;(2)判断事件是否为古典概型;(3)选用合适的方法确定样本点个数;(4)代入古典概型的概率公式求解.跟踪训练3从参加环保知识竞赛的学生中抽出40名,将其成绩(均为整数)整理后画出频率分布直方图如图所示,观察图形,回答下列问题.(1)成绩在[80,90)这一组的频数、频率分别是多少?(2)估计这次环保知识竞赛成绩的平均数、众数、中位数;(不要求写过程)(3)从成绩是80分以上(包括80分)的学生中选2人,求他们在同一分数段的概率.解(1)根据题意,成绩在[50,60)这一组的频率为0.015×10=0.15,在[60,70)这一组的频率为0.025×10=0.25,在[70,80)这一组的频率为0.035×10=0.35,在[90,100)这一组的频率为0.005×10=0.05,则成绩在[80,90)这一组的频率为12×[1-(0.15+0.25+0.35+0.05)]=0.1,其频数为40×0.1=4.(2)这次竞赛成绩的平均数约为45×0.1+55×0.15+65×0.25+75×0.35+85×0.1+95×0.05=68.5;成绩在[70,80)这一组的频率最大,人数最多,则众数约为75;70分左右两侧的频率均为0.5,则中位数约为70.(3)记“选出的2人在同一分数段”为事件E,成绩在[80,90)内的有40×0.1=4(人),设为a,b,c,d;成绩在[90,100)内的有40×0.05=2(人),设为A,B.从这6人中选出2人,有(a,b),(a,c),(a,d),(a,A),(a,B),(b,c),(b,d),(b,A),(b,B),(c,d),(c,A),(c,B),(d,A),(d,B),(A,B),共15种选法,其中事件E包括(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),(A,B),共7种选法,则P(E)=7.15课时精练1.掷一枚质地均匀的骰子,“向上的点数是1或3”为事件A,“向上的点数是1或5”为事件B ,则()A .A ∪B 表示向上的点数是1或3或5B .A =BC .A ∪B 表示向上的点数是1或3D .A ∩B 表示向上的点数是1或5答案A解析设A ={1,3},B ={1,5},则A ∩B ={1},A ∪B ={1,3,5},∴A ≠B ,A ∩B 表示向上的点数是1,A ∪B 表示向上的点数为1或3或5.2.杭州亚运会的三个吉祥物分别取名“琮琮”“宸宸”“莲莲”,如图.现将三张分别印有“琮琮”“宸宸”“莲莲”图案的卡片(卡片的形状、大小和质地完全相同)放入盒子中.若从盒子中依次有放回地取出两张卡片,则一张为“琮琮”,一张为“宸宸”的概率是()A.23 B.13 C.29D.19答案C解析记印有“琮琮”“宸宸”“莲莲”图案的卡片分别为A ,B ,C ,则样本点有(A ,A ),(A ,B ),(A ,C ),(B ,A ),(B ,B ),(B ,C ),(C ,A ),(C ,B ),(C ,C ),共9个,其中一张为“琮琮”,一张为“宸宸”的样本点有(A ,B ),(B ,A ),共2个,所以所求的概率P =29.3.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为()A .134石B .169石C .338石D .1365石答案B解析这批米内夹谷约为28254×1534≈169(石).4.在抛掷一枚质地均匀的骰子的试验中,事件A 表示“小于5的偶数点出现”,事件B 表示“小于5的点数出现”,则在一次试验中,事件A +B 发生的概率为()A.13B.12C.23D.56答案C解析掷一枚骰子的试验有6种等可能的结果,依题意知P (A )=26=13,P (B )=46=23,所以P (B )=1-P (B )=1-23=13,因为B 表示“出现5点或6点”的事件,所以事件A 与B 互斥,从而P (A +B )=P (A )+P (B )=13+13=23.5.(2022·莆田质检)将5名支援某地区抗疫的医生分配到A ,B ,C 三所医院,要求每所医院至少安排1人,则其中甲、乙两名医生恰好分配到同一医院的概率为()A.12B.625C.716D.49答案B解析由题意可知,分配情况分为两类:3,1,1或2,2,1,其方法总数为C 35A 33+C 25C 23C 11A 22·A 33=150.其中甲、乙两名医生恰好分配到同一医院的方法共有C 22C 13·A 33+C 22C 23C 11·A 33=36(种),则甲、乙两名医生恰好分配到同一医院的概率为36150=625.6.(多选)下列说法中正确的有()A .若事件A 与事件B 是互斥事件,则P (AB )=0B .若事件A 与事件B 是对立事件,则P (A +B )=1C .某人打靶时连续射击三次,则事件“至少有两次中靶”与事件“至多有一次中靶”是对立事件D .把红、橙、黄3张纸牌随机分给甲、乙、丙3人,每人分得1张,则事件“甲分得的不是红牌”与事件“乙分得的不是红牌”是互斥事件答案ABC解析事件A 与事件B 互斥,则A ,B 不可能同时发生,所以P (AB )=0,故A 正确;事件A 与事件B 是对立事件,则事件B 即为事件A ,所以P (A +B )=1,故B 正确;事件“至少有两次中靶”与“至多有一次中靶”不可能同时发生,且二者必有一个发生,所以为对立事件,故C 正确;事件“甲分得的不是红牌”与事件“乙分得的不是红牌”可能同时发生,即“丙分得的是红牌”,所以不是互斥事件,故D 错误.7.通过手机验证码注册某APP 时,收到的验证码由四位数字随机组成,如某人收到的验证码(a 1,a 2,a 3,a 4)满足a 1<a 2<a 3<a 4,则称该验证码为递增型验证码,某人收到一个验证码,则它是首位为2的递增型验证码的概率为________.答案72000解析∵a 1=2,2<a 2<a 3<a 4,∴a 2,a 3,a 4从3,4,5,6,7,8,9中选,选出3个数,让其按照从小到大的顺序有C 37=35(种)排法,又四位验证码共有10×10×10×10=10000(种),∴它是首位为2的递增型验证码的概率为3510000=72000.8.(2022·全国甲卷)从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.答案635解析从正方体的8个顶点中任选4个,取法有C 48=70(种).其中4个点共面有以下两种情况:(1)所取的4个点为正方体同一个面上的4个顶点,如图1,有6种取法;(2)所取的4个点为正方体同一个对角面上的4个顶点,如图2,也有6种取法.故4个点在同一个平面共有6+6=12(种)情况.所以所取的4个点在同一个平面的概率P =1270=635.9.经统计,在某储蓄所一个营业窗口排队的人数相应的概率如下:排队人数012345人及5人以上概率0.10.160.30.30.10.04求:(1)至多2人排队等候的概率;(2)至少3人排队等候的概率.解记“无人排队等候”为事件A ,“1人排队等候”为事件B ,“2人排队等候”为事件C ,“3人排队等候”为事件D ,“4人排队等候”为事件E ,“5人及5人以上排队等候”为事件F ,则事件A ,B ,C ,D ,E ,F 彼此互斥.(1)记“至多2人排队等候”为事件G ,则G =A +B +C ,所以P (G )=P (A +B +C )=P (A )+P (B )+P (C )=0.1+0.16+0.3=0.56.(2)方法一记“至少3人排队等候”为事件H ,则H =D +E +F ,所以P (H )=P (D +E +F )=P (D )+P (E )+P (F )=0.3+0.1+0.04=0.44.方法二记“至少3人排队等候”为事件H ,则其对立事件为事件G ,所以P (H )=1-P (G )=0.44.10.某县共有90个农村淘宝服务网点,随机抽取6个网点统计得到其元旦期间的网购金额(单位:万元)的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本数据的平均数;(2)若网购金额(单位:万元)不小于18的服务网点定义为优秀服务网点,其余为非优秀服务网点,根据茎叶图估计这90个服务网点中优秀服务网点的个数;(3)从随机抽取的6个服务网点中任取2个做网购商品的调查,求恰有1个网点是优秀服务网点的概率.解(1)由题意知,样本数据的平均数x =4+6+12+12+18+206=12.(2)样本中优秀服务网点有2个,频率为26=13,由此估计这90个服务网点中优秀服务网点约有90×13=30(个).(3)样本中优秀服务网点有2个,分别记为a 1,a 2,非优秀服务网点有4个,分别记为b 1,b 2,b 3,b 4,从随机抽取的6个服务网点中任取2个的可能情况有(a 1,a 2),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),(b 1,b 2),(b 1,b 3),(b 1,b 4),(b 2,b 3),(b 2,b 4),(b 3,b 4),共15种,记“恰有1个网点是优秀服务网点”为事件M ,则事件M 包含的可能情况有(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 1,b 4),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 2,b 4),共8种,故所求概率P (M )=815.11.如果事件A ,B 互斥,记A ,B 分别为事件A ,B 的对立事件,那么()A .A ∪B 是必然事件B.A ∪B 是必然事件C.A 与B 一定互斥D.A 与B 一定不互斥答案B解析如图①所示,A ∪B 不是必然事件,A ∪B 是必然事件,A 与B 不互斥;如图②所示,A ∪B 是必然事件,A ∪B 是必然事件,A 与B 互斥.12.整数集就像一片浩瀚无边的海洋,充满了无尽的奥秘.古希腊数学家毕达哥拉斯发现220和284具有如下性质:220的所有真因数(不包括本身的因数)之和恰好等于284,同时284的所有真因数之和也等于220,他把具有这种性质的两个整数叫做一对“亲和数”,“亲和数”的发现掀起了无数数学爱好者的研究热潮.已知220和284,1184和1210,2924和2620是3对“亲和数”,把这六个数随机分成两组,一组2个数,另一组4个数,则220和284在同一组的概率为()A.115B.25C.715D.15答案C解析由题意可得一共有C 26种分组方法,若要满足220和284在同一组,则分两种情况讨论:①220和284在2个数这一组中,有C 22种分组方法,②220和284在4个数这一组中,有C24种分组方法.故所求概率P =C 22+C 24C 26=715.13.《易·系辞上》有“河出图,洛出书”之说.河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从阳数和阴数中各取一数分别记为a ,b ,则满足|a -b |≥2的概率为()A.825 B.925 C.1625D.1825答案C解析若从阳数和阴数中各取一数分别记为a ,b .则样本点(a ,b )共有5×5=25(个),满足|a -b |<2的样本点有(1,2),(3,2),(3,4),(5,4),(5,6),(7,6),(7,8),(9,8),(9,10),共9个,记事件B 为满足|a -b |<2的事件,则P (B )=925,所以满足|a -b |≥2的事件的概率为P (B )=1-P (B )=1-925=1625.14.一个盒子装有红、白、蓝、绿四种颜色的玻璃球,每种颜色的玻璃球至少有一个.从中随机拿出4个玻璃球,这4个球都是红色的概率为P 1,恰好有三个红色和一个白色的概率为P 2,恰好有两个红色、一个白色和一个蓝色的概率为P 3,四种颜色各一个的概率为P 4.若恰好有P 1=P 2=P 3=P 4,则这个盒子里玻璃球的个数的最小值为()A .17B .19C .21D .以上都不正确答案C解析设红、白、蓝、绿四种颜色的玻璃球数量分别为a ,b ,c ,d .由题意得C 4a =C 3a C 1b =C 2a C 1b C 1c =C 1a C 1b C 1c C 1d ,则有a a -1 a -2 a -3 4×3×2×1=a a -1 a -2 3×2×1·b =a a -12×1·bc =abcd ,即a =4b +3=3c +2=2d +1.经验证,玻璃球的个数的最小值为21,此时a =11,b =2,c =3,d =5.。
【2019最新】精选高考数学一轮复习第10章概率、统计和统计案例章末总结分层演练文章末总结经计算得x -=116∑i =116x i =9.97,s =116∑i =116(xi -x -)2=(2016·高考全国卷Ⅲ,T 18,无害化处理量(单位:亿吨)注:年份代码1-7分别对应年份2008-附注:参考数据:中斜率和截距的最小二乘估计公式分别为:(2017·高考全国卷Ⅱ,表示事件“旧养殖法的箱产量低于50 kg”,估计填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养一、选择题1.(必修3 P64A组T5改编)某校高一、高二、高三学生共有1 290人,其中高一480人,高二比高三多30人,为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为( ) A.84 B.78C.81 D.96解析:选B.因为高一480人,高二比高三多30人,所以设高三有x人,则x+x +30+480=1 290,解得x=390,故高二420人,高三390人,若在抽取的样本中有高一学生96人,则该样本中的高三学生人数为×390=78(人).2.(选修12 P6例2改编)一只红铃虫的产卵y和温度x有关,根据收集的数据散点分布在曲线y=c1ec2x的周围,若用线性回归模型建立回归关系,则应作下列哪个变换( )A.t=ln x B.t=x2C.t=ln y D.t=ey解析:选C.由y=c1ec2x得c2x=ln=ln y-ln c1,令t=ln y,得t=c2x+ln c1,故选C.3.(必修3 P70内文改编)如图茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( ) A.2,5 B.5,5C.5,8 D.8,8解析:选C.由于甲组数据的中位数为15=10+x,所以x=5.又乙组数据的平均数为9+15+(10+y)+18+245=16.8,所以y=8.所以x,y的值分别为5,8.4.(必修3 P79练习T3改编)在一段时间内有2 000辆车通过高速公路上的某处,现随机抽取其中的200辆进行车速统计,统计结果如图所示.若该处高速公路规定正常行驶速度为90~120 km/h ,试估计这2 000辆车中,以正常速度通过该处的汽车有( )A .30辆B .300辆C .170辆D .1 700辆解析:选D .直方图中速度为90~120 km/h 的频率为0.03×10+0.035×10+0.02×10=0.85.用样本估计总体,可知2 000辆车中,以正常速度通过该处的汽车约有0.85×2 000=1 700(辆).故选D .二、填空题5.(必修3 P95B 组T1改编)某科研所对新研发的一种产品进行合理定价,该产品按事先拟定的价格试销得如下统计数据.回归方程为=x 元/件,为使科研所获利最大,该产品的定价应为________元/件.解析:依题意:x -=(8+8.2+8.4+8.8+8.6+9)=8.5, y -=(90+84+83+75+80+68)=80.又=-20,所以=-=80+20×8.5=250, 所以回归直线方程为=-20x +250. 设科研所所得利润为W ,定价为x ,所以W =(x -4.5)(-20x +250)=-20x2+340x -1 125, 所以当x ==8.5时,Wmax =320.故当该产品定价为8.5元/件时,W 取得最大值. 答案:8.56.(选修12 P15练习改编)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:则有________附:K2=,解析:K2=≈7.8>60.01的前提下,即有99%以上的把握认为“爱好该项运动与性别有关”.答案:99%三、解答题7.(必修3 P94A组T3改编)经调查得出,某型号的轿车使用年限x和所支出的维修保养费y(万元)的统计资料如下表(注:第一年该型号的轿车的维修保养费由商家负责,消费者不承担).(1)求y关于x(2)若每年维修保养费超过10万元,该型号轿车就作报废处理,问该型号轿车最多使用年限为多少年?附:解:(1)列表如下于是==1.23.^=-=5-1.23×4=0.08.a所以线性回归方程为=x+=1.23x+0.08.由回归直线方程=1.23x+0.08知,回归直线的斜率=1.23>0,所以x与y是正相关,即轿车使用年限越多,维修保养费越多.(2)若每年维修保养费超过10万元,该型号轿车就作报废处理,则该型号轿车最多使用年限x应满足1.23x+0.08≤10,解得x≤8.07,故该型号轿车最多使用8年就应作报废处理.8.(必修3 P39练习T3、选修12 P19B组T2改编)某食品公司研发生产一种新的零售食品,从产品中抽取100件作为样本,测量这些产品的一项质量指标值,由测量结果得到如下频率分布直方图:(1)求直方图中a的值;(2)设生产成本为y,质量指标值为x,生产成本与质量指标值之间满足函数关系y =,假设同组中的每个数据用该组区间的右端点值代替,试计算生产该食品的平均成本.解:(1)由已知,得(0.002+0.009+0.022+a+0.024+0.008+0.002)×10=1,解得a=0.033.(2)由题设条件及食品的质量指标值的频率分布直方图,得食品生产成本分组与频率分布表如下:70×0.02+74×0.09+78×0.22+82×0.33+92×0.24+100×0.08+108×0.02=84.52.。
2025年新人教版高考数学一轮复习讲义第十章必刷大题20 概率与统计1.(2023·汕头模拟)袋中装着标有数字1,2,3,4的小球各3个,从袋中任取3个小球,每个小球被取出的可能性都相等.(1)求取出的3个小球上的数字互不相同的概率;“一次取出的3个小球上的数字互不相同”的事件记为事件A,(2)用X表示取出的3个小球上所标的最大数字,求随机变量X的分布列和数学期望.由题意知,X所有可能的取值为1,2,3,4,所以随机变量X的分布列为2.(2023·邵阳模拟)某电视台为了解不同性别的观众对同一档电视节目的评价情况,随机选取了100名观看该档节目的观众对这档电视节目进行评价,已知被选取的观众中“男性”与“女性”的人数之比为9∶11,评价结果分为“喜欢”和“不喜欢”,并将部分评价结果整理如下表所示.性别评价合计喜欢不喜欢男性15 女性 合计50 100性别评价合计喜欢不喜欢男性15女性合计50 100 (1)根据所给数据,完成上面的2×2列联表;性别评价合计喜欢不喜欢男性153045女性352055合计5050100(2)依据小概率值α=0.005的独立性检验,能否认为性别因素与评价结果有关系?性别评价合计喜欢不喜欢男性153045女性352055合计5050100xα 6.6357.87910.828零假设为H0:性别因素与评价结果无关.因为χ2>7.879=x0.005,所以根据小概率值α=0.005的独立性检验,我们推断零假设H0不成立,即认为评价结果与性别有关系.(3)电视台计划拓展男性观众市场,现从参与评价的男性中,用按比例分配的分层随机抽样的方法选取3人,进行节目“建言”征集奖励活动,其中评价结果为“不喜欢”的观众“建言”被采用的概率为 ,评价结果为“喜欢”的观众“建言”被采用的概率为 ,“建言”被采用奖励100元,“建言”不被采用奖励50元,记3人获得的总奖金为X,求X的分布列及数学期望.由题意得选取的3人中,评价结果为“喜欢”的有1人,“不喜欢”的有2人,所以X的所有可能取值为150,200,250,300,所以X的分布列为3.(2023·南京模拟)综合素质评价是高考招生制度改革的内容之一.某高中采用多维评分的方式进行综合素质评价.如图是该校高三学生“运动与健康”评价结果的频率分布直方图,评分在区间[90,100],[70,90),[60,70),[50,60)上,分别对应为A,B,C,D四个等级.为了进一步引导学生对运动与健康的重视,初评获A等级的学生不参加复评,等级不变,对其余学生学校将进行一次复评.复评中,原获B等级的学生有 的概率提升为A等级,原获C等级的学生有 的概率提升为B等级,原获D等级的学生有 的概率提升为C等级.用频率估计概率,每名学生复评结果相互独立.和数学期望;ξ的所有可能取值为0,1,2,3,∴ξ的分布列为是C等级的概率.“该学生初评是C等级”,4.杭州第19届亚运会共设40个竞赛大项.其中首次增设了电子竞技项目.与传统的淘汰赛不同,近年来一个新型的赛制“双败赛制”赢得了许多赛事的青睐.传统的淘汰赛失败一场就丧失了冠军争夺的权利,而在双败赛制下,每人或者每个队伍只有失败了两场才会淘汰出局,因此容错率更高.假设最终有四支队伍进入到半决赛,淘汰赛制下会将他们四支队伍两两分组进行比赛,胜者进入到总决赛,总决赛的胜者即为最终的冠军.双败赛制下,两两分组,胜者进入到胜者组,败者进入到败者组,胜者组两个队伍对决的胜者将进入到总决赛,败者进入到败者组.之前进入到败者组的两个队伍对决的败者将直接淘汰,胜者将跟胜者组的败者对决,其中的胜者进入总决赛,最后总决赛的胜者即为冠军,双败赛制下会发现一个有意思的事情,在胜者组中的胜者只要输一场比赛则总决赛就无法拿到冠军,但是其他的队伍却有一次失败的机会,近年来从败者组杀上来拿到冠军的不在少数,因此很多人戏谑这个赛制对强者不公平,是否真的如此呢?这里我们简单研究一下两个赛制,假设四支队伍分别为A,B,C,D,其中A对阵其他三个队伍获胜概率均为p,另外三支队伍彼此之间对阵时获胜概率均为 .最初分组时AB同组,CD同组.(1)若p= ,在淘汰赛制下,A,C获得冠军的概率分别为多少?A获得冠军:AB组A获胜,再由A与CD组胜者决赛并胜出,C获得冠军:CD组C获胜,再由C与AB组胜者决赛并胜出,双败赛制下对队伍的影响,是否如很多人质疑的“对强者不公平”?双败赛制下,讨论A进入胜者组、败者组两种情况,当A进入胜者组,若在胜者组A失败,后两局都胜,方可得冠军,若在胜者组A胜利,后一局(与败者组胜者比赛)胜,方可得冠军;当A进入败者组,后三局都胜,方可得冠军.令f(p)=p3(3-2p)-p2=p2(-2p2+3p-1)=p2(2p-1)(1-p),所以双败赛制下对强者更有利.5.(2024·惠州模拟)为了避免就餐聚集和减少排队时间,某校开学后,食堂从开学第一天起,每餐只推出即点即取的米饭套餐和面食套餐.已知某同学每天中午会在食堂提供的两种套餐中选择一种,已知他第一天选择米饭套餐的概率为 ,而前一天选择了米饭套餐后一天继续选择米饭套餐的概率为 ,前一天选择面食套餐后一天继续选择面食套餐的概率为 ,如此往复.(1)求该同学第二天中午选择米饭套餐的概率;设A1=“第1天选择米饭套餐”,A2=“第2天选择米饭套餐”,(2)记该同学第n天选择米饭套餐的概率为P n,设A n=“第n天选择米饭套餐”,6.(2023·阳泉模拟)在上海举办的第五届中国国际进口博览会中,硬币大小的无导线心脏起搏器引起广大参会者的关注.这种起搏器体积只有传统起搏器的 ,其无线充电器的使用更是避免了传统起搏器囊袋及导线引发的相关并发症.在起搏器研发后期,某企业快速启动无线充电器主控芯片试生产,试产期同步进行产品检测,检测包括智能检测与人工抽检.智能检测在生产线上自动完成,包含安全检测、电池检测、性能检测三项指标,人工抽检仅对智能检测三项指标均达标的产品进行抽样检测,且仅设置一个综合指标,四项指标均达标的产品才能视为合格品.已知试产期的产品,智能检测三项指标的达标率分别约为设人工抽检的综合指标不达标率为p(0<p<1).(1)求每个芯片智能检测不达标的概率;每个芯片智能检测中安全检测、电池检测、性能检测三项指标达标的概率分别记为P1,P2,P3,并记芯片智能检测不达标为事件A.视指标的达标率为任取一件新产品,该项指标达标的概率,由对立事件的性质及事件独立性的定义得,(2)人工抽检30个芯片,记恰有1个不达标的概率为φ(p),求φ(p)的极大值点p0;(3)若芯片的合格率不超过96%,则需对生产工序进行改良.以(2)中确定的p0作为p的值,判断该企业是否需对生产工序进行改良.123456记“芯片人工抽检达标”为事件B ,“工人在流水线上进行人工抽检时,抽检一个芯片恰为合格品”为事件C,因此,该企业需对生产工序进行改良.本课结束。
题组层级快练(五十八)1.商场在2015年国庆黄金周的促销活动中,对10月2日9时至14时的销售额进行统计,其频率分布直方图如图所示,已知9时至10时的销售额为2.5万元,则11时至12时的销售额为( )A .6万元B .8万元C .10万元D .12万元答案 C解析 由0.40.1=x2.5,得10万元,故选C.2.如图是2015年某大学自主招生面试环节中,七位评委为某考生打出的分数的茎叶图,去掉一个最高分和一个最低分后,所剩数据的平均数和众数依次为( )A .85,84B .84,85C .86,84D .84,86答案 A解析 由图可知去掉一最高分和一个最低分后,所剩数据为84,84,86,84,87,则平均数为85,众数为84.3.为调查学生身高的情况,随机抽测了高三两个班120名学生的身高(单位:cm),所得数据均在区间[140,190]上,其频率分布直方图如图所示,则在抽测的120名学生中,身高位于区间[160,180)上的人数为( )A .70B .71C .72D .73答案 C解析 根据频率分布直方图,得学生的身高位于区间[160,180)上的频率为(0.040+0.020)×10=0.6,∴对应的人数为120×0.6=72.故选C.4.(2014·山东理)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .18答案 C解析 第一组和第二组的频率之和为0.4,故样本容量为200.4=50,第三组的频率为0.36,故第三组的人数为50×0.36=18,故第三组中有疗效的人数为18-6=12.5.(2016·荆州市质检)已知一组数据按从小到大的顺序排列,得到-1,0,4,x ,7,14,中位数为5,则这组数据的平均数和方差分别为( ) A .5,2423B .5,2413C .4,2513D .4,2523答案 A6.某学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[40,50]元的同学有39人,则n 的值为( )A .100B .120C .130D .390答案 C解析 样本数据落在[40,50]上的频率为1-(0.010+0.023+0.037)×10=0.30,则39n =0.30,解得n =130.7.如图所示,样本A 和B 分别取自两个不同的总体,它们的样本平均数分别为x -A 和x -B ,样本标准差分别为S A 和S B ,则( )A.x -A >x -B ,S A >S B B.x -A <x -B ,S A >S B C.x -A >x -B ,S A <S B D.x -A <x -B ,S A <S B答案 B解析 由图可知A 组的6个数为2.5,10,5,7.5,2.5,10, B 组的6个数为15,10,12.5,10,12.5,10, 所以x -A =2.5+10+5+7.5+2.5+106=37.56,x -B =15+10+12.5+10+12.5+106=706.显然x -A <x -B ,又由图形可知,B 组的数据分布比A 均匀,变化幅度不大,故B 组数据比较稳定,方差较小,从而标准差较小,所以S A >S B ,故选B.8.(2013·四川文)某学校随机抽取20个班,调查各班中有网上购物经历的人数,所得数据的茎叶图如图所示.以组距为5将数据分组成[0,5),[5,10),…,[30,35),[35,40]时,所作的频率分布直方图是( )答案 A解析 由茎叶图知,各组频数统计如下表:9.(2015·山东文)为比较甲、乙两地某月14时的气温状况,随机选取该月中的5天,将这5天中14时的气温数据(单位:℃)制成如图所示的茎叶图.考虑以下结论:①甲地该月14时的平均气温低于乙地该月14时的平均气温; ②甲地该月14时的平均气温高于乙地该月14时的平均气温; ③甲地该月14时的气温的标准差小于乙地该月14时的气温的标准差; ④甲地该月14时的气温的标准差大于乙地该月14时的气温的标准差. 其中根据茎叶图能得到的统计结论的编号为( ) A .①③ B .①④ C .②③ D .②④答案 B解析 由茎叶图中的数据通过计算求得 x -甲=26+28+29+31+315=29,s 甲=15[(26-29)2+(28-29)2+(29-29)2+(31-29)2+(31-29)2]=3105;x -乙=28+29+30+31+325=30,s 乙=15[(28-30)2+(29-30)2+(30-30)2+(31-30)2+(32-30)2]= 2. ∴x -甲<x -乙,s 甲>s 乙,故①④正确.选B.10.(2015·江苏)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 答案 6解析 由平均数公式可得这组数据的平均数为4+6+5+8+7+66=6.11.下面茎叶图是甲、乙两人在5次综合测评中成绩的茎叶图,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为________.答案 45解析 设被污损的数字为a(0≤a≤9且a∈N ),则由甲的平均成绩超过乙的平均成绩得88+89+90+91+92>83+83+87+99+90+a ,解得8>a ,即得0≤a≤7且a∈N ,∴甲的平均成绩超过乙的平均成绩的概率为P =810=45.12.某高校在2016年的自主招生考试成绩中随机抽取50名学生的笔试成绩,绘制成频率分布直方图如图所示,由图中数据可知a =________;若要从成绩在[85,90),[90,95),[95,100]三组内的学生中,用分层抽样的方法抽取12名学生参加面试,则成绩在[95,100]内的学生中,学生甲被抽取的概率为________.答案 0.040 25解析 由频率分布直方图知,(0.016+0.064+0.060+a +0.020)×5=1,解得a =0.040.第3组的人数为0.060×5×50=15,第4组的人数为0.040×5×50=10,第5组的人数为0.020×5×50=5,则第3,4,5组共30名学生.利用分层抽样的方法在这30名学生中抽取12名学生,因为1530×12=6,1030×12=4,530×12=2,所以第3,4,5组分别抽取6名学生,4名学生,2名学生,则从成绩在[95,100]内的5名学生中抽取2名,学生甲被抽取的概率为25. 13.国家环境标准制定的空气质量指数与空气质量等级对应关系如下表:表示如图所示.(1)试根据上面的统计数据,判断甲、乙两个城市的空气质量指数的方差的大小关系(只需写出结果);(2)试根据上面的统计数据,估计甲城市某一天空气质量等级为2级良的概率;(3)分别从甲城市和乙城市的统计数据中任取一个,试求这两个城市空气质量等级相同的概率.答案 (1)甲城市比乙城市的空气质量指数的方差大 (2)35 (3)1125解析 (1)甲城市的空气质量指数的方差大于乙城市的空气质量指数的方差.(2)根据统计数据,可得在这五天中甲城市空气质量等级为2级良的频率为35,则估计甲城市某一天的空气质量等级为2级良的概率为35.(3)设事件A 为从甲城市和乙城市的数据中分别任取一个,这两个城市的空气质量等级相同.由题意可知,从甲城市和乙城市的监测数据中分别任取一个,共有25个结果,分别记为: (29,43),(29,41),(29,55),(29,58),(29,78), (53,43),(53,41),(53,55),(53,58),(53,78), (57,43),(57,41),(57,55),(57,58),(57,78), (75,43),(75,41),(75,55),(75,58),(75,78), (106,43),(106,41),(106,55),(106,58),(106,78), 则空气质量等级相同的为:(29,41),(29,43),(53,55),(53,58),(53,78),(57,55),(57,58),(57,78),(75,55),(75,58),(75,78),共11个结果.则P(A)=1125,所以这两个城市空气质量等级相同的概率为1125.14.对某校高一年级学生参加“社区志愿者”活动次数进行统计,随机抽取M 名学生作为样本,得到这M 名学生参加“社区志愿者”活动的次数.据此作出频数和频率统计表及频率分布直方图如下:(1)求出表中M ,p 及图中a (2)若该校高一学生有720人,试估计他们参加“社区志愿者”活动的次数在[15,20)内的人数;(3)若参加“社区志愿者”活动的次数不少于20的学生可被评为“优秀志愿者”,试估计每位志愿者被评为“优秀志愿者”的概率.答案 (1)M =20,p =0.1,a =0.12 (2)432 (3)0.15 解析 (1)根据频率分布表,得5M=0.25,∴样本容量M =20.∴m =20-5-12-1=2,∴对应的频率为p =220=0.1,n =1220=0.6,∴a =0.620-15=0.12.(2)参加“社区志愿者”活动的次数在[15,20)内的频率为0.6,∴估计参加“社区志愿者”活动的次数在[15,20)内的人数为720×0.6=432. (3)参加“社区志愿者”活动的次数在20以上的频率为0.1+0.05=0.15. ∴样本中每位志愿者可被评为“优秀志愿者”的频率为0.15, ∴估计每位志愿者被评为“优秀志愿者”的概率为0.15.15.(2016·东北师大附中模拟)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据题中数据写出甲公司员工A在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.答案(1)平均数为36,众数为33(2)E(x)=165.5(3)甲公司劳务费为4 860元,乙公司劳务费为4 965元解析(1)甲公司员工A投递快递件数的平均数为36,众数为33.(2)设a为乙公司员工B1天的投递件数,则当a=34时,X=136,当a≥35时,X=35×4+(a-35)×7=7a-105,由题意知X的所有可能取值为136,147,154,189,203.X的分布列为E(X)=136×110+147×10+154×5+189×10+203×10=10=165.5.(3)估计甲公司被抽取员工在该月所得的劳务费为4 860元,乙公司被抽取员工在该月所得的劳务费为4 965元.1.(2013·辽宁)某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .60答案 B解析 由频率分布直方图,得低于60分的同学所占频率为(0.005+0.01)×20=0.3,故该班的学生人数为150.3=50.故选B.2.(2015·陕西)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .93B .123C .137D .167答案 C解析 由扇形统计图可知,该校女教师人数为110×70%+150×(1-60%)=137.故选C. 3.在如图所示的茎叶图表示的数据中,设众数为a ,中位数为b ,则ba的值为________.答案2631解析 根据茎叶图中的数据,得31出现次数最多,是2次,∴众数a =31.又茎叶图中的数据有11个,按从小到大的排列后,中间的数是26,∴中位数b =26,∴b a =2631.4.根据某固定测速点测得的某时段内过往的100辆机动车的行驶速度(单位:km/h)绘制的频率分布直方图如图所示.该路段限速标志牌提示机动车辆正常行驶速度为60 km/h ~120 km/h ,则这时段内过往的这100辆机动车中属非正常行驶的有________辆,图中的x 值为________.答案 15 0.017 5解析 由直方图可知,这100辆机动车中属非正常行驶的有(0.002 5+0.005 0)×20×100=15(辆),x 的值为[1-(0.002 5+0.005 0+0.010 0+0.015 0)×20]÷20=0.017 5. 5.(2013·广东理)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(1)根据茎叶图计算样本均值;(2)日加工零件个数大于样本均值的工人为优秀工人.根据茎叶图推断该车间12名工人中有几名优秀工人?(3)从该车间12名工人中,任取2人,求恰有1名优秀工人的概率. 答案 (1)22 (2)4 (3)1633解析 (1)样本均值为17+19+20+21+25+306=1326=22.(2)由(1)知样本中优秀工人占的比例为26=13,故推断该车间12名工人中有12×13=4名优秀工人.(3)设事件A :从该车间12名工人中,任取2人,恰有1名优秀工人,则P(A)=C 14C 18C 212=1633.6.随机抽取某中学高三年级甲乙两班各10名同学,测量出他们的身高(单位:cm),获得身高数据的茎叶图如图,其中甲班有一个数据被污损.(1)若甲班同学身高平均数为170 cm ,求污损处的数据;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.答案 (1)9 (2)25解析 (1)设污损处的数据是a ,由x -=110×(158+162+163+168+168+170+171+179+170+a +182)=170,解得a =9,所以污损处的数据是9.(2)设“身高为176的同学被抽中”的事件为A ,从乙班10名同学中抽取两名身高不低于173 cm 的同学有:{181,173},{181,176},{181,178},{181,179},{179,173},{179,176},{179,178},{178,173},{178,176},{176,173},共10个基本事件,而事件A 含有4个基本事件,∴P(A)=410=25.7.小明家订了一份报纸,寒假期间他收集了每天报纸送达时间的数据,并绘制成频率分布直方图,如图所示.(1)根据图中的数据信息,写出众数x 0;(2)小明的父亲上班离家的时间y 在上午7:00至7:30之间,而送报人每天在x 0时刻前后半小时内把报纸送达(每个时间点送达的可能性相等).①求小明的父亲在上班离家前能收到报纸(称为事件A)的概率;②求小明的父亲周一至周五在上班离家前能收到报纸的天数X 的数学期望. 答案 (1)x 0为7:00 (2)①34 ②154解析 (1)众数x 0为7:00.(2)①设报纸送达时间为x ,将时刻转化为小时,例如:6:30等价于6.5小时,则小明父亲上班前能取到报纸等价于⎩⎪⎨⎪⎧6.5≤x≤7.5,7≤y ≤7.5,x ≤y ,如图可知,所求概率P =1-1812=34.②易知X 服从二项分布,故E(X)=5×34=154.8.(2015·新课标全国Ⅱ文)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直布图B 地区用户满意度评分的频率分布表(1)平均值及分散程度(不要求计算出具体值,给出结论即可);B 地区用户满意度评分的频率分布直方图(2)根据用户满意度评分,将用户的满意度分为三个等级:答案 (1)略 (2)A 地区用户满意等级为不满意的概率大解析 (1)通过两地区用户满意度评分的频率分布直方图可以看出,B 地区用户满意度评分的平均值高于A 地区用户满意度评分的平均值;B 地区用户满意度评分比较集中,而A 地区用户满意度评分比较分散.(2)A 地区用户的满意度等级为不满意的概率大.记C A 表示事件:“A 地区用户的满意度等级为不满意”;C B 表示事件:“B 地区用户的满意度等级为不满意”.由直方图得P(C A )的估计值为(0.01+0.02+0.03)×10=0.6,P(C B )的估计值为(0.005+0.02)×10=0.25.所以A 地区用户的满意度等级为不满意的概率大.9.(2016·衡水调研)在每年的春节后,某市政府都会发动公务员参与到植树活动中去.为保证树苗的质量,该市林管部门都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗的高度,量出树苗的高度如下(单位:厘米): 甲:37,21,31,20,29,19,32,23,25,33; 乙:10,30,47,27,46,14,26,10,44,46.(1)根据抽测结果,完成下列的茎叶图,并根据你填写的茎叶图,对甲、乙两种树苗的高度作比较,写出两个统计结论;(2)设抽测的10株甲种树苗高度平均值为x -,将这10株树苗的高度依次输入按程序框图进行的运算,问输出的S 大小为多少?并说明S 的统计学意义.答案 (1)略 (2)S =35 解析 (1)茎叶图:统计结论:①甲种树苗的平均高度小于乙种树苗的平均高度; ②甲种树苗比乙种树苗长得更整齐;③甲种树苗的中位数为27,乙种树苗的中位数为28.5;④甲种树苗的高度基本上是对称的,而且大多数集中在均值附近,乙种树苗的高度分布较为分散.(2)x -=37+21+31+20+29+19+32+23+25+3310=27,S =35.S 表示10株甲种树苗高度的方差,是描述树苗高度离散程度的量.S 值越小,表示树苗长得越整齐,S 值越大,表示树苗长得越参差不齐.10.(2016·东北师大附中四模)为了解甲、乙两个快递公司的工作状况,假设同一个公司快递员的工作状况基本相同,现从甲、乙两公司各随机抽取一名快递员,并从两人某月(30天)的快递件数记录结果中随机抽取10天的数据,整理如下:每名快递员完成一件货物投递可获得的劳务费情况如下:甲公司规定每件4.5元;乙公司规定每天35件以内(含35件)的部分每件4元,超出35件的部分每件7元.(1)根据题中数据写出甲公司员工A 在这10天投递的快递件数的平均数和众数;(2)为了解乙公司员工B 每天所得劳务费的情况,从这10天中随机抽取1天,他所得的劳务费记为X(单位:元),求X 的分布列和数学期望;(3)根据题中数据估算两公司被抽取员工在该月所得的劳务费.。