2013年高2013届广东六校高三高考模拟考试
- 格式:doc
- 大小:63.50 KB
- 文档页数:12
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编20:坐标系与参数方程一、选择题二、填空题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )设M 、N 分别是曲线2sin 0ρθ+=和s ()42in πρθ+=上的动点,则M 、N 的最小距离是______【答案】12 .(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))在极坐标系中,直线sin ρθ=与圆2cos ρθ=相交的弦长为____【答案】3 .(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)(坐标系与参数方程选做题)已知曲线1l 的极坐标系方程为sin 4πρθ⎛⎫-= ⎪⎝⎭(0,ρ> 02)θπ≤≤,直线2l 的参数方程为{1222x t y t =-=+(为参数),若以直角坐标系的x 轴的非负半轴为极轴,则1l 与2l 的交点A 的直角坐标是____________【答案】解析:sin sin cos cos sin 1444y x πππρθρθρθ⎛⎫-=⇒-=⇒-= ⎪⎝⎭ {12322x t x y y t =-⇒+==+,由3112x y x y x y +==⎧⎧⇒⎨⎨-==⎩⎩(1,2)A ⇒ 4 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))在极坐标系中,圆3cos ρθ=上的点到直线cos()13πρθ-=的距离的最大值是______. 【答案】745 .(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)(坐标系与参数方程)在极坐标系中,设曲线1:2sin C ρθ=与2:2cos C ρθ=的交点分别为A B 、,则线段AB 的垂直平分线的极坐标方程为________________.【答案】sin 4πρθ⎛⎫+= ⎪⎝⎭(或1cos sin =+θρθρ)6 .(广东省汕头一中2013年高三4月模拟考试数学理试题 )(坐标系与参数方程选做题)在极坐标系中,极点到曲线22)4cos(=+θπρ的距离是_____________【答案】;7 .(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )(坐标系与参数方程选做题)在极坐标系中,过圆6cos ρθ=的圆心,且垂直于极轴的直线的极坐标方程为________.【答案】cos 3ρθ=.8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)(坐标系与参数方程选做题) 在极坐标系中,直线ρsin(θ+π4)=2被圆ρ=4截得的弦长为__________. 【答案】34 9 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)(坐标系与参数方程选做题)在极坐标系(),ρθ(0,02πρθ>≤<)中,曲线2sin ρθ=与2cos ρθ=的交点的极坐标为_____【答案】解析:4π⎫⎪⎭两式相除得tan 12sin 44ππθθρ=⇒=⇒==,交点的极坐标为4π⎫⎪⎭ 10.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)已知抛物线C 的参数方程为⎩⎨⎧==ty t x 882(t 为参数),若斜率为1的直线经过抛物线C 的焦点,且与圆222(4)(0)x y r r -+=>相切,则半径r =________. 【答案】211.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的极坐标方程是6sin ρθ=,以极点为平面直角坐标系的原点,极轴为x 的正半轴,建立平面直角坐标系,直线l的参数方程是1(x t y ⎧=-⎪⎨=⎪⎩为参数),则直线l 与曲线C 相交所得的弦的弦长为________.【答案】412.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)(坐标系与参数方程选做题)曲线1C :1cos sin x y θθ=+⎧⎨=⎩(θ为参数)上的点到曲线2C:12112x t y t ⎧=-⎪⎪⎨⎪=-⎪⎩(t 为参数)上的点的最短距离为______【答案】1;13.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))(坐标系与参数方程选做题)过点(2,)3π且平行于极轴的直线的极坐标方程为__________.【答案】sin ρθ=【解析】点(2,)3π的直角坐标为,∴过点平行于x 轴的直线方程为y =即极坐标方程为sin ρθ=14.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知圆M:x 2+y 2-2x-4y+1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为______. 【答案】2 15.(广东省汕头市2013届高三上学期期末统一质量检测数学(理)试题)(坐标系与参数方程)在直角坐标系xoy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,则直线21x t y t=--⎧⎨=-⎩(t 为参数)截圆22cos ρρθ+-3=0的弦长为____【答案】 416.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知直线l 方程是22x t y t =+⎧⎨=-⎩(t 为参数),以坐标原点为极点.x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2,则圆C 上的点到直线l 的距离最小值是___ 【答案】222-17.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,圆ρ=2上的点到直线sin()6πρθ+=3的距离的最小值是____【答案】1 18.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)(坐标系与参数方程选做题)已知曲线C 的参数方程为2cos sin x y θθ=+⎧⎨=⎩ (θ为参数),则曲线C 上的点到直线3x -4y +4=0的距离的最大值为______________【答案】3;19.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))(坐标系与参数方程选做题)已知曲线1C :ρ=和曲线2C :cos()4πρθ+=,则1C 上到2C 的距离等于的点的个数为__________.【答案】3;将方程ρ=与cos()4πρθ+=化为直角坐标方程得 222x y +=与20x y --=,知1C 为圆心在坐标原点,半径为,2C 为直线,因圆心到直线20x y --=,故满足条件的点的个数3n =.20.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)(坐标系与参数方程)在极坐标中,圆ρ =4cos θ 的圆心C 到直线 ρ sin (θ +π4)=2 2 的距离为 _*****_. 【答案】答案: 2 解:在直角坐标系中,圆:x 2+y 2=4x ,圆心C (2,0),直线:x +y =4,所以,所求为2. 21.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(坐标系与参数方程选做题) 已知直线l的参数方程为1x y ⎧=⎪⎪⎨⎪=+⎪⎩ (t 为参数),圆C 的参数方程为cos 2sin x y θθ=+⎧⎨=⎩ (θ为参数), 则圆心C到直线l的距离为__________.【答案】 22.(广东省广州市2013届高三调研测试数学(理)试题)(坐标系与参数方程选讲选做题)已知圆C 的参数方程为2x y cos ,sin ,θθ⎧=⎨=+⎩(θ为参数), 以原点为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为1sin cos ρθρθ+=, 则直线l 截圆C 所得的弦长是________.【答案】分析:圆C 的参数方程化为平面直角坐标方程为22(2)1x y +-=,直线l 的极坐标方程化为平面直角坐标方程为1x y +=,如右图所示,圆心到直线的距离2d ==故圆C 截直线l 所得的弦长为=23.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)(坐标系与参数方程选做题)在极坐标系中,定点32,2A π⎛⎫ ⎪⎝⎭,点B 在直线cos sin 0ρθθ=上运动,当线段AB 最短时,点B 的极坐标为_______.【答案】1116,π⎛⎫ ⎪⎝⎭ 答案可以是:11126k k ,(ππ⎛⎫+∈ ⎪⎝⎭Z ). 24.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在直角坐标系x oy 中,曲线C 的参数方程是⎩⎨⎧=+=θθsin 2cos 22y x (θπθ],2,0[∈为参数),若以O 为极点,x轴正半轴为极轴,则曲线C 的极坐标方程是________.【答案】4cos ρθ=25.(广东省韶关市2013届高三4月第二次调研测试数学理试题)(坐标系与参数方程选做题)在极坐标系中,过点π1,2A ⎛⎫- ⎪⎝⎭引圆8sin ρθ=的一条切线,则切线长为______. 【答案】3;26.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,设点,A B 分别在曲线12cos :sin x C y θθ=+⎧⎪⎨=⎪⎩(θ为参数)和曲线2:1C ρ=上,则||AB 的最大值为__________.【答案】527.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))(坐标系与参数方程)在极坐标系(,)ρθ (02)θπ≤<中,曲线(cos sin )1ρθθ+=与(cos sin )1ρθθ-=-的交点的极坐标为_________.【答案】(1,)2π28.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)(坐标系与参数方程选做题)在极坐标系中,O 为极点,直线l 过圆C:)4πρθ=-的圆心C,且与直线OC 垂直,则直线l 的极坐标方程为_________.【答案】把)4πρθ=-化为直角坐标系的方程为2222x y x y +=+,圆心C 的坐标为(1,1),与直线OC 垂直的直线方程为20,x y +-=化为极坐标系的方程为cos sin 20ρθρθ+-=或cos()4πρθ-=29.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(坐标系与参数方程选做题)若直线的极坐标方程为cos()4πρθ-=,曲线C :1ρ=上的点到直线的距离为d ,则d 的最大值为_________. 【答案】【解析】直线的直角坐标方程为60x y +-=,曲线C 的方程为221x y +=,为圆;d 的最大值为圆心到直线的距离加半径,即为max 11d = 30.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))(坐标系与参数方程选做题)在极坐标系中,已知点1,2A π⎛⎫ ⎪⎝⎭,点P 是曲线2sin 4cos ρθθ=上任意一点,设点P 到直线cos 10ρθ+=的距离为d ,则PA d +的最小值为______.【答案】31.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)(坐标系与参数方程选做题)在极坐标系) , (θρ(πθ20<≤)中,直线4πθ=被圆θρsin 2=截得的弦的长是__________. 【答案】2.。
2013年广东省高考模拟理综物理分类汇编——万有引力与航天一、单选题1.(2013届惠州市高三第一次调研14)若地球卫星绕地球做匀速圆周运动,其实际绕行速率( )A .一定等于7.9km/sB .一定小于7.9km/sC .一定大于7.9km/sD .介于7.9-11.2km/s 之间2.(2013届广东省六校高三第二次联考1)如图所示,是在同一轨道平面上的三颗不同的人造地球卫星,关于各物理量的关系,下列说法正确的是( )A .根据gr v =,可知CB A v v v <<B .根据万有引力定律,可知F A >F B >F CC .周期C B A T T T <<D .向心加速度C B A a a a << 3.(2013届广东省六校高三第三次联考16)a 、b 、c 、d 是在地球大气层外的圆形轨道上运行的四颗人造卫星。
其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上,b 、c 轨道在同一平面上。
某时刻四颗卫星的运行方向及位置如图示。
下列说法中正确的是( ) A .a 、c 的加速度大小相等,且大于b 的加速度 B .b 、c 的角速度大小相等,且小于a 的角速度C .a 、c 的线速度大小相等,且小于d 的线速度D .a 、c 存在在P 点相撞危险4.(2013届广东省阳江一中 阳春一中联考理综物理15)如图所示,a 为地球赤道上的物体;b 为沿地球表面附近做匀速圆周运动的人造卫星;c 为地球同步卫星。
关于a 、b 、c 做匀速圆周运动的说法中正确的是( )A .角速度的大小关系为a c b ωωω=>B .向心加速度的大小关系为a b c a a a >>C .线速度的大小关系为a b c v v v =>D .周期关系为a c b T T T =>第16题图a bc5.(2013届茂名市一模理综物理16)目前我国已发射北斗导航地球同步卫星十六颗,大大提高了导航服务质量,这些卫星()A.环绕地球运行可以不在同一条轨道上B.运行角速度相同C.运行速度大小相等,且都大于7.9km/sD.向心加速度与静止在赤道上物体的向心加速度大小相等。
2013届高三六校第三次联考理科综合试题本试卷共10页,36小题,满分300分。
考试用时150分钟。
命题:东莞中学一、单项选择题:本大题共16小题,每小题4分,共64分。
在每小题给出的四个选项中,只有一个选项符合题目要求,选对的得4分,选错或不答的得0分。
1.关于生物体遗传物质的叙述,正确的是A.玉米的遗传物质主要是DNAB.人的遗传物质主要分布在染色体上C.HIV的遗传物质含有硫元素D.流感病毒的核酸水解产生4种脱氧核苷酸2.下列实验中,不需要...漂洗或冲洗的是A.观察线粒体和叶绿体B.观察细胞的有丝分裂C.低温诱导染色体加倍D.观察DNA、RNA在细胞中的分布3.关于生物变异与生物进化的叙述,正确的是A.变异均能为生物进化提供原材料B.太空射线能使种子发生定向变异C.自然选择会使种群基因频率发生定向改变D.一个碱基对的缺失引起的变异属于染色体变异4.关于植物激素作用及其应用的叙述,正确的是A.脱落酸可用于麦田除草B.赤霉素可用于传统方法生产啤酒C.乙烯的主要作用是促进果实的发育D.细胞分裂素处理雌花获得无子番茄5.若图1、图2两图均表示人体生命活动调节过程中细胞之间的相互联系,叙述正确的是A.人体对寒冷刺激做出的反应只与图1有关B.细胞a分泌的激素作用于细胞b,并参与细胞代谢C.细胞c受到刺激产生的兴奋通过电信号传递给细胞d第5题图D.如果细胞a是垂体细胞,细胞b可以表示性腺细胞6.关于玉米(2N=20)体内细胞分裂的叙述,正确的是A.在有丝分裂末期赤道板上不形成细胞板B.在正常的次级卵母细胞中不含有同源染色体C.在减数第一次分裂后期的细胞中有4个染色体组D.在减数第二次分裂的前期和后期均可以发生基因重组7.某强酸性溶液中,能大量共存的一组是A.K+、Na+、AlO2-、SO42-B.NH4+、Na+、I-、NO3-C.Na+、K+、SO42-、CO32-D.Mg2+、Al3+、NO3-、SO42-8.设n A为阿伏加德罗常数的数值,下列说法正确的是[已知相对原子质量:C12 H1] A.常温下,14gC2H4含2n A个C-H共价键B.1 molFe与足量稀硝酸反应,转移2n A个电子C.1L0.1mol/LNH4NO3溶液中含有NH4+数为0.1n AD.常温常压下,22.4L的NO2和SO2混合气体含有2n A个O原子9.综合利用海水可以为人类提供丰富的化学资源,下述说法正确的是A.电解MgCl2溶液获得金属Mg B.电渗析法和离子交换法能获得纯净水C.用蒸馏法能提取海水中的溴D.可用金属Na置换出海水中的K 10.下列说法正确的是A.用NaOH溶液区分乙醇和乙醛B.可用饱和Na2CO3溶液除去CO2中的SO2 C.实验室用浓硫酸干燥Cl2和H2D.仅用新制Cu(OH)2检验淀粉水解程度11.下列说法正确的是A.铜的金属活动性比铁弱,可用铜罐代替铁罐贮运浓硝酸B.氨水是弱碱,可用氨水与AlCl3溶液反应制Al(OH)3C.某些金属化合物具有特定的颜色,因此可制作烟花D.H2O2是一种绿色氧化剂,可氧化酸性高锰酸钾而产生O212.下列实验中,不能..观察到明显现象的是A.把一段打磨过的铝条放入少量冷水中B.把氯气通入到FeSO4溶液中C.把绿豆大的钾投入乙醇中D.把溴水滴加到KI淀粉溶液中13.如图小车向右运动过程某段时间内车中悬挂的小球A和车水平底板上的物块B都相对车厢静止,这段时间内关于物块B受到摩擦力下述判断中正确的是A.物块B不受摩擦力作用B.物块B受摩擦力作用,大小恒定,方向向左C.物块B受摩擦力作用,大小恒定,方向向右D.因小车的运动性质不能确定,故B受的摩擦力情况无法判断14.如图所示为一质点沿东西方向(规定向东为正方向)做直线运动的tv 图像,由图可知A.3s末物体回到初始位置B.3s末物体的加速度方向将发生变化C.物体所受合外力的方向一直向西D.物体所受合外力的方向一直向东15.竖直放置与稳定电源相连的平行金属板如图,与板有一定距离的上方P带负电的油滴由静止释放,是A.做匀加速直线,电势能不变B C.做非匀变速曲线,电势能减少D16.a、b、c、d是在地球大气层外的圆形轨道上运行的四颗人造卫星。
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编9:圆锥曲线一、选择题1 .(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )椭圆221x my +=的焦点在y轴上,长轴长是短轴长的两倍,则m 的值为 ( )A .14B .12C .2D .4【答案】A2 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)定义:关于x 的不等式||x A B-<的解集叫A 的B 邻域.已知2a b +-的a b +邻域为区间(2,8)-,其中a b 、分别为椭圆12222=+by a x 的长半轴和短半轴.若此椭圆的一焦点与抛物线x y 542=的焦点重合,则椭圆的方程为( )A .13822=+y xB .14922=+y xC .18922=+y xD .191622=+y x【答案】B3 .(广东省海珠区2013届高三上学期综合测试一数学(理)试题)已知椭圆()2222:10x y C a b a b+=>>的,双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为.A 22184x y += .B 221126x y += .C 221168x y += .D 221205x y +=【答案】B4 .(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)若抛物线22y px =的焦点与双曲线22122x y -=的右焦点重合,则p 的值为 ( )A .2-B .2C .4-D .4【答案】D 双曲线22122x y -=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =.5 .(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD 版))设F 1,F 2是椭圆)0(12222>>=+b a b y a x 的左右焦点,若直线x =m a (m >1)上存在一点P,使ΔF 2PF 1是底角为300的等腰三角形,则m 的取值范围是( )A D .【答案】A6 .(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知双曲线22221x y a b-=的渐近线方程为y =,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于( )A .12B C D .1【答案】A7 .(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))方程||||169x x y y +=-1的曲线即为函数y=f(x)的图象,对于函数y=f(x),有如下结论:①f(x)在R 上单调递减;②函数F(x)=4f(x)+3x 不存在零点;③函数y=f(x)的值域是R;④f(x)的图象不经过第一象限,其中正确的个数是 ( ) A .1个 B .2个 C .3个 D .4个 【答案】D二、填空题8 .(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)已知双曲线22221(0b 0)x y a a b-=>,>和椭圆22x y =1169+有相同的焦点,且双曲线的离心率是椭圆离心率的两倍,则双曲线的方程为____________.【答案】22143x y -= 9.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为20x y +=,则双曲线的离心率e 的值为__________ .【答案】10.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)双曲线的焦点在x 轴上,实轴长为4,离心率为3,则该双曲线的标准方程为___,渐近线方程为___.【答案】221432x y -= y =± 11.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)已知动点P 在抛物线y 2=4x 上,那么使得点P 到定点Q(2,,-1)的距离与点P 到抛物线焦点的距离之和最小的点P 的坐标为___【答案】)1,41(-12.(广东省梅州市2013届高三3月总复习质检数学(理)试题)已知双曲线22221(0,0)x y a b a b-=>>的两条近线的夹角为3π,则双曲线的离心率为___【答案】13.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))已知点A 是抛物线C 1:y 2=2px(p>0)与双曲线C 2:22221(0,0)x y a b a b-=>>的一条渐近线的交点,若点A 到抛物线C 1的准线的距离为p,则双曲线的离心率等于____【答案】14.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知双曲线221x ky -=的一个焦点是0),则其渐近线方程为________.【答案】2y x =±;15.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))已知圆C 经过直线220x y -+=与坐标轴的两个交点,且经过抛物线28y x =的焦点,则圆C 的方程为______________.【答案】22115()()222x y -+-=[或2220x y x y +---=];易得圆心坐标为11(,)22,半径为r =, 故所求圆的方程为22115()()222x y -+-=【或2220x y x y +---=. 】16.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )在平面直角坐标系Oxy 中,若双曲线14222=+-m y m x 的焦距为8,则=m _______. 【答案】3(未排除4-,给3分)17.(2013年广东省佛山市普通高中高三教学质量检测(一)数学(理)试题)已知抛物线24x y =上一点P到焦点F 的距离是5,则点P 的横坐标是_____.【答案】4±18.(广东省韶关市2013届高三4月第二次调研测试数学理试题)设点P 是双曲线22221(0,0)x y a b a b-=>>与圆2222x y a b +=+在第一象限的交点,其中12,F F 分别是双曲线的左、右焦点,若21tan 3PF F ∠=,则双曲线的离心率为______________.【答案】19.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)下图是抛物线形拱桥,当水面在l 时,拱顶离水面2米,水面宽4米,水位下降2米后水面宽________米.【答案】20.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)过双曲线221916x y -=的右焦点,且平行于经过一、三象限的渐近线的直线方程是 ________.【答案】双曲线221916x y -=的右焦点为(5,0),渐近线的方程为43y x =±,所以所求直线方程为4(5),3y x =-即43200x y --=.三、解答题21.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )在平面直角坐标系xoy 中,设点F (1,0),直线l :1x =-,点P 在直线l 上移动,R 是线段PF 与y 轴的交点,,RQ FP PQ l ⊥⊥.(Ⅰ)求动点Q 的轨迹的方程;(Ⅱ) 记Q 的轨迹的方程为E ,过点F 作两条互相垂直的曲线E 的弦AB 、CD ,设AB 、CD 的中点分别为N M ,.求证:直线MN 必过定点)0,3(R .【答案】解:(Ⅰ)依题意知,直线l 的方程为:1x =-.点R 是线段FP 的中点,且RQ ⊥FP ,∴RQ 是线段FP 的垂直平分线∴PQ 是点Q 到直线l 的距离.∵点Q 在线段FP 的垂直平分线,∴PQ QF =故动点Q 的轨迹E 是以F 为焦点,l 为准线的抛物线,其方程为:24(0)y x x => (Ⅱ) 设()()B B A A y x B y x A ,,,,()()N N M M y x N y x M ,,,,直线AB 的方程为)1(-=x k y则⎪⎩⎪⎨⎧==)2(4)1(422BB A A x y x y(1)—(2)得k y y B A 4=+,即ky M 2=, 代入方程)1(-=x k y ,解得122+=kx M .所以点M 的坐标为222(1,)k k+同理可得:N 的坐标为2(21,2)k k +-. 直线MN 的斜率为21kkx x y y k N M N M MN -=--=,方程为 )12(1222---=+k x kk k y ,整理得)3()1(2-=-x k k y , 显然,不论k 为何值,(3,0)均满足方程, 所以直线MN 恒过定点R (3,0).1422.(广东省汕头一中2013年高三4月模拟考试数学理试题 )在平面直角坐标系中,已知点()2,0A、()2,0B -,P 是平面内一动点,直线PA 、PB 的斜率之积为34-.(1)求动点P 的轨迹C 的方程;(2)过点1,02⎛⎫⎪⎝⎭作直线l 与轨迹C 交于E 、F 两点,线段EF 的中点为M ,求直线MA 的斜率k 的取值范围.2013年4月汕头一中高三模拟考【答案】(1)依题意,有3224PA PB y y k k x x ⋅=⋅=--+(2x ≠±), ----------------------------- 化简得: 22143x y += (2x ≠±),为所求动点P 的轨迹C 的方程------------------------(2)依题意,可设(,)M x y 、(,)E x m y n ++、(,)F x m y n --,则有 2222()()143()()143x m y n x m y n ⎧+++=⎪⎪⎨--⎪+=⎪⎩, 两式相减,得4430014342EF mx n n x y k m y x -+=⇒==-=-, 由此得点M 的轨迹方程为:226830x y x +-=(0x ≠).------------------------------ 设直线MA :2x my =+(其中1m k=),则 22222(68)211806830x my m y my x y x =+⎧⇒+++=⎨+-=⎩, ------------------------------ 故由22(21)72(68)0||8m m m ∆=-+≥⇒≥,即18k≥, 解得:k 的取值范围是11,88⎡⎤-⎢⎥⎣⎦. ---------------------------23.(广东省汕头一中2013年高三4月模拟考试数学理试题 )已知抛物线C :212x y =,过焦点F 的动直线l 交抛物线于A 、B 两点,O 为坐标原点. (1)求证:OA OB ⋅为定值;(2)设M 是线段AB 的中点,过M 作x 轴的垂线交抛物线C 于点N ,证明:抛物线C 在点N 处的切线与AB 平行.【答案】(1)设直线l 的方程为:18y kx =+,()11,A x y ,()22,B x y . ------------------------- 由21218x y y kx ⎧=⎪⎪⎨⎪=+⎪⎩得:2110264x kx --=,∴12116x x =- ------------------------∴()2121212123464OA OB x x y y x x x x ⋅=+=+=-为定值---------------------------- (2)由(1)得:点M 的横坐标为4k ,∴点N 的横坐标为4k----------------------------∵'4y x = ∴4'|k x y k == ----------------------------∴平行另解:设()00,N x y ,则12024x x k x +==,220028k y x ==---------------------------- 设抛物线C 在点N 处的切线为284k k y m x ⎛⎫-=- ⎪⎝⎭ 由228412k k y m x x y⎧⎛⎫-=- ⎪⎪⎪⎝⎭⎨⎪=⎪⎩得:2202816m mk k x x -+-= ------------------------------- ∴22404816m mk k ⎛⎫∆=--= ⎪⎝⎭,解得:m k = ------------------------------- ∴平行24.(广东省东莞市2013届高三第二次模拟数学理试题)已知椭圆22122:1(0)x y C a b a b+=>>的离心率为e =直线:2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=⋅,求||QS 的取值范围.【答案】解:(1)由直线:2l y x =+与圆222xy b +=相切,b =,即b =由e =,得222213b e a =-=,所以a =所以椭圆的方程是221:132x y C +=(2)由条件,知2||||MF MP =,即动点M 到定点2F 的距离等于它到直线1:1l x =-的距离,由抛物线的定义得点M 的轨迹2C 的方程是x y 42=(3)由(2),知(0,0)Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, ∴222121121,,,44y y y QR y RS y y ⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭由0=⋅RS QR ,得()()222121121016y y y y y y -+-=∵12y y ≠,∴21116y y y ⎛⎫=-+⎪⎝⎭,∴222121256323264y y y =++≥=,当且仅当2121256y y =,即14y =±时等号成立 又||y QS ⎛== ,∵2264y ≥,∴当2264y =,即28y =±时,min ||QS =故||QS 的取值范围是)⎡+∞⎣25.(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知两圆222212:20,:(1)4C x y x C x y +-=++=的圆心分别为12,C C ,P 为一个动点,且12||||PC PC +=(1)求动点P 的轨迹M 的方程;(2)是否存在过点(2,0)A 的直线l 与轨迹M 交于不同的两点C 、D,使得11||||C C C D =?若存在,求直线l 的方程;若不存在,请说明理由.【答案】解:(1)两圆的圆心坐标分别为1(1,0),C 和2(1,0)C -∵1212||||||2PC PC C C +=>=∴根据椭圆的定义可知,动点P 的轨迹为以原点为中心,1(1,0),C 和2(1,0)C -为焦点,长轴长为2a =的椭圆, 1,1a c b ====∴椭圆的方程为2212x y +=,即动点P 的轨迹M 的方程为2212x y += (2)(i)当直线l 的斜率不存在时,易知点(2,0)A 在椭圆M 的外部,直线l 与椭圆M 无交点,所以直线l 不存在.(ii)设直线l 斜率存在,设为k ,则直线l 的方程为(2)y k x =-由方程组2212(2)x y y k x ⎧+=⎪⎨⎪=-⎩得2222(21)8820k x k x k +-+-=①依题意28(21)0k ∆=-->解得22k -<<当k <<时,设交点1122(,),(,)C x y D x y ,CD 的中点为00(,)N x y ,方程①的解为12x x == ,则212024221x x k x k +==+ ∴2002242(2)22121k ky k x k k k ⎛⎫-=-=-= ⎪++⎝⎭要使11||||C C C D =,必须1C N l ⊥,即11C N k k ⋅=-∴222212114021kk k k k --+⋅=--+,即2102k k -+=② ∵1114102∆=-⨯=-<或,∴2102k k -+=无解所以不存在直线,使得11||||C C C D =综上所述,不存在直线l ,使得11||||C C C D =26.(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)已知椭圆2222:1(0)x y C a b a b+=>>的,. (1)求椭圆C 的方程;(2)设直线l 与椭圆C 交于A B ,两点,坐标原点O 到直线l 求AOB △面积的最大值.【答案】(2)设11()A x y ,,22()B x y ,.27.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)己知斜率为1的直线l 与双曲线2222:1x y C a b-=(0a >,0b >),相交于B 、D 两点,且BD 的中点为(1,3)M(1)求双曲线C 的离心率;(2)设C 的右顶点为A ,右焦点为F ,||||17DF BF ⋅=,证明:过A 、B 、D 三点的圆与x 轴相切.【答案】解:(1)由题设知,直线l 的方程为2y x =+代入双曲线C 的方程,并化简得:2222222()440b a x a x a a b ----=设11(,)B x y ,22(,)D x y ,则212224a x x b a +=-,22212224a a b x x b a+⋅=- ①由(1,3)M 为BD 的中点知:1212x x +=,故2221412a b a ⋅=-,即223b a = ② 所以2223c a a -=,即224c a = 故2c e a==所以双曲线C 的离心率为2e =(注:本题也可用点差法解决)(2)由①、②知,双曲线C 的方程为:22233x y a -=(,0)A a ,(2,0)F a ,122x x +=,2124302a x x +⋅=-<1|||2|BF x a =-同理2|||2|DF x a =-2222121212|||||(2)(2)||42()||864||548|BF DF x a x a x x a x x a a a a a a ⋅=--=-++=----=++又因为||||17DF BF ⋅= 且25480a a ++> 所以254817a a ++= 解得:1a =,95a =-(舍去)12|||6BD x x -连结MA ,则由(1,0)A ,(1,3)M 知||3MA =,从而||||||MA MB MD ==,且MA x ⊥轴, 因此以M 为圆心,MA 为半径的圆经过A 、B 、D 三点,且在点A 处与x 轴相切. 所以过A 、B 、D 三点的圆与x 轴相切28.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))已知直线033=+-y x 经过椭圆C :12222=+by a x (0>>b a )的一个顶点B 和一个焦点F .⑴求椭圆的标准方程;⑵设P 是椭圆C 上动点,求||||||PB PF -的取值范围,并求||||||PB PF -取最小值时点P 的坐标.【答案】【答案】⑴依题意,)1 , 0(B ,)0 , 3(-F , 所以1=b ,3=c ,222=+=c b a ,所以椭圆的标准方程为1422=+y x 5分. ⑵||||||||0BF PB PF ≤-≤,当且仅当||||PB PF =时,0||||||=-PB PF ,当且仅当P 是直线BF 与椭圆C 的交点时,||||||||BF PB PF =- ,2||=BF ,所以||||||PB PF -的取值范围是]2 , 0[ . 设) , (n m P ,由||||PB PF =得013=++n m ,由⎪⎩⎪⎨⎧=++=+0131422n m n m ,解得⎩⎨⎧-==10n m 或⎪⎪⎩⎪⎪⎨⎧=-=13111338n m , 所求点P 为)1 , 0(-P 和)1311, 1338(-P . 29.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)在平面直角坐标系xOy 中,动点P到两点(0),0)的距离之和等于4,设点P 的轨迹为曲线C ,直线l 过点(1,0)E -且与曲线C 交于A ,B 两点.(1)求曲线C 的轨迹方程;(2)是否存在△AOB 面积的最大值,若存在,求出△AOB 的面积;若不存在,说明理由.【答案】解.(Ⅰ)由椭圆定义可知,点P 的轨迹C是以(0),0)为焦点,长半轴长为2 的椭圆.故曲线C 的方程为2214x y +=(Ⅱ)存在△AOB 面积的最大值因为直线l 过点(1,0)E -,可设直线l 的方程为 1x my =-或0y =(舍).则221,4 1.x y x my ⎧+=⎪⎨⎪=-⎩整理得 22(4)230m y my +--= 由22(2)12(4)0m m ∆=++>. 设1122()()A x y B x y ,,,.解得1y =2y =. 则21||y y -=因为1212AOB S OE y y ∆=⋅-= 设1()g t t t=+,t =t ≥.则()g t在区间)+∞上为增函数.所以()g t ≥.所以AOB S ∆≤当且仅当0m =时取等号,即max ()AOB S ∆=. 所以AOB S ∆30.(广东省汕头市2013届高三3月教学质量测评数学(理)试题)〔本小题满分14分)如图.已知椭圆22221(0)x y a b a b +=>>的长轴为AB,过点B 的直线l 与x 轴垂直,椭圆的离心率e =,F 为椭圆的左焦点且11AF F B =1 .(I)求椭圆的标准方程; (II)设P 是椭圆上异于A 、B 的任意一点,PH⊥x 轴,H 为垂足,延长HP 到点Q 使得HP=PQ.连接AQ 并延长交直线l 于点M.N 为MB 的中点,判定直线QN 与以AB 为直径的圆O 的位置关系.【答案】解:(Ⅰ)易知A )0,(a -, B )0,(a )0,(1c F -1)()0,(11=+⋅-=⋅∴c a c a F AF1222==-∴b c a又23=e 43122222=-==∴aa a c e ,解得42=a1422=+∴y x 所求椭圆方程为:(Ⅱ)设),(00y x P 则)2,(00y x Q )22(≠-≠x x 及 2200+=∴x y k AQ 所以直线AQ 方程)2(22:00++=x x y y )28,2(00+∴x y M )24,2(00+∴x y N 42222420000000-=--+=∴x y x x y x y k QN又点P 的坐标满足椭圆方程得到:442020=+y x ,所以 202044y x -=-200200024242y x y y x x y x k QN -=-=-=∴ ∴直线 QN 的方程:)(22000x x y x y y --=- 化简整理得到:442202000=+=+y x y y x x 即4200=+y y x x 所以 点O 到直线QN 的距离244220=+=y x d∴直线QN 与AB 为直径的圆O 相切.31.(广东省梅州市2013届高三3月总复习质检数学(理)试题)(本小题满分14分)已知F 1,F 2分别是椭圆C:22221(0)y x a b a b+=>>的上、下焦点,其中F 1也是抛物线C 1:24x y =的焦点,点M 是C 1与C 2在第二象限的交点,且15||3MF =. (1)求椭圆C 1的方程;(2)已知A(b,0),B(0,a),直线y=kx(k>0)与AB 相交于点D,与椭圆C 1相交于点E,F 两点,求四边形AEBF 面积的最大值. 【答案】32.(广东省茂名市实验中学2013届高三下学期模拟(二)测试数学(理)试题(详解))如图,已知点M0(x0,y0)是椭圆C:222yx=1上的动点,以M0为切点的切线l0与直线y=2相交于点P.(1)过点M0且l0与垂直的直线为l1,求l1与y轴交点纵坐标的取值范围;(2)在y轴上是否存在定点T,使得以PM0为直径的圆恒过点T?若存在,求出点T的坐标;若不存在,说明理由.【答案】解:(1)由椭圆得:y =,'y =1222(22)x x ---切线的斜率为所以,直线l 1的方程为:000)y y x x -=-,与y 轴交点纵坐标为因为011x -≤≤,所以,2001x ≤≤,200222x ≤-≤,所以,当切点在第一、二象限时l 1与y 轴交点纵坐标的取值范围为:0y ≤≤,则对称性可知 l 1与y 轴交点纵坐标的取值范围为:22y -≤≤. (2)依题意,可得∠PTM 0=90°,设存在T(0,t),M 0(x 0,y 0)由(1)得点P 的坐标(220000222y y x x -+,2),由00PT M T =可求得t=1所以存在点T(0,1)满足条件.33.(广东省茂名市2013届高三第一次模拟考试数学(理)试题)已知椭圆1C :22221x y a b+= (0a b >>)的离心率为3,连接椭圆的四个顶点得到的四边形的面积为.(1)求椭圆1C 的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F 且垂直于椭圆的长轴,动直线2l 垂直1l 于点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设O 为坐标原点,取2C 上不同于O 的点S ,以OS 为直径作圆与2C 相交另外一点R ,求该圆面积的最小值时点S 的坐标.【答案】解:(1)解:由e =得223a c =,再由222c a b =-,解得a =由题意可知1222a b ⋅⋅=,即a b ⋅=解方程组2a ab ⎧=⎪⎨⎪=⎩得a b ==所以椭圆C 1的方程是22132x y += (2)因为2MP MF =,所以动点M 到定直线1:1l x =-的距离等于它到定点2F (1,0)的距离,所以动点M 的轨迹2C 是以1l 为准线,2F 为焦点的抛物线,所以点M 的轨迹2C 的方程为24y x =(3)因为以OS 为直径的圆与2C 相交于点R ,所以∠ORS = 90°,即0OR SR ⋅= 设S (1x ,1y ),R (2x ,2y ),SR =(2x -1x ,2y -1y ),OR =(2x ,2y )所以222221*********()()()()016y y y OR SR x x x y y y y y y -⋅=-+-=+-= 因为12y y ≠,20y ≠,化简得12216y y y ⎛⎫=-+⎪⎝⎭所以221222256323264y y y =++≥=, 当且仅当2222256y y =即22y =16,y 2=±4时等号成立 圆的直径|OS===因为21y ≥64,所以当21y =64即1y =±8时,min OS =, 所以所求圆的面积的最小时,点S 的坐标为(16,±8)34.(广东省揭阳市2013届高三3月第一次高考模拟数学(理)试题(含解析))如图(6),设点)0,(1c F -、)0,(2c F 分别是椭圆)1(1:222>=+a y ax C 的左、右焦点,P 为椭圆C 上任意一点,且12PF PF ⋅uuu r uuu r 最小值为0.(1)求椭圆C 的方程;(2)若动直线12,l l 均与椭圆C 相切,且12//l l ,试探究在x 轴上是否存在定点B ,点B 到12,l l 的距离之积恒为1?若存在,请求出点B 坐标;若不存在,请说明理由.图(6)F 2F 1oyx【答案】解:(1)设),(y x P ,则有),(1y c x PF +=,),(2y c x P F -=[]a a x c x aa c y x PF PF ,,11222222221-∈-+-=-+=⋅ 由12PF PF ⋅uuu r uuu r最小值为0得210122=⇒=⇒=-a c c , ∴椭圆C 的方程为1222=+y x(2)①当直线12,l l 斜率存在时,设其方程为,y kx m y kx n =+=+ 把1l 的方程代入椭圆方程得222(12)4220k x mkx m +++-=∵直线1l 与椭圆C 相切,∴2222164(12)(22)0k m k m ∆=-+-=,化简得2212m k =+同理,2212n k =+∴22m n =,若m n =,则12,l l 重合,不合题意,∴m n =- 设在x 轴上存在点(,0)B t ,点B 到直线12,ll 的距离之积为1,则1=,即2222||1k t m k -=+,--- 把2212k m +=代入并去绝对值整理,22(3)2k t -=或者22(1)0k t -=前式显然不恒成立;而要使得后式对任意的k R ∈恒成立则210t -=,解得1t =±;---------------------------------------------------------②当直线12,l l 斜率不存在时,其方程为x =和x =,定点(1,0)-到直线12,l l 的距离之积为1)1-+=;定点(1,0)到直线12,l l 的距离之积为1)1=; 综上所述,满足题意的定点B 为(1,0)-或(1,0)35.(广东省江门市2013年高考模拟考试(即一模)数学(理)试题 )已知椭圆C 的中心在原点O ,离心率23=e ,右焦点为)0 , 3( F . ⑴求椭圆C 的方程;⑵设椭圆的上顶点为A ,在椭圆C 上是否存在点P ,使得向量OA OP +与FA 共线?若存在,求直线AP 的方程;若不存在,简要说明理由.【答案】解:⑴设椭圆C 的方程为22221(0)x y a b a b+=>>,椭圆C 的离心率23=e ,右焦点为)0 , 3( F ,∴c c a ==, 222a b c =+,∴2,1,a b c ===,故椭圆C 的方程为2214x y += ⑵假设椭圆C 上是存在点P (00,x y ),使得向量OA OP +与FA 共线,00(,1)OP OA x y +=+,(FA =,∴011y +=,即001)x y =+,(1) 又点P (00,x y )在椭圆2214x y +=上,∴220014x y += (2)由⑴、⑵组成方程组解得0001x y =⎧⎨=-⎩,或0017x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴(0,1)P -,或1()7P , 当点P 的坐标为(0,1)-时,直线AP 的方程为0y =,当点P的坐标为1()7P 时,直线AP440y -+=, 故直线AP 的方程为0y =440y -+=36.(广东省华附、省实、深中、广雅四校2013届高三上学期期末联考数学(理)试题)已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点D (0, 2 )为圆心,1为半径的圆相切,又知双曲线C 的一个焦点与D 关于直线y =x 对称. (Ⅰ)求双曲线C 的方程;(Ⅱ)设直线y =mx +1与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围;(Ⅲ)若Q 是双曲线C 上的任一点,F 1F 2为双曲线C 的左,右两个焦点,从F 1引∠F 1QF 2的平分线的垂线,垂足为N ,试求点N 的轨迹方程.【答案】解:(Ⅰ)设双曲线C 的渐近线方程为y =kx ,则kx -y =0∵该直线与圆x 2+(y - 2 )2=1相切,有|- 2 |k 2+ 1= 1 ⇒ k =±1. ∴双曲线C 的两条渐近线方程为y =±x , 故设双曲线C 的方程为 x 2a 2-y 2a2 = 1 .易求得双曲线C 的一个焦点为 ( 2 ,0),∴2a 2=2,a 2=1.∴双曲线C 的方程为x 2-y 2=1.(Ⅱ)由 ⎩⎨⎧ y =mx +1 x 2-y 2=1得(1-m 2)x 2-2mx -2=0.令f (x )= (1-m 2)x 2-2mx -2直线与双曲线左支交于两点,等价于方程f (x )=0在(-∞,0)上有两个不等实根. 因此 ⎩⎪⎨⎪⎧ △>02m 1-m 2 <0-21-m 2>0解得1<m <2 .又AB 中点为(m 1-m 2 ,11-m2 ),∴直线l 的方程为y =1-2m 2+m +2 (x +2). 令x =0,得b =2-2m 2+m +2=2-2(m -14 )2+178.∵1<m < 2 ,∴-2(m -14 )2+178 ∈ (-2+ 2 , 1),∴b ∈ (-∞,-2- 2 )∪(2,+∞).(Ⅲ)若Q 在双曲线的右支上,则延长2QF 到T ,使||||1QF QT =, 若Q 在双曲线的左支上,则在QF 2上取一点T ,使| QT |=|QF 1 |.根据双曲线的定义| TF 2 |=2,所以点T 在以F 2( 2 ,0)为圆心,2为半径的圆上,即点T 的轨迹方程是(x - 2 )2+y 2=4 (x ≠ 0) ①由于点N 是线段F 1T 的中点,设N (x ,y ),T (x T ,y T ).则 ⎩⎪⎨⎪⎧ x =x T- 2 2 y =y T2,即 ⎩⎨⎧ x T=2x + 2y T= 2y .代入①并整理得点N 的轨迹方程为x 2+y 2=1.(x ≠ -22) (或者用几何意义得到| NO |=12| F 2T |=1, 得点N 的轨迹方程为x 2+y 2=1.)37.(广东省海珠区2013届高三上学期综合测试一数学(理)试题)(本小题满分14分)设抛物线()2:20C x py p =>的焦点为F ,()()000,0A x y x ≠是抛物线C 上的一定点.(1)已知直线l 过抛物线C 的焦点F ,且与C 的对称轴垂直,l 与C 交于,Q R 两点, S 为C 的准线上一点,若QRS ∆的面积为4,求p 的值;(2)过点A 作倾斜角互补的两条直线AM ,AN ,与抛物线C 的交点分别为()11,,M x y ()22,N x y .若直线AM ,AN 的斜率都存在,证明:直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.【答案】(本小题主要考查直线、抛物线、对称等知识,考查数形结合、化归与转化、方程的思想方法,考查数学探究能力以及运算求解能力) 解: (1)由题设0,2p F ⎛⎫ ⎪⎝⎭,设1,,2p Q x ⎛⎫ ⎪⎝⎭则1,2p R x ⎛⎫- ⎪⎝⎭QR =2p ===.∴由QRS ∆的面积为4,得:1242p p ⨯⨯=,得: 2.p =(2)由题意()100,A x y -首先求抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.解法一:设抛物线在1A 处的切线的斜率为k ,则其方程为()00y k x x y =++ 联立()0022y k x x y x py⎧=++⎪⎨=⎪⎩得2002220x pkx px k py ---=将2002py x =代入上式得:2200220x pkx px k x ---=()()22002420pk px k x ∆=-++=即2220020p k px k x ++= 即()200pk x += 得0.x k p=-即抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率为0.x p-解法二:由22x py =得212y x p=, ∴'x y p=∴抛物线C 在点A 关于对称轴的对称点()100,A x y -处的切线的斜率为0.x p-再求直线MN 的斜率.解法一:设直线AM 的斜率为1k ,则由题意直线AN 的斜率为1k -直线AM 的的方程为()010y y k x x -=-,则直线AN 的的方程为()010y y k x x -=--.联立()21002x py y k x x y ⎧=⎪⎨=-+⎪⎩得221100220x pk x pk x x -+-=(1)方程(1)有两个根01,x x ,∴()()2210102420pk px k x ∆=--->∴0,1x =0112x x pk +=,即1102x pk x =-,同理可得2102x pk x =--直线MN 的斜率222121122121222MNx x y y x x p p k x x x x p --+===--0022x x p p-==- ∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率解法二:AM AN k k =-01020102y y y y x x x x --∴=--- 将222012012,,222x x x y y y p p p ===分别代入上式得:2222001201022222x x x x p p p p x x x x --=---, 整理得0122x x x =+∴直线MN 的斜率222121122121222MNx x y y x x p p k x x x x p --+===--0022x x p p-==- ∴直线MN 的斜率等于抛物线C 在点A 关于对称轴的对称点1A 处的切线的斜率.38.(广东省广州市2013届高三调研测试数学(理)试题)如图5, 已知抛物线2P yx :=,直线AB 与抛物线P 交于A B ,两点,OA OB ^,OA OB OC uu r uu u r uuu r+=,OC 与AB 交于点M .(1) 求点M 的轨迹方程;求四边形AOBC 的面积的最小值.,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识) 解法一:(1)解:设()()()221122M x y A y y B y y ,,,,,, ∵OA OB OC +=, ∴M 是线段AB 的中点 ∴()222121212222yy y y y y x +-+==,①122y y y +=. ② ∵OA OB ⊥, ∴0OA OB ⋅=. ∴2212120y y y y += 依题意知120y y ≠,∴121y y =-. ③把②、③代入①得:2422y x +=,即()2112y x =- ∴点M 的轨迹方程为()2112yx =- (2)解:依题意得四边形AOBC 是矩形,∴四边形AOBC 的面积为S OA OB ==⋅===∵22121222y y y y +≥=,当且仅当12y y =时,等号成立,∴2S ≥=∴四边形AOBC 的面积的最小值为2 解法二:(1)解:依题意,知直线OA OB ,的斜率存在,设直线OA 的斜率为k , 由于OA OB ⊥,则直线OB 的斜率为1k-故直线OA 的方程为y kx =,直线OB 的方程为1y x k=-. 由2y kx y x ,.⎧=⎨=⎩ 消去y ,得220k x x -=.解得0x =或21x k=∴点A 的坐标为211k k ,⎛⎫⎪⎝⎭同理得点B 的坐标为()2k k ,- ∵OA OB OC +=, ∴M 是线段AB 的中点 设点M 的坐标为()x y ,,则221212k k x k k y ,.⎧+⎪=⎪⎪⎨⎪-⎪=⎪⎩消去k ,得()2112yx =- ∴点M 的轨迹方程为()2112y x =-(2)解:依题意得四边形AOBC 是矩形, ∴四边形AOBC 的面积为S OA OB==⋅=≥2=当且仅当221kk=,即21k =时,等号成立 ∴四边形AOBC 的面积的最小值为239.(广东省广州市2013届高三3月毕业班综合测试试题(一)数学(理)试题)已知椭圆1C 的中心在坐标原点,两个焦点分别为1(2,0)F -,2F ()20,,点(2,3)A 在椭圆1C 上,过点A 的直线L 与抛物线22:4C x y =交于B C ,两点,抛物线2C 在点B C ,处的切线分别为12l l ,,且1l 与2l 交于点P .(1) 求椭圆1C 的方程;(2) 是否存在满足1212PF PF AF AF +=+的点P ? 若存在,指出这样的点P 有几个(不必求出点P 的坐标); 若不存在,说明理由.【答案】(本小题主要考查椭圆、抛物线、曲线的切线等基础知识,考查数形结合、函数与方程、化归与转化的数学思想方法,以及推理论证能力、运算求解能力、创新意识)(1) 解法1:设椭圆1C 的方程为22221x y a b+=()0a b >>,依题意: 222222231,4.a b a b ⎧+=⎪⎨⎪=+⎩解得: 2216,12.a b ⎧=⎪⎨=⎪⎩ ∴ 椭圆1C 的方程为2211612x y += 解法2:设椭圆1C 的方程为22221x y a b+=()0a b >>,根据椭圆的定义得1228a AF AF =+=,即4a =,∵2c =, ∴22212b a c =-=∴椭圆1C 的方程为2211612x y += (2)解法1:设点)41,(211x x B ,)41,(222x x C ,则))(41,(212212x x x x --=, )413,2(211x x BA --=, ∵C B A ,,三点共线, (苏元高考吧:) ∴BC BA // ∴()()()222211211113244x x x x x x ⎛⎫--=-- ⎪⎝⎭,化简得:1212212x x x x ()+-=. ① 由24xy =,即214y x ,=得y '=12x ∴抛物线2C 在点B 处的切线1l 的方程为)(2411121x x x x y -=-,即211412x x x y -=. ② 同理,抛物线2C 在点C 处的切线2l 的方程为 222412x x x y -=. ③ 设点),(y x P ,由②③得:=-211412x x x 222412x x x -, 而21x x ≠,则 )(2121x x x += 代入②得 2141x x y =, 则212x x x +=,214x x y =代入 ① 得 1244=-y x ,即点P 的轨迹方程为3-=x y . 若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,而点P 又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212PF PF AF AF +=+ 的点P 有两个 解法2:设点),(11y x B ,),(22y x C ,),(00y x P ,由24xy =,即214y x ,=得y '=12x ∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-, 即2111212x y x x y -+=∵21141x y =, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=. ① 同理, 20202y x x y -=. ② 综合①、②得,点),(),,(2211y x C y x B 的坐标都满足方程y x xy -=002∵经过),(),,(2211y x C y x B 的直线是唯一的, ∴直线L 的方程为y x xy -=002, ∵点)3,2(A 在直线L 上, ∴300-=x y ∴点P 的轨迹方程为3-=x y若1212PF PF AF AF +=+ ,则点P 在椭圆1C 上,又在直线3-=x y 上, ∵直线3-=x y 经过椭圆1C 内一点(3,0), ∴直线3-=x y 与椭圆1C 交于两点∴满足条件1212PF PF AF AF +=+ 的点P 有两个解法3:显然直线L 的斜率存在,设直线L 的方程为()23y k x =-+,由()2234y k x x y ,,⎧=-+⎪⎨=⎪⎩消去y ,得248120x kx k -+-=设()()1122B x y C x y ,,,,则12124812x x k x x k ,+==- 由24xy =,即214y x ,=得y '=12x∴抛物线2C 在点B 处的切线1l 的方程为)(2111x x x y y -=-,即2111212x y x x y -+= ∵21141x y =, ∴211124x y x x =-.同理,得抛物线2C 在点C 处的切线2l 的方程为222124x y x x =- 由211222124124x y x x x y x x ,,⎧=-⎪⎪⎨⎪=-⎪⎩解得121222234x x x k x x y k ,.⎧+==⎪⎪⎨⎪==-⎪⎩ ∴()223P k k ,-∵1212PF PF AF AF +=+,∴点P 在椭圆22111612x y C :+=上 ∴()()2222311612k k -+=.化简得271230k k --=.(*)由()2124732280Δ=-⨯⨯-=>,可得方程(*)有两个不等的实数根. ∴满足条件的点P 有两个40.(广东省潮州市2013届高三上学期期末教学质量检测数学(理)试题)已知点(4,0)M 、(1,0)N ,若动点P 满足6||MN MP NP =⋅.(1)求动点P 的轨迹C ; (2)在曲线C 上求一点Q ,使点Q 到直线l :2120x y +-=的距离最小.【答案】解:(1)设动点(,)P x y ,又点(4,0)M 、(1,0)N ,∴(4,)MP x y =-,(3,0)MN =-,(1,)NP x y =- 由6||MN MP NP =⋅,得3(4)x --=∴222(816)4(21)4x x x x y -+=-++,故223412x y +=,即22143x y +=,∴轨迹C 是焦点为(1,0)±、长轴长24a =的椭圆;评分说明:只求出轨迹方程,没有说明曲线类型或交代不规范的扣1分. (2)椭圆C 上的点Q 到直线l 的距离的最值等于平行于直线l :2120x y +-= 且与椭圆C 相切的直线1l 与直线l 的距离. 设直线1l 的方程为20(12)x y m m ++=≠-由22341220x y x y m ⎧+=⎨++=⎩,消去y 得2242120x mx m ++-= (*). 依题意得0∆=,即0)12(16422=--m m ,故216m =,解得4m =±.当4m =时,直线1l :240x y ++=,直线l 与1l 的距离5d ==.当4m =-时,直线1l :240x y +-=,直线l 与1l 的距离d ==<,故曲线C 上的点Q 到直线l 当4m =-时,方程(*)化为24840x x -+=,即2(1)0x -=,解得1x =. 由1240y +-=,得32y =,故3(1,)2Q . ∴曲线C 上的点3(1,)2Q 到直线l 的距离最小 41.(广东省肇庆市2013届高三4月第二次模拟数学(理)试题)设椭圆22221(0,0)x y a b b a+=>>的离心率为12,其左焦点E 与抛物线21:4C x y =-的焦点相同.(Ⅰ)求此椭圆的方程;(Ⅱ)若过此椭圆的右焦点F 的直线与曲线C 只有一个交点P ,则(1)求直线的方程;(2)椭圆上是否存在点(,)M x y ,使得12MPF S ∆=,若存在,请说明一共有几个点;若不存在,请说明理由.【答案】解:(Ⅰ)抛物线C 的焦点为(1,0)E -,它是题设椭圆的左焦点.离心率为112b =,所以,2b =.由2221b a -=求得a =因此,所求椭圆的方程为22143x y += (*)(Ⅱ)(1)椭圆的右焦点为(1,0)F ,过点F 与y 轴平行的直线显然与曲线C 没有交点.设直线的斜率为k ,① 若0k =,则直线0y =过点(1,0)F 且与曲线C 只有一个交点(0,0),此时直线 的方程为0y =;② 若0k ≠,因直线过点(1,0)F ,故可设其方程为(1)y k x =-,将其代入24y x =-消去y ,得22222(2)0k x k x k --+=.因为直线与曲线C 只有一个交点P ,所以判别式22224(2)40k k k --⋅=,于是1k =±,从而直线的方程为1y x =-或1y x =-+.因此,所求的直线的方程为0y =或1y x =-或1y x =-+.(2)由(1)可求出点P 的坐标是(0,0)或(1,2)-或(1,2)--. ①若点P 的坐标是(0,0),则1PF =.于是12MPF S ∆==112y ⨯⨯,从而1y =±,代入(*)式联立: 221431x y y ⎧+=⎪⎨⎪=⎩或221431x y y ⎧+=⎪⎨⎪=-⎩,求得x =此时满足条件的点M 有4个: ,,1,1⎫⎛⎫⎫⎛⎫--⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎭⎝⎭⎭⎝⎭. ②若点P 的坐标是(1,2)-,则PF =点M 到直线:1y x =-+于是有11122MPF S y ∆==⨯-,从而112x y +-=±, 与(*)式联立:22143112x y x y ⎧+=⎪⎪⎨⎪+-=⎪⎩或22143112x y x y ⎧+=⎪⎪⎨⎪+-=-⎪⎩解之,可求出满足条件的点M 有4个:,,1115,714⎛⎫- ⎪⎝⎭,31,2⎛⎫- ⎪⎝⎭. ③ 若点P 的坐标是(1,2)--,则PF =,点(,)M x y 到直线:1y x =-是有11122MPF S y ∆==⨯-,从而112x y --=±,与(*)式联立:22143112x yx y⎧+=⎪⎪⎨⎪--=⎪⎩或22143112x yx y⎧+=⎪⎪⎨⎪--=-⎪⎩,解之,可求出满足条件的点M有4个:,,1115,714⎛⎫⎪⎝⎭,31,2⎛⎫--⎪⎝⎭.综合①②③,以上12个点各不相同且均在该椭圆上,因此,满足条件的点M共有12个.图上椭圆上的12个点即为所求.42.(广东省湛江市2013届高三4月高考测试(二)数学理试题(WORD版))已知抛物线C:y2=4x, F 是抛物线的焦点,设A(x1,y1),B(x2 ,y2)是C上异于原点O的两个不重合点,OA丄OB,且AB与x轴交于点T(1) 求x1x2的值;(2) 求T的坐标;(3) 当点A在C上运动时,动点R满足:FRFBFA=+,求点R的轨迹方程.【答案】F的距43.(广东省深圳市2013届高三第二次调研考试数学理试题(2013深圳二模))已知动点M到点(0,1) y=的距离之和为5.离与到直线4(1)求动点M的轨迹E的方程,并画出图形;=+与轨迹E有两个不同的公共点,A B,求m的取值范围;(2)若直线:l y x mAB的最大值.(3)在(2)的条件下,求弦长||【答案】44.(广东省韶关市2013届高三4月第二次调研测试数学理试题)已知椭圆)(1122221 >=-+a a y a x 的左右焦点为21,F F ,抛物线C:px y 22=以F 2为焦点且与椭圆相交于点()11,M x y 、N ()22,x y ,点M 在x轴上方,直线1F M 与抛物线C 相切.(1)求抛物线C 的方程和点M 、N 的坐标;(2)设A,B 是抛物线C 上两动点,如果直线MA ,MB 与y 轴分别交于点,P Q . MPQ ∆是以MP ,MQ 为腰的等腰三角形,探究直线AB 的斜率是否为定值?若是求出这个定值,若不是说明理由.【答案】解:(1)由椭圆方程得半焦距1)1(c 22=--a a =所以椭圆焦点为),( ,01F )01(21-F 又抛物线C 的焦点为)0,2(p ,2,12==∴p p x y C 42=∴: ∵),(11y x M 在抛物线C 上, ∴1214x y =,直线M F 1的方程为)1(111++=x x y y 代入抛物线C 得22211(1)4(1),y x x x +=+22114(1)4(1)x x x x +=+即 22111(1)0,x x x x x ∴-++= ∵1F M 与抛物线C 相切,04)121221=-+∆∴x x =(,11,x ∴= ∴ M、N 的坐标分别为(1,2)、(1,-2) (2)直线AB 的斜率为定值—1. 证明如下:设11(,)A x y ,22(,)B x y ,(1,2)M ,A 、B 在抛物线24y x =上,∴211222244241y x y x ⎧=⎪=⎨⎪=⨯⎩①②③由①-③得,1112412MA y k x y -==-+④由②-③得,2222412MB y k x y -==-+④因为MPQ ∆是以MP,MQ 为腰的等腰三角形,所以MA MB k k =-由MAMB k k =-得11222124122412y x y y x y -⎧=-⎪-+⎪⎨-⎪=-⎪-+⎩ 化简整理,。
广东省2013届高三最新理科试题精选(37套含13大市区的二模)分类汇编7:立体几何一、选择题1 .(广东省东莞市2013届高三第二次模拟数学理试题)如图是一个几何体的三视图,若它的体积是,则a =( )AB C D 【答案】C2 .(广东省中山市2013届高三上学期期末统一考试数学(理)试题)如图,在透明塑料制成的长方体1111D C B A ABCD -容器内灌进一些水,将容器底面一边BC 固定于地面上,再将容器倾斜,随着倾斜度的不同,有下列四个说法:①水的部分始终呈棱柱状;②水面四边形EFGH 的面积不改变; ③棱11D A 始终与水面EFGH 平行;④当1AA E ∈时,BF AE +是定值. 其中所有正确的命题的序号是( )A .①②③B .①③C .②④D .①③④【答案】D3 .(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)已知某个几何体的三视图如图2所示,根据图中标出的尺寸(单位:cm),则这个几何体的体积是 ( )A .38cmB .312cmC .324cmD .372cm【答案】B 解析:三视图的直观图是有一个侧面垂直于底面三棱锥,底面是底边长为6高为4的等腰三角形,三棱锥的高为3,所以,这个几何体的体积116431232V =⨯⨯⨯⨯= 4 .(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)某几何体的三视图如图所示,当a b +取最大值时,这个几何体的体积为( )A .16B .13C .23D .12【答案】D5 .(广东省深圳市南山区2013届高三上学期期末考试数学(理)试题)如图所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为( )A .π4B .π2C .π3D .23π【答案】D6 .(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))若某空间几何体的三视图如图所示,则该几何体的体积是【答案】B7 .(广东省潮州市2013届高三第二次模拟考试数学(理)试题)已知一个几何体的三视图及其大小如图1,这个几何体的体积=V ( )A .π12B .π16C .π18D .π64【答案】B8 .(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))一个圆锥的正(主)视图及其尺寸如图2所示.若一个平行于 圆锥底面的平面将此圆锥截成体积之比为1﹕7的上、下两部分,则截面的面积为 ( ) A .14π B .πC .94π D .4π【答案】C9 .(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))如图是某简单组合体的三视图,则该组合体的体积为图2( )A.π+ B.2)π+ C.D.2)+【答案】【解析】由三视图可知几何体是由截面相同的半个圆锥与半个三棱锥组合而成的.圆椎底面半径为6,椎体底面边长为12,高为.1111361262)3232V ππ=⨯⨯⨯⨯+⨯⨯⨯⨯=+故选B .10.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)下列命题中假命题...是 ( )A .若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行;B .垂直于同一条直线的两条直线相互垂直;C .若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;D .若一个平面内的两条相交直线与另一个平面内的相交直线分别平行,那么这两个平面相互平行. 【答案】B11.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)一个棱长为2的正方体沿其棱的中点截去部分后所得几何体的三视图如图(1)示,则该几何体的体积为 ( )A .7B .223 C .476D .233图(1)【答案】依题意可知该几何体的直观图如右上图,其体积为.3112322111323-⨯⨯⨯⨯⨯=,故选 D .侧视图正视图12.(广东省汕头市2013年普通高中高三教学质量测试试题(二)理科数学试卷)某三棱锥的三视图如图所示,该三棱锥的体积是 ( )A .403 B .3C .503D .6【答案】A 二、填空题13.(广东省中山市2013届高三上学期期末统一考试数学(理)试题)若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积...等于_______【答案】6+14.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)一个几何体的三视图如图所示,正视图是正方形,俯视图为半圆,侧视图为矩形,则其表面保积为________【答案】π34+;15.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)已知某个三棱锥的三视图如图所示,其中正视图是等边三角形,侧视图是直角三角形,俯视图是等腰直角三角形则此三棱锥的体积等于_____________ .【答案】16.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))已知集合A B C 、、,A ={直线},B ={平面},C A B =.若,,a A b B c C ∈∈∈,给出下列四个命题:①//////a b a c c b ⎧⇒⎨⎩ ②//a b a c c b ⊥⎧⇒⎨⊥⎩ ③//a ba c cb ⎧⇒⊥⎨⊥⎩ ④//a ba c c b⊥⎧⇒⊥⎨⎩ 其中所有正确命题的序号是__________.【答案】【解析】由题意知:C 可以是直线,也可以是平面,当C 表示平面时,①②③都不对,故选④正确.17.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))一个几何体的三视图如图所示,则这个几何体的体积为___【答案】103三、解答题18.(广东省韶关市2013届高三第三次调研考试数学(理科)试题(word 版) )如图,在三棱拄111ABC A B C -中,AB ⊥侧面11BB C C ,已知11,3BC BCC π=∠=(Ⅰ)求证:1C B ABC ⊥平面;(Ⅱ)试在棱1CC (不包含端点1,)C C 上确定一点E 的位置,使得1EA EB ⊥; (Ⅲ) 在(Ⅱ)的条件下,求二面角11A EB A --的平面角的正切值.EC 1B 1A1CA【答案】证(Ⅰ)因为AB ⊥侧面11BB C C ,故1AB BC ⊥在1BC C 中,1111,2,3BC CC BB BCC π===∠=由余弦定理有1BC == 故有 222111BC BC CC C B BC += ∴⊥而 BC AB B = 且,AB BC ⊂平面ABC∴1C B ABC ⊥平面(Ⅱ)由11,,,,EA EB AB EB ABAE A AB AE ABE ⊥⊥=⊂平面从而1B E ABE ⊥平面 且BE ABE ⊂平面 故1BE B E ⊥不妨设 CE x =,则12C E x =-,则221BE x x =+-又1123B C C π∠= 则2211B E x x =++在1Rt BEB 中有 22114x x x x +++-+= 从而1x =±(舍负)111故E 为1CC 的中点时,1EA EB ⊥ 法二:以B 为原点1,,BC BC BA为,,x y z 轴,设CE x=,则11(0,0,0),(1),(2B E x B A -- 由1EA EB ⊥得 10EAEB ⋅= 即11(1,,0)0222211(1)(2)02222x x x x x x x x ---=⎫---=⎪⎪⎭化简整理得 2320x x -+= 1x = 或 2x = 当2x =时E 与1C 重合不满足题意 当1x =时E 为1CC 的中点 故E 为1CC 的中点使1EA EB ⊥(Ⅲ)取1EB 的中点D ,1A E 的中点F ,1BB 的中点N ,1AB 的中点M 连DF 则11//DF A B ,连DN 则//DN BE ,连MN 则11//MN A B 连MF 则//MF BE ,且MNDF 为矩形,//MD AE 又1111,A B EB BE EB ⊥⊥ 故MDF ∠为所求二面角的平面角在Rt DFM 中,111(22DF A B BCE==∆为正三角形)111222MF BE CE === 1tan 22MDF ∴∠==法二:由已知1111,EA EB B A EB ⊥⊥, 所以二面角11A EB A --的平面角θ的大小为向量11B A 与EA 的夹角因为11B A BA == 1(22EA =-- 故 11112cos tan 23EA B A EA B A θθ⋅==⇒=⋅19.(广东省汕头市东厦中学2013届高三第三次质量检测数学(理)试题 )四棱锥P —ABCD 中,侧面PDC 是MP A BC D • EF G 边长为2的正三角形,且与底面垂直,底面ABCD 是∠ADC ︒=60的菱形,M 为PB 的中点,Q 为CD 的中点. (1) 求证:PA ⊥CD ;(2) 求AQ 与平面CDM 所成的角.【答案】解:(1)连结PQ ,AQ .∵△PCD 为正三角形, ∴PQ ⊥CD . ∵底面ABCD 是∠ADC ︒=60的菱形, ∴AQ ⊥CD. ∴CD ⊥平面PAQ ∴PA ⊥CD .(2)设平面CDM 交PA 于N ,∵CD //AB , ∴CD //平面PAB .∴CD //MN .由于M 为PB 的中点,∴N 为PA 的中点.又PD =CD =AD ,∴DN ⊥PA . 由(1)可知PA ⊥CD ,∴PA ⊥平面CDM∴平面CDM ⊥平面PAB . ∵PA ⊥平面CDM ,联接QN 、QA ,则∠AQN 为AQ 与平面CDM 所成的角 在Rt ∆PMA 中,AM =PM =3, ∴AP =6,∴AN =26,sin ∠AQN =AQ AN =22.∴∠AQN =45°(2)另解(用空间向量解): 由(1)可知PQ ⊥CD ,AQ ⊥CD .又由侧面PDC ⊥底面ABCD ,得PQ ⊥AQ .因此可以如图建立空间直角坐标系xyz Q -易知P (0 , 0 ,3)、A (3, 0 , 0)、B (3, 2 , 0)、C (0 , 1 , 0)、D (0 , -1 , 0)①由=(3, 0 , -3),=(0 , -2 , 0),得⋅=0. ∴PA ⊥CD②由M (23, 1 , -23),CM =(23, 0 , -23),得⋅CM =0. ∴PA ⊥CM∴PA ⊥平面CDM ,即平面CDM ⊥平面PAB .从而就是平面CDM 的法向量设AQ 与平面所成的角为θ , 则sin θ =|cos<,PA >|=22|633|=⨯. 第18题图CB DQPMBCBDQPM 第17题图∴AQ 与平面所成的角为45°20.(广东省东莞市2013届高三第二次模拟数学理试题)如图,PA 垂直⊙O 所在平面ABC,AB 为⊙O 的直径,PA=AB,14BF BP =,C 是弧AB 的中点. (1)证明:BC ⊥平面PAC; (2)证明:CF ⊥BP;(3)求二面角F —OC —B 的平面角的正弦值.【答案】证明:(1)∵PA ⊥平面ABC,BC ⊂平面ABC,∴BC ⊥PA∵∠ACB 是直径所对的圆周角, ∴90o ACB ∠=,即BC ⊥AC又∵PA AC A =,∴BC ⊥平面PAC(2)∵PA ⊥平面ABC,OC ⊂平面ABC, ∴OC ⊥PA∵C 是弧AB 的中点,∴∆ABC 是等腰三角形,AC=BC, 又O 是AB 的中点,∴OC ⊥AB又∵PA AB A =,∴OC ⊥平面PAB ,又PB ⊂平面PAB ,∴BP OC ⊥设BP 的中点为E,连结AE,则//OF AE ,AE BP ⊥ ∴BP OF ⊥∵OC OF O =,∴BP ⊥平面CFO . 又CF ⊂平面CFO ,∴CF BP ⊥ 解:(3)由(2)知OC ⊥平面PAB ,∴OF OC ⊥,OC OB ⊥, ∴BOF ∠是二面角F OC B --的平面角 又∵BP OF ⊥,045FBO ∠=,∴045FOB ∠=,∴sin FOB ∠=,即二面角F OC B --21.(广东省珠海一中等六校2013届高三第一次联考数学(理)试题)一个几何体的三视图如右图所示,其中正视图和侧视图是腰长为6的两个全等的等腰直角三角形.(Ⅰ)请画出该几何体的直观图,并求出它的体积;(Ⅱ)用多少个这样的几何体可以拼成一个棱长为6的正方体ABCD —A 1B 1C 1D 1? 如何组拼?试证明你的结论;(Ⅲ)在(Ⅱ)的情形下,设正方体ABCD —A 1B 1C 1D 1的棱CC 1的中点为E, 求平面AB 1E 与平面ABC 所成二面角的余弦值.【答案】解:(Ⅰ)该几何体的直观图如图1所示,它是有一条侧棱垂直于底面的四棱锥. 其中底面ABCD 是边长为6的 正方形,高为CC 1=6,故所求体积是7266312=⨯⨯=V(Ⅱ)依题意,正方体的体积是原四棱锥体积的3倍,故用3个这样的四棱锥可以拼成一个棱长为6的正方体, 其拼法如图2所示证明:∵面ABCD 、面ABB 1A 1、面AA 1D 1D 为全等的正方形,于是D D AA C A ABB C ABCD C V V V 1111111---== 故所拼图形成立(Ⅲ)方法一:设B 1E,BC 的延长线交于点G, 连结GA,在底面ABC 内作BH⊥AG,垂足为H, 连结HB 1,则B 1H⊥AG,故∠B 1HB 为平面AB 1E 与 平面ABC 所成二面角或其补角的平面角 在Rt△ABG 中,180=AG ,则512180126=⨯=BH ,5182121=+=BB BH H B 32cos 11==∠HB HB HB B ,故平面AB 1E 与平面ABC 所成二面角的余弦值为32± 方法二:以C 为原点,CD 、CB 、CC 1所在直线分别为x 、y 、z 轴建立直角坐标系(如图3),∵正方体棱长为6,则E(0,0,3),B 1(0,6,6),A(6,6,0). 设向量n =(x ,y ,z ),满足n ⊥1EB ,n ⊥1AB ,正视图侧视图俯视图于是⎩⎨⎧=+-=+066036z x z y ,解得⎪⎩⎪⎨⎧-==z y zx 21取z =2,得n =(2,-1,2). 又=1BB (0,0,6),321812||||,cos 111==>=<BB n BB 故平面AB 1E 与平面ABC 所成二面角的余弦值为32±22.(广东省中山市2013届高三上学期期末统一考试数学(理)试题)如图,三棱柱111ABC A B C -中,1AA ⊥平面ABC ,D 、E 分别为11A B 、1AA 的中点,点F 在棱AB 上,且14AF AB =. (Ⅰ)求证://EF 平面1BDC ;(Ⅱ)在棱AC 上是否存在一个点G ,使得平面EFG 将三棱柱分割成的两部分体积之比为1:15,若存在,指出点G 的位置;若不存在,说明理由.【答案】所以符合要求的点G 不存在.23.(广东省肇庆市2013届高三上学期期末统一检测数学(理)试题)如图5,在四棱锥P ABCD -中,底面为直角梯形,//,90AD BC BAD ︒∠=,PA 垂直于底面ABCD ,22,,PA AD AB BC M N ====分别为,PC PB 的中点.(1)求证:PB DM ⊥;(2)求平面ADMN 与平面ABCD 所成的二面角的余弦值;(3)求点B 到平面PAC 的距离.【答案】解:(1)证明:因为N 是PB 的中点,PA AB =, 所以AN PB ⊥由PA ⊥底面ABCD ,得PA AD ⊥, 又90BAD ︒∠=,即BA AD ⊥,又,BA PA 在平面PAB 内,∴ AD ⊥平面PAB ,所以AD PB ⊥ ,又,AD AN 在平面ADMN 内,∴ PB ⊥平面ADMN , ∴PB DM ⊥.(2)方法一:由(1)知,AD ⊥平面PAB ,所以AN AD ⊥ , 由已知可知,AB AD ⊥所以BAN ∠是平面ADMN 与平面ABCD 所成的二面角的平面角 在直角三角形PAB 中,PB ===因为N 直角三角形PAB 斜边PB 的中点,所以AN =在直角三角形NAB 中,cos 2AN BAN AB ∠== 即平面ADMN 与平面ABCD所成的二面角的余弦值为2. 方法二:如图建立空间直角坐标系,则(0,0,0),(1,0,1)A N ,(0,2,0)D(1,0,1)AN =,(0,2,0)AD =设平面ADMN 的法向量为(,,)n x y z =,则0n AN n AD ⎧=⎪⎨=⎪⎩即020x z y +=⎧⎨=⎩,令1z =-,则1x =,所以平面ADMN 的一个法向量为(1,0,1)n =- 显然(0,0,2)a =是平面ABCD 的一个法向量 设平面ADMN 与平面ABCD 所成的二面角的平面角为θ,则cos ||||222n ana θ-===⋅⋅即平面ADMN 与平面ABCD .(3)由已知得,AC ==11122123323P ABC ABC V S PA -∆=⋅=⨯⨯⨯⨯=设点B 到平面PAC 的距离为h ,则1112332B ACP ACP V S h h -∆=⋅=⨯⨯=由P ABC B ACP V V --=,即233h =,得5h =即点B 到平面PAC 的距离5. 24.(广东省湛江一中等“十校”2013届高三下学期联考数学(理)试题)如图5,在四棱锥ABCD P -中,PA ⊥平面ABCD ,4=AB ,3=BC ,090,5=∠=∠=ABC DAB AD ,E 是CD 的中点.(1)求证:CD ⊥平面PAE ;(2)若直线PB 与平面PAE 所成的角和直线PB 与平面ABCD 所成的角相等,求四棱锥ABCD P -的体积.【答案】(1)如图(1),连接AC ,由090,3,4=∠==ABC BC AB,得5=AC5,AD =又E 是CD 的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE (2)过点B 作,,,,.BG CD AE AD F G PF //分别与相交于连接由(1)CD ⊥平面PAE 知,BG ⊥平面PAE .于是BPF ∠为直线PB 与平面PAE 所成的角,且BG AE ⊥由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角 由题意,知,PBA BPF ∠=∠因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠=知,又所以四边形BCDG 是平行四边形,故3.GD BC ==于是 2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以2AB BG BF BG =====于是PA BF ==又梯形ABCD 的面积为1(53)416,2S =⨯+⨯=所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:),0,0(),0,4,2(),0,5,0(),0,3,4(),0,0,4(),0,0,0(h P E D C B A(1)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-==因为8800,0,CD AE CD AP ⋅=-++=⋅=所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面 (2)由题设和(1)知,,CD AP 分别是PAE 平面、ABCD 平面的法向量 由(1)知,(4,2,0),(0,0,),CD AP h =-=-而直线PB 与PAE 平面所成的角和直线PB 与ABCD 平面所成的角相等,所以cos ,cos ,.CD PB PA PB CD PB PA PB CD PBPA PB⋅⋅<>=<>=⋅⋅,即由(4,0,),PB h =-故222160016520016hh h h+⋅++=+⋅++-解得h =又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为 111633V S PA =⨯⨯=⨯=25.(广东省汕头市东山中学2013届高三下学期入学摸底考试数学(理)试题)如图,在底面为直角梯形的四棱锥ABCD P -中,BC AD //,︒=∠90ABC ,⊥PD 平面ABCD ,1=AD ,3=AB ,4=BC (1)求直线AB 与平面PDC 所成的角;(2)设点E 在棱PC 上,λ=,若//DE 平面PAB ,求λ的值.APEC DB【答案】解1:(1)∵⊥PD 平面ABCD ⊂PD 面PDC∴平面⊥PDC 平面ABCD过D 作AB DF //交BC 于F 过点F 作CD FG ⊥交CD 于G , ∵平面 PDC 平面CD ABCD =∴⊥FG 面PDC∴FDG ∠为直线AB 与平面PDC 所成的角 在DFC Rt ∆中,︒=∠90DFC ,3=DF ,3=CF ∴3tan =∠FDG , ∴︒=∠60FDG即直线AB 与平面PDC 所成角为︒60(2)连结EF ,∵AB DF //,⊄DF 平面PAB ,⊂AB 平面PAB ∴//DF 平面PAB又∵//DE 平面PAB 且D DF DE = ∴平面//DEF 平面PABPEFBCDAGPE∴AB EF //又∵1=AD ,4=BC ,1=BF∴41==BC BF PC PE ∴41=,即41=λ 解2:如图,在平面ABCD 内过D 作直线AB DF //,交BC 于F ,分别以DA 、DF 、DP 所在的直线为x 、y 、z 轴建立空间直角坐标系.设a PD =,则)0,0,0(D 、)0,0,1(A 、)0,3,1(B 、)0,3,3(-C 、),0,0(a P (1)设面PDC 的法向量为),,(z y x n = ∵)0,3,3(-=DC 、),0,0(a =∴由⎪⎩⎪⎨⎧=⋅=⋅00 得⎪⎩⎪⎨⎧==+-0033az y x 令1=x 可解得⎪⎩⎪⎨⎧==03z y∴)0,3,1(=n ∵)0,3,0(= ∴2323030||||,cos =⨯++=⋅<n AB n AB ∴直线AB 与平面PDC 所成的角θ,则23|,cos |sin =><=θ∵︒<<︒900θ ∴︒=60θ 即直线AB 与平面PDC 所成的角为︒60(2)∵),3,3(a PC --= ∴),3,3(λλλλa --==∴),3,3(),3,3(),0,0(λλλλλλa a a a --=--+=+= 设面PAB 的法向量为),,(111z y x = ∵)0,3,0(=、),0,1(a -=∴由⎪⎩⎪⎨⎧=⋅=⋅00 得⎪⎩⎪⎨⎧=-=003az x y 令1=z 可解得⎩⎨⎧==a x y 0∴)1,0,(a =若//DE 平面PAB ,则003)1,0,(),3,3(=-++-=⋅--=⋅λλλλλa a a a a a m DE 而0≠a , 所以41=λ 26.(广东省汕头市东山中学2013届高三第二次模拟考试数学(理)试题(详解))如图,ABC ∆的外接圆⊙OB其中AB 为圆直径,CD ⊥⊙O 所在的平面,//,4,2BE CD CD BC ==,且1BE =. (1)求证:平面ADC ⊥平面BCDE ;(2)试问线段DE 上是否存在点M,使得直线AM 与平面ACD 所成角的正弦值为27?若存在,确定M 的位置,若不存在,请说明理由.【答案】解:(Ⅰ)∵AB 是直径,∴AC⊥BC,又∵CD ⊥平面ABC,∴CD⊥BC,故BC⊥平面ACDBC ⊂平面BCDE,∴平面ADC ⊥平面BCDE(Ⅱ)方法一:假设点M 存在,过点M 作MN⊥CD 于N, 连结AN,作MF⊥CB 于F,连结AF∵平面ADC ⊥平面BCDE,∴MN⊥平面ACD,∴∠MAN 为MA 与平面ACD 所成的角 设MN=x ,计算易得,DN=32x ,MF=342x -故AM ===2sin 7MNMAN AM∠===12分 解得:83x =-(舍去) 43x =,故23MN CB =,从而满足条件的点M 存在,且23DM DE = 方法二:建立如图所示空间直角坐标系C —xyz ,则:A(4,0,0),B(0,2,0),D(0,0,4),E(0,2,1),C(0,0,0)则(0,2,3)DE =-易知平面ACD 的法向量为C (0,2,0)OB =,假设M 点存在,设(,,)M a b c ,则(,,4)DM a b c =-, 再设,(0,1]DM DE λλ=∈00224343a a b b c c λλλλ==⎧⎧⎪⎪∴=⇒=⎨⎨⎪⎪-=-=-⎩⎩,即(0,2,43)M λλ-, 从而(4,2,43)AM λλ=--设直线AM 与平面ACD 所成的角为θ,则:22sin cos ,72164OB θλ==++ 22sin cos ,72164OB θλ===+解得4233λλ=-=或,其中4(0,1]3λ=-∉应舍去,而2(0,1]3λ=∈故满足条件的点M 存在,且点M 的坐标为4(0,,2)327.(广东省汕头市第四中学2013届高三阶段性联合考试数学(理)试题)如图,在四棱锥P-ABCD 中,底面ABCD 为直角梯形,AD//BC,∠ADC=90°,平面PAD⊥底面ABCD,Q 为AD 的中点,M 是棱PC 上的点,PA=PD=2,BC=12. (1)若点M 是棱PC 的中点,求证:PA // 平面BMQ;(2)求证:平面PQB⊥平面PAD;(3)若二面角M-BQ-C 为30°,设PM=tMC,试确定t 的值 .【答案】(Ⅱ)∵AD // BC,BC=12AD,Q为AD的中点,∴四边形BCDQ为平行四边形,∴CD // BQ∵∠ADC=90° ∴∠AQB=90° 即QB⊥AD.又∵平面PAD⊥平面ABCD且平面PAD∩平面ABCD=AD,∴BQ⊥平面PAD∵BQ⊂平面PQB,∴平面PQB⊥平面PAD另证:AD // BC,BC=12AD,Q为AD的中点∴ BC // DQ 且BC= DQ,∴ 四边形BCDQ为平行四边形,∴CD // BQ .∵ ∠ADC=90° ∴∠AQB=90° 即QB⊥AD∵ PA=PD, ∴PQ⊥AD∵ PQ∩BQ=Q,∴AD⊥平面PBQ∵ AD⊂平面PAD,∴平面PQB⊥平面PAD(Ⅲ)∵PA=PD,Q为AD的中点, ∴PQ⊥AD.∵平面PAD⊥平面ABCD,且平面PAD∩平面ABCD=AD,∴PQ⊥平面ABCD(不证明PQ⊥平面ABCD 直接建系扣1分) 如图,以Q 为原点建立空间直角坐标系. 则平面BQC 的法向量为(0,0,1)n =;(0,0,0)Q,P,B,(C -设(,,)M x y z ,则(,,PM x y z =,(1,)MC x y z =---,∵PM tMC =,∴ (1))(x t x y t y z t z =--⎧⎪=⎨⎪=-⎩), ∴ 111t x ty t z t⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪+⎩28.(广东省潮州市2013届高三第二次模拟考试数学(理)试题)如图所示,已知AB 为圆O 的直径,点D 为线段AB 上一点,且13AD DB =,点C 为圆O 上一点,且BC =.点P 在圆O 所在平面上的正投影为点D ,PD DB =.(1)求证:PA CD ⊥;(2)求二面角C PB A --的余弦值.第18题图【答案】解析:(Ⅰ)法1:连接CO ,由3AD DB =知,点D 为AO 的中点, 又∵AB 为圆O 的直径,∴AC CB ⊥, 由BC =知,60CAB ∠=, ∴ACO ∆为等边三角形,从而CD AO ⊥ ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥(注:证明CD ⊥平面PAB 时,也可以由平面PAB ⊥平面ACB 得到,酌情给分.) 法2:∵AB 为圆O 的直径,∴AC CB ⊥,在Rt ABC ∆中设1AD =,由3AD DB =BC =得,3DB =,4AB =,BC =,∴BD BC BC AB ==,则BDC BCA ∆∆∽, ∴BCA BDC ∠=∠,即CD AO ⊥ ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥法3:∵AB 为圆O 的直径,∴AC CB ⊥, 在Rt ABC ∆BC =得,30ABC ∠=, 设1AD =,由3AD DB =得,3DB =,BC =由余弦定理得,2222cos303CD DB BC DB BC =+-⋅=,∴222CD DB BC +=,即CD AO ⊥. - ∵点P 在圆O 所在平面上的正投影为点D , ∴PD ⊥平面ABC ,又CD ⊂平面ABC , ∴PD CD ⊥, 由PDAO D =得,CD ⊥平面PAB ,又PA ⊂平面PAB ,∴PA CD ⊥(Ⅱ)法1:(综合法)过点D 作DE PB ⊥,垂足为E ,连接CE 由(1)知CD ⊥平面PAB ,又PB ⊂平面PAB , ∴CD PB ⊥,又DE CD D =, ∴PB ⊥平面CDE ,又CE ⊂平面CDE , ∴CE PB ⊥,∴DEC ∠为二面角C PB A --的平面角 由(Ⅰ)可知CD =,3PD DB ==,(注:在第(Ⅰ)问中使用方法1时,此处需要设出线段的长度,酌情给分∴PB =则2PD DB DE PB ⋅===, ∴在Rt CDE ∆中,tan 3CD DEC DE ∠===, ∴cos 5DEC ∠=,即二面角C PB A --的余弦值为5法2:(坐标法)以D 为原点,DC 、DB 和DP 的方向分别为x 轴、y 轴和z 轴的正向,建立如图所示的空间直角坐标系(注:如果第(Ⅰ)问就使用“坐标法”时,建系之前先要证明CD AB ⊥,酌情给分.) 设1AD =,由3AD DB =BC =得,3PD DB ==,CD =∴(0,0,0)D ,C ,(0,3,0)B ,(0,0,3)P , ∴(3,0,3)PC =-,(0,3,3)PB =-,(CD =,由CD ⊥平面PAB ,知平面PAB 的一个法向量为(CD = 设平面PBC 的一个法向量为(,,)x y z =n ,则00PC PB ⎧⋅=⎪⎨⋅=⎪⎩n n ,即30330y y z -=-=⎪⎩,令1y =,则x =1z =,∴=n ,设二面角C PB A --的平面角的大小为θ,则cos 5||5CD CD θ⋅===-⋅n |n |, ∴二面角C PB A --的余弦值为529.(广东省广州市2013届高三4月综合测试(二)数学理试题(WORD 版))等边三角形ABC 的边长为3,点D 、E 分别是边AB 、AC 上的点,且满足AD DB =12CE EA =(如图 3).将△ADE 沿DE 折起到△1A DE 的位置,使二面角1A DE B --成直二面角,连结1A B 、1AC (如图4).(1)求证:1A D ⊥平面BCED ;(2)在线段BC 上是否存在点P ,使直线1PA 与平面1A BD 所成的角为60?若存在,求出PB 的长,若不存在,请说明理由.【答案】(本小题主要考查空间直线与平面垂直、直线与平面所成角等基础知识,考查空间想象能力和运算求解能力等,本小题满分14分)证明:(1)因为等边△ABC 的边长为3,且AD DB =12CE EA =,所以1AD =,2AE =. 在△ADE 中,60DAE ∠=,由余弦定理得3DE ==. 因为222AD DE AE +=, 所以AD DE ⊥. 折叠后有1A D DE ⊥因为二面角1A DE B --是直二面角,所以平面1A DE ⊥平面BCED 又平面1A DE平面BCED DE =,1A D ⊂平面1A DE ,1A D DE ⊥,所以1A D ⊥平面BCED(2)解法1:假设在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60. 如图,作PH BD ⊥于点H ,连结1A H 、1A P 由(1)有1A D ⊥平面BCED ,而PH ⊂平面BCED , 所以1A D ⊥PH又1A DBD D =,所以PH ⊥平面1A BD所以1PA H ∠是直线1PA 与平面1A BD 所成的角 设PB x =()03x ≤≤,则2xBH =,PH x =在Rt △1PA H 中,160PA H ∠=,所以112A H x = 在Rt △1A DH 中,11A D =,122DH x =- 由22211A D DH A H +=,得222111222x x ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭解得52x =,满足03x ≤≤,符合题意 所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =解法2:由(1)的证明,可知ED DB ⊥,1A D ⊥平面BCED .以D 为坐标原点,以射线DB 、DE 、1DA 分别为x 轴、y标系D xyz -如图 设2PB a =()023a ≤≤,则BH a =,PH =,2DH a =-所以()10,0,1A ,()2,0P a -,()E 所以()12,,1PA a =- 因为ED ⊥平面1A BD ,所以平面1A BD 的一个法向量为()DE = 因为直线1PA 与平面1A BD 所成的角为60, 所以11sin 60PA DE PA DE===, 解得54a =即522PB a ==,满足023a ≤≤,符合题意所以在线段BC 上存在点P ,使直线1PA 与平面1A BD 所成的角为60,此时52PB =30.(广东省惠州市2013届高三4月模拟考试数学理试题(WORD 版))(本小题满分14分)如图,111ABC A B C -中,侧棱与底面垂直, AB AC ⊥,12AB AC AA ===,点,M N 分别为1A B 和11B C 的中点.(1)证明: 11//MN A ACC 平面; (2)求二面角N MC A --的正弦值.B 1A 1PC 1NCBAMB 1【答案】(本小题主要考查空间线面关系、空间向量等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力) 解 :(1)证法一: 连接1,1AB AC由题意知,点,M N 分别为1AB 和11B C 的中点,1//MN AC ∴又MN ⊂平面11A ACC ,1AC ⊂平面11A ACC , //MN ∴平面11A ACC证法二:取11A B 中点P ,连,MP NP ,而,M N 分别为1AB 与11B C 的中点,1//MP A A ∴,11MP A ACC ⊄平面,111AA A ACC ⊂平面, 11//MP A ACC ∴平面, 同理可证11//NP A ACC 平面又MP NP P = ∴平面MNP //平面11A ACC MN ⊂平面MNP ,//MN ∴平面11A ACC证法三(向量法): 以点A 为坐标原点,分别以直线1,,AB AC AA 为x 轴, y 轴, z 轴建立空间直角坐标系A xyz-,如图所示.于是(0,0,0),(2,0,0),A B (1,0,1),(1,1,2)M N 1,AB AC AB AA ⊥⊥,1ACAA A =,11AB A ACC ∴⊥平面∴向量(2,0,0)AB 是平面11A ACC 的一个法向量(0,1,1)MN ,2001010AB MN ⋅=⨯+⨯+⨯=AB MN ∴⊥又11MN A ACC ⊄平面 //MN ∴平面11A ACC(2)解法一: 以点A 为坐标原点,分别以直线1,,AB AC AA 为x 轴, y 轴, z 轴建立空间直角坐标系A xyz -,如图所示.于是(0,0,0),(2,0,0),(0,2,0)A B C ,111(0,0,2),(2,0,2),(0,2,2)A B C ,(1,0,1),(1,1,2)M NB 1A 1QPHOD 1DC 1NC B A MB 1PQHOMD 1CA由(1)知1MA 是平面MCA 的一个法向量, 1(1,0,1)MA =-设平面NMC 的法向量为(,,)n x y z =,(0,1,1)MN =,(1,2,1)MC =--,002030n MN y z y z x y z x zn MC ⎧⋅=+==-⎧⎧⎪⇒⇒⎨⎨⎨-+-==-⋅=⎩⎩⎪⎩, (3,1,1)n ∴=-设向量1MA 和向量n 的夹角为θ,则11cos (MAn MA nθ⋅===- ∴二面角N MC A --==解法二(几何法):如图,将几何体补形成一个正方体,连11DC CD 、交于点O ,连11B A B O 、,显然,11A M C B D O 、、、、、,都在同一平面11ACB D 上 易证1//B O MC ,11C O CD ⊥,11B D ⊥平面11C CDD ,1C O ⊂平面11C CDD , 111C O B D ∴⊥,又1111B D CD D =1C O ∴⊥平面11ACB D . 取1B O 中点H ,连NH ,N H 、分别是111,B O B C 的中点1//NH C O ∴,NH ∴⊥平面11ACB D ,且H 为垂足,即NH ⊥平面AMC ,过点O 作OPMC ⊥于P ,过H 作//HQ OP 交MC 于Q ,连NQ , 则NQH ∠即是所求二面角N MC A --的补角 在RtMAC ∆中,CM===, sin AM MCA MC ∠===,sin sin()cos2OCP MCA MCA π∠=-∠=∠==, 在Rt OPC ∆中,sin OCP ∠=,OP ∴==HQOP ∴==又112MH C O ==∴在Rt NQH ∆中,NQ ===sin NH NQH NQ ∴∠===∴所求二面角N MC A --31.(广东省江门佛山两市2013届高三4月教学质量检测(佛山二模)数学理试题)如图甲,设正方形ABCD的边长为3,点E F 、分别在AB CD 、上,并且满足22AE EB CF FD ==,,如图乙,将直角梯形AEFD 沿EF 折到11A EFD 的位置,使点1A 在平面EBCF 上的射影G 恰好在BC 上.(1)证明:1//A E 平面1CD F ;(2)求平面BEFC 与平面11A EFD 所成二面角的余弦值.【答案】⑴证明:在图甲中,易知//AE DF ,从而在图乙中有11//A E D F ,因为1A E ⊄平面1CD F ,1D F ⊂平面1CD F ,所以1//A E 平面1CD F (条件2分) ⑵解法1、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面EBCF ,则1AG EF ⊥, 所以EF ⊥平面1AGH ,则1EF A H ⊥, BECD F图甲1A EFBC1DG图乙A 第18题图所以1A HG ∠平面BEFC 与平面11A EFD 所成二面角的平面角, 图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线,设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以,1BG MF ==,AG =; (三角形全等1分) 又由ABGAHE ∆∆,得1AB AE A H AH AG ===, 于是,HG AG AH =-=在1Rt AGH ∆中,112cos 3HG AGH A H ∠==,即所求二面角的余弦值为23解法2、如图,在图乙中作GH EF ⊥,垂足为H ,连接1A H ,由于1A G ⊥平面EBCF ,则1AG EF ⊥, 所以EF ⊥平面1A GH ,则1EF A H ⊥,图甲中有EF AH ⊥,又GH EF ⊥,则A G H 、、三点共线,设CF 的中点为M ,则1MF =,易证ABG EMF ∆≅∆,所以1BG MF ==,则AG =; 又由ABGAHE ∆∆,得1AB AE A H AH AG ===, A BE CDF图甲1A EFC1D图乙GMHHE 图丙于是,HG AG AH =-=在1Rt AGH ∆中,1AG ===作//GT BE 交EF 于点T ,则TG GC ⊥,以点G 为原点,分别以1GC GT GA 、、所在直线为x y z 、、轴,建立如图丙所示的空间直角坐标系,则(0,0,0)G 、(1,1,0)E -、(2,2,0)F、1A ,则1(1,3,0)(EF EA ==-,(坐标系、坐标、向量各1分) 显然,1GA =是平面BEFC 的一个法向量,设(,,)n x y z =是平面11A EFD 的一个法向量,则130,0n EF x y n EA x y ⎧=+=⎪⎨=-+=⎪⎩,即3,x y z =-⎧⎪⎨=-⎪⎩,不妨取1y =-,则(3,1,n =-,设平面BEFC 与平面11A EFD 所成二面角为θ,可以看出,θ为锐角,所以,121|032cos 3||||23(1)GA n GA n θ⨯===+-,所以,平面BEFC 与平面11A EFD 所成二面角的余弦值为2332.(广东省揭阳市2013年高中毕业班第二次高考模拟考试理科数学试题)在图(4)所示的长方形ABCD 中,AD=2AB=2,E 、F 分别为AD 、BC 的中点, M 、N 两点分别在AF 和CE 上运动,且AM=EN=a (0a <<把长方形ABCD 沿EF 折成大小为θ的二面角A-EF-C,如图(5)所示,其中(0,]2πθ∈图(5)图(4)MN FDC B E(1)当045θ=时,求三棱柱BCF-ADE 的体积;G EABCDFNMN 1M 1EA BC DFNMQEABC DFNM(2)求证:不论θ怎么变化,直线MN 总与平面BCF 平行; (3)当090θ=且2a =时,求异面直线MN 与AC 所成角余弦值.【答案】解:(1)依题意得,,EF DE EF AE EF ⊥⊥∴⊥平面ADE ,DEA ∠=θ由45θ=得,12sin 4524ADE S DEEA ∆=⋅=, ∴BCF ADE ADE V S EF -∆=⋅=(2)证法一:过点M 作1MM BF ⊥交BF 于1M , 过点N 作1NN CF ⊥交BF 于1N ,连结11M N , ∵11//,//MM AB NN EF ∴11//MM NN 又∵11MM NN FM CN AB FA CE EF===∴11MM NN = ∴四边形11MNN M 为平行四边形,11//MN N M ∴,11,,MN BCF N M BCF ⊄⊂又面面//.MN BCF ∴面【法二:过点M 作MG EF ⊥交EF 于G,连结NG,则,CN FM FGNE MA GE == //NG CF ∴,,//NG BCF CF BCF NG BCF ⊄⊂∴又面面面,同理可证得//MG BCF 面,又MG NG G =, ∴平面MNG//平面BCF∵MN ⊂平面MNG, //MN BCF ∴面 】 (3)法一:取CF 的中点为Q,连结MQ 、NQ,则MQ//AC, ∴NMQ ∠或其补角为异面直线MN 与AC 所成的角,∵090θ=且2a =∴12NQ=,2MQ ==,2MN ∴=222cos 23QM MN NQ NMQ MN QM +-∴∠==⋅即MN 与AC 所成角的余弦值为3【法二:∵090θ=且a =分别以FE 、FB 、FC 所在直线为x 轴,y 轴,z 轴,建立空间直角坐标系则111111(1,1,0),(0,0,1),(,,0),(,0,),(1,1,1),(0,,),222222A C M N AC MN =--=-得cos ,AC MN ∴<>==所以与AC】 33.(广东省茂名市2013届高三4月第二次高考模拟数学理试题(WORD 版))如图,在边长为4的菱形ABCD中,60DAB ∠=,点E,F 分别在边CD,CB 上,点E 与点C,点D 不重合,EF AC ⊥, EF AC O ⋂= ,沿EF 将CEF ∆折起到PEF ∆的位置,使得平面PEF ⊥ 平面ABFED(1)求证:BD ⊥平面POA (2)设AOBD=H,当O 为CH 中点时,若点Q 满足AQ QP =,求直线OQ 与平面PBD 所成角的正弦值.【答案】。
2013年广东高考物理综合模拟题(2)2013年高考物理综合练习题(二)一、单项选择题13.下列说法正确的是()A.扩散现象说明分子间存在斥力B.若两分子间距离增大,分子势能一定增大C.物体的内能大小与温度、体积和物质的量有关D.只要知道气体的摩尔体积和阿伏加德罗常数,就可以算出气体分子的体积14.如图所示是用导热性能良好的材料制成的气体实验装置,开始时封闭一定长度的空气柱,现向下缓慢压活塞,关于封闭气体,下列说法正确的是()A.外界对气体做功,内能增加B.体积减小,温度降低C.压强变大,温度不变D.分子平均动能变大15.如图描述了一位骑自行车者从原点出发后的运动情况,下列说法正确的是()A.此人达到最大速度时位于区间ⅠB.此人达到最大速度时位于区间ⅢC.此人距离出发点最远时位于B点D.此人距离出发点最远时位于C点16.在如图所示电路中,当变阻器R的滑动片向b端移动时()A.电压表示数变大,灯泡变亮B.电压表示数变小,灯泡变亮C.电压表示数变大,灯泡变暗D.电压表示数变小,灯泡变暗二、双项选择题17. 下列四幅图的有关说法中正确的是()A.①原子中的电子绕原子核高速运转时,运行轨道的半径是任意的B.②光电子的最大初动能与光的强度相A.上拉过程中,人受到两个力的作用B.上拉过程中,单杠对人的作用力大于人的重力C.下放过程中,单杠对人的作用力小于人的重力D.下放过程中,在某瞬间人可能只受到一个力的作用20.如图,在火星与木星轨道之间有一小行星带。
假设该带中的小行星只受到太阳的引力,并绕太阳做匀速圆周运动。
下列说法正确的是()A.太阳对各小行星的引力相同B.各小行星绕太阳运动的周期均大于一年C.小行星带内侧小行星的向心加速度值大于外侧小行星的向心加速度值D.小行星带内各小行星圆周运动的线速度值大于地球公转的线速度值21.带电量与质量都相同的两个粒子,以不同速率垂直于磁感线方向射入同一匀强磁场中,两粒子运动的轨迹如图所示,关于两个粒子的运动速率v、在磁场中的运动时间t及圆周运动周期T、角速度ω的表达正确的是().A.v1>v2B.t1=t2C.T1>T2D.ω1=ω2三、实验题34.(1)“研究共点力的合成”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O 为橡皮筋与细绳的结点,OB和OC为细绳,图乙是在白纸上根据实验结果画出的图示。
东莞市2013届高三理科数学模拟试题(二)参考公式:样本数据1122(,),(,),,(,)n n x y x y x y 的回归方程为:y bx a ∧=+,其中1122211()()()n niii ii i nniii i x x y y x y nx yb x x xnx====---==--∑∑∑∑,1212,n nx x x y y y x y n n++⋅⋅⋅+++⋅⋅⋅+==,a y bx =-.b 是回归方程得斜率,a 是截距.一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设1z i =-(是虚数单位),则2z z+= A .2 B .2i + C .2i - D .22i + 2.命题:p 2,11x x ∀∈+≥R ,则p ⌝是A .2,11x x ∀∈+<R B .2,11x x ∃∈+≤R C .2,11x x ∃∈+<R D .2,11x x ∃∈+≥R3.若5250125(1)(1)(1)(1)x a a x a x a x +=+-+-+⋅⋅⋅+-,则0a =A .1B .32C .-1D .-32 4.如图是一个几何体的三视图,若它的体积是33,则a =A .2B .22 C .3 D .325. 已知函数x x y cos sin +=,则下列结论正确的是A.此函数的图象关于直线4π-=x 对称B.此函数的最大值为1C.此函数在区间)4,4(ππ-上是增函数 D.此函数的最小正周期为π6. 已知函数2()lg()n n f x x a x b =-+,其中,n n a b 的值由如图的 程序框图产生,运行该程序所得的函数中,定义域为R 的有 A .1个 B .2个 C .3个 D .4个7. 设命题p :“若对任意x R ∈,|x +1|+|x -2|>a ,则a <3”;命题q :“设M 为平面内任意一点,则A 、B 、C 三点共线的充要条件是存在角α,使22sin cos MB MA MC αα=+⋅”,则A .p q ∧为真命题B .p q ∨为假命题C .p q ⌝∧为假命题D .p q ⌝∨为真命题8.在实数集R 中定义一种运算“⊕”,具有性质:①对任意,,a b R a b b a ∈⊕=⊕;②对任意,0a R a a ∈⊕=;③对任意,,,()()()()2a b c R a b c c ab a c b c c ∈⊕⊕=⊕+⊕+⊕-.函数1()(0)f x x x x=⊕>的最小值为 A .4 B .3 C..1二、填空题:(本大题共6小题,每小题5分,共30分,把答案填在答题卡的相应位置.) (一)必做题(9~13题)9.已知等比数列}{n a 的前n 项和为n S ,284=+a a , 11S = . 10. 已知,0,0>>y x 且,191=+yx 则23x y +学科网的最小值为 . 11.设曲线axy e =在点(0,1)处的切线与直线012=++y x 垂直,则a = . 12.dx x x )cos (sin 0⎰+π= .13.已知偶函数)(x f 在区间),0[+∞单调递增,则满足x f x f 的)31()12(<-取值范围是__________.(二)选做题(14、15题,考生只能从中选做一题)14.(坐标系与参数方程选做题)已知曲线1C:ρ=和曲线2C :cos(ρθ+则1C 上到2C 的点的个数为 .3n = 15.(几何证明选讲选做题)如图(3)所示,AB 是⊙O 的直径,过圆上一点E 作切线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C .若 CB =2,CE =4,则AD 的长为 .图(3)245AD =三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)已知函数)631tan()(π-=x x f(1)求)(x f 的最小正周期;(2)求⎪⎭⎫⎝⎛23πf 的值; (3)设,21273-=⎪⎭⎫⎝⎛+παf 求)4sin(2)cos()sin(παπααπ+-+-的值.17.(本小题满分12分)某同学在研究性学习中,收集到某制药厂今年前5个月甲胶囊生产产量(单位:万盒)的数据如下表所示: 月份x1 2 3 4 5 y (万盒)44566(1)该同学为了求出y 关于x 的线性回归方程ˆˆˆybx a =+,根据表中数据已经正确计算出ˆ0.6b=,试求出ˆa 的值,并估计该厂6月份生产的甲胶囊产量数; (2)若某药店现有该制药厂今年二月份生产的甲胶囊4盒和三月份生产的甲胶囊5盒,小红同学从中随机购买了3盒甲胶囊,后经了解发现该制药厂今年二月份生产的所有甲胶囊均存在质量问题.记小红同学所购买的3盒甲胶囊中存在质量问题的盒数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分)如图,PA 垂直⊙O 所在平面ABC ,AB 为⊙O 的直径,PA=AB ,14BF BP =,C 是弧AB 的中点.(1)证明:BC ⊥平面PAC ; (2)证明:CF ⊥BP ;(3)求二面角F —OC —B 的平面角的正弦值.19.(本小题满分14分)设等差数列}{n a 的公差0≠d ,数列}{n b 为等比数列,若a b a ==11,33b a =,57b a =.(1)求数列}{n b 的公比q ;(2)将数列}{n a ,}{n b 中的公共项按由小到大的顺序排列组成一个新的数列}{n c ,是否存在正整数,,λμω(其中λμω<<)使得,,λμω和,,c c c λμωλμω+++均成等差数列?若存在,求出,,λμω的值,若不存在,请说明理由.20. (本小题满分14分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为e =直线:2l y x =+与以原点为圆心、以椭圆1C 的短半轴长为半径的圆O 相切. (1)求椭圆C 1的方程;(2)设椭圆1C 的左焦点为1F ,右焦点为2F ,直线1l 过点1F ,且垂直于椭圆的长轴,动直线2l 垂直于1l ,垂足为点P ,线段2PF 的垂直平分线交2l 于点M ,求点M 的轨迹2C 的方程;(3)设2C 与x 轴交于点Q ,不同的两点R 、S 在2C 上,且满足0=⋅RS QR ,求||QS 的取值范围.21.(本小题满分14分)已知函数x x ax x g 2231)(23-+=,函数)(x f 是函数)(x g 的导函数. (1)若1=a ,求)(x g 的单调减区间; (2)若对任意R x x ∈21,且21x x ≠,都有2)()()2(2121x f x f x x f +<+,求实数a 的取值范围;(3)在第(2)问求出的实数a 的范围内,若存在一个与a 有关的负数M ,使得对任意]0,[M x ∈时4)(≤x f 恒成立,求M 的最小值及相应的a 的值.东莞市2013届高三理科数学模拟试题(二) 参考答案一、选择题(每小题5分,共40分)二、填空题:(每小题5分,共30分)9.11 10.6629+ 11.2 12.2 13.)32,31( 14.3 15.524 三、解答题:(共80分) 16.(本小题满分12分) 解:(1))(x f 的最小正周期为ππ331==T . …………3分(2)33tan )663tan()23(==-=ππππf . …………6分(3)由21)273(-=+παf ,得21]6)273(31tan[-=-+ππα,即21)tan(-=+απ, …………8分所以.21tan -=α …………9分0cos =/∴α,⋅+-=+-+-ααααπαπααπcos sin cos sin )4sin(2)cos()sin( ………10分1tan 1tan +-=αα …………11分3121121-=+---=. …………12分17.(本小题满分12分)解:(1)11(12345)3,(44566)555x y =++++==++++=,因线性回归方程ˆ=+ybx a 过点(,)x y , ∴50.66 3.2a y bx =-=-⨯=,∴6月份的生产甲胶囊的产量数:ˆ0.66 3.2 6.8y=⨯+= …………5分(2)0,1,2,3,ξ= …………6分31254533991054010(0),(1),84428421C C C P P C C ξξ======== 213454339930541(2),(3).84148421C C C P P C C ξξ======== …………10分 其分布列为5105140123 422114213E ξ∴=⨯+⨯+⨯+⨯=.…………12分18.(本小题满分14分)证明:(1)∵PA ⊥平面ABC ,BC ⊂平面ABC ,∴BC ⊥PA. …………1分∵∠ACB 是直径所对的圆周角,∴90o ACB ∠=,即BC ⊥AC. …………2分又∵PA AC A =,∴BC ⊥平面PAC . …………4分 (2)∵PA ⊥平面ABC ,OC ⊂平面ABC ,∴OC ⊥PA. …………5分 ∵C 是弧AB 的中点,∴∆ABC 是等腰三角形,AC=BC , 又O 是AB 的中点,∴OC ⊥AB. …………6分 又∵PA AB A =,∴OC ⊥平面PAB ,又PB ⊂平面PAB , ∴BP OC ⊥. …………7分 设BP 的中点为E ,连结AE ,则//OF AE ,AE BP ⊥ ∴BP OF ⊥. …………8分∵OC OF O =,∴BP ⊥平面CFO . 又CF ⊂平面CFO ,∴CF BP ⊥. …………9分解:(3)由(2)知OC ⊥平面PAB ,∴OF OC ⊥,OC OB ⊥, …………10分∴BOF ∠是二面角F OC B --的平面角. …………11分 又∵BP OF ⊥,045FBO ∠=,∴045FOB ∠=, …………13分 ∴2sin 2FOB ∠=,即二面角F OC B --22. ………14分19.(本小题满分14分)解:(1)设}{n b 的公比为q ,由题意⎪⎩⎪⎨⎧+=+=d a aq d a aq 6242,即⎪⎩⎪⎨⎧=-=-da aq da aq 6242, …………2分 1=q 不合题意,故311142=--q q ,解得22=q 2±=∴q . …………5分 (2)若}{n a 与}{n b 有公共项,不妨设m n b a =由(1)知:1221-=+m n m 为奇数,且. …………7分令)(12*N k k m ∈-=,则11122)2(---•=•=k k m a a b , …………8分ac n n 12-=∴.…………9分若存在正整数,,λμω(其中λμω<<)满足题意,设,,p q r λμω===,则⎩⎨⎧+•++•=+•+=---)2()2()2(22111r a p a q a rp q r p q 11222--+=∴r p q ,又)""(222222211===≥++-+--时取当且仅当r p r p r P r p ,且r p ≠,211222r p r p +-->+∴. …………12分又xy 2=在R 上单调递增,2r p q +>∴,与题设2rp q +=矛盾, ∴不存在,,λμω满足题意. …………14分20. (本小题满分14分)解:(1)由直线:2l y x =+与圆222x y b +=相切,得b =,即b =. ………2分由e =222213b e a =-=,所以a = …………3分所以椭圆的方程是221:132x y C +=. …………4分(2)由条件,知2||||MF MP =,即动点M 到定点2F 的距离等于它到直线1:1l x =-的距离,由抛物线的定义得点M 的轨迹2C 的方程是x y 42=. …………7分(3)由(2),知(0,0)Q ,设221212,,,44y y R y S y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭, ∴222121121,,,44y y y QR y RS y y ⎛⎫⎛⎫-==- ⎪ ⎪⎝⎭⎝⎭. …………8分 由0=⋅RS QR ,得()()222121121016y y y y y y -+-=. …………9分∵12y y ≠,∴21116y y y ⎛⎫=-+⎪⎝⎭,∴222121256323264y y y =++≥=,当且仅当2121256y y =,即14y =±时等号成立. …………11分又||y QS ⎛== , …………12分∵2264y≥,∴当2264y =,即28y =±时,min ||QS=, …………13分故||QS 的取值范围是)⎡+∞⎣. …………14分21. (本小题满分14分) 解:(1)当1a =时,321()223g x x x x =+-,2'()42g x x x =+-. ………1分由'()0g x <,解得22x --<<-+. (2)分∴当1a =时,函数()g x 的单调减区间为(22--. …………3分(2)易知2()'()42f x g x ax x ==+-.依题意知1212()()()22x x f x f x f ++-222121*********()4()2222x x x x ax x ax x a +++-++-=+--212()04ax x =--<. …………5分因为12x x ≠,所以0a >,即实数a 的取值范围是(0,)+∞. …………6分 (3)解法一易知2224()42()2f x ax x a x a a=+-=+--,0a >. 显然(0)2f =-,由(2)知抛物线的对称轴20x a=-<. …………7分 ①当424a --<-,即02a <<时,2(,0)M a∈-且()4f M =-.令2424ax x +-=-,解得x=…………8分此时M 取较大的根,即M ==.…………9分02a <<, ∴21422M a -=>--+. …………10分②当424a --≥-,即2a ≥时,2M a<-且()4f M =. 令2424ax x +-=,解得246ax a-±+=. …………11分此时M 取较小的根,即2466462a M a a --+-==+-. …………12分 2a ≥,∴63462M a -=≥-+-,当且仅当2a =时取等号.…………13分由于31-<-,所以当2a =时,M 取得最小值3-. …………14分 解法二对任意[,0]x M ∈时,“4f x ≤|()|恒成立”等价于“4f x ≤max ()且4f x ≥-min ()”. 由(2)可知实数a 的取值范围是(0,)+∞,故2()42f x ax x =+-的图象是开口向上,对称轴20x a=-<的抛物线. …………7分 ①当20M a-≤<时,()f x 在区间[,0]M 上单调递增, ∴f x =max ()(0)24f =-<, 要使M 最小,只需要2424f x f M aM M ==+-=-min ()().…………8分若1680a ∆=-<,即2a >时,无解; …………9分 若1680a ∆=-≥,即02a <≤时, 解得2422a M a a ---=<-(舍去) 或2421aM a-+-=≥-,故1M ≥-(当且仅当2a =时取等号). …………10分 ②当2M a <-时,()f x 在区间2[,]M a -上单调递减,在2(,0]a-递增,(0)24,f =-<24()24f a a-=--≥-,则2a ≥. …………11分要使M 最小,则2424f M aM M =+-=(),即2460aM M +-=, …………12分解得2M a=>-(舍去),或3M ==≥-(当且仅当2a =时取等号). …………13分综上所述,当2a =时,M 的最小值为3-. …………14分。
广东省“六校教研协作体”2012年高三联考英语试题2012.11 参考学校:阳春一中肇庆一中真光中学深圳二高珠海二中本试卷共11页,四大题,满分135分。
考试用时120分钟。
注意事项:1.答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上,并用2B铅笔在答题卡上的相应位置填涂考生号。
用2B铅笔将试卷类型(A)填涂在答题卡相应位置上。
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
I 语言知识及应用 (共两节,满分45分)第一节完形填空(共15小题,每小题2分,满分30分)阅读下面短文,掌握其大意,然后从1—15各题所给的A、B、C和D项中,选出最佳选项,并在答题卡上将该项涂黑。
It came upon us suddenly--- my husband and I were facing his heart operation. He had never told me about the shortness of breath he had experienced a few months earlier. When he was alarmed by the state of his 1 , he finally asked me to make an appointment with the 2 .When he was having the 3 , I was praying every prayer I had learned. My best friend and my son were by my side. In the darkest moment, I felt deep inside that he would not 4 the operation. Just when I had given up all the hope of a good outcome, I felt hugged and surrounded by 5 as many people were praying for us.Soon the doctor 6 out, bringing the good news that the operation was 7 . He shook my hand, and when I 8 his warm and firm hand, I became 9 of what I was doing. I was holding a hand which, just a short while ago, had held my husband's 10 heart.As part of recovery, my husband was given a red 11 to grasp tightly to his chest. It could prevent any 12 to the cut when he was moving, coughing or sneezing. Five days after the operation, we returned home. The red pillow kept us 13 as my husband gained strength and confidence.That was four years ago. 14 , when I see the red pillow in our closet, I will alwayshold it close to my chest and remember the day when I realized the 15 of grace and goodness.1. A. health B. breath C. shape D. appearance2. A. nurse B. doctor C. officer D. milker3. A. rest B. operation C. organization D. management4. A. experience B. bear C. pass D. survive5. A. pity B. love C. mercy D. comfort6. A. came B. took C. turned D. set7. A. lonely B. cruel C. fortunate D. successful8. A. sounded B. touched C. felt D. applied9. A. afraid B. shocked C. aware D. fond10. A. sinking B. beating C. running D. warming11. A. pillow B. box C. wallet D. gift12. A. wound B. damage C. opening D. growth13. A. company B. companion C. friend D. fellow14. A. Eventually B. Suddenly C. Unexpectedly D. Occasionally15. A. fact B. dream C. power D. truth第二节语法填空(共10小题,每小题1.5分,满分15分)阅读下面短文,按照句子结构的语法性和上下文连贯的要求,在空格处填入一个适当的词或使用括号中词语的正确形式填空,并将答案填写在答题卡标号为16—25的相应位置上。
2013年高考(526)2013届广东六校高三高考模拟考试 2013届广东六校高三高考模拟考试 语文试题 一、本大题4小题,每小题3分,共12分。 1.下列词语中加点的字,每对读音都不相同的一组是( ) A.悼念/倒爷 俘虏/掳掠 非难/难免 B.蜕化/褪色 蹉跎/嗟叹 果脯/胸脯 C.炽热/炙烤 诀别/联袂 创伤/开创 D.歼灭/悭吝 犒劳/蒿草 押解/解差 2.下列语段中画线的词语,使用不恰当的一项是( ) 今天,我们的社会仍然存在这样的现象,高速路上、马路边出了车祸,在现场一片狼藉、惨不忍睹的情况下,很多人不是救助伤员、保护现场,而是趁火打劫,哄抢货物,真让人心酸。这种乘人之危、趁乱牟利的行为不仅是对当前法律秩序的漠视,更是对个人道德乃至社会公德的拷问。 A.惨不忍睹 B.趁火打劫 C.心酸 D.乘人之危 3.下列句子没有语病的一项是( ) A.环境信息的立体化公开,恐怕是此次会议绕不开的重要议题。环境信息的公开透明,是决定政府和民众能否走向环境共治的重要前提。 B.走过60年发展历程的铁道部,作为国务院政府机构中唯一扮演政企双重角色的部委,已被公众视作阻碍市场经济改革的一大壁垒。 C. 我们要继续推进改革,当然我们也知道,改革在得到普通民众广泛支持的同时,利益受损的既得利益者必然会对改革加以反对和阻碍。 D. 4月15日,美国波士顿马拉松比赛快要结束时,一场不好的厄运突然降临到参赛运动员头上,在终点线附近接连发生了三起爆炸,造成3人死亡,百余人受伤。 4.把下列句子组成语意连贯的语段,排序最恰当的一项是( ) 学力只不过将原来不好的稍加润饰,使可陪衬你的好的,它只能增加量不能提高质。既有天才,再加学力,就能在学问上有成就。 做诗也是一样,有的人未学过做诗,但是他做起诗来,形式上虽然不好,却有几个字很好,或有几句很好,那种人是可以学做诗的,因为他有做诗的才。 要成大学问家,必须要有天资,即才。俗话说:酒有别肠,诗有别才。 一个人在身体机构上有了能喝酒的底子,再加上练习,就能成为一个会喝酒的人。如果身体机构上没有喝酒的底子,一喝就吐,怎样练习得会呢? 有的人写起诗来,形式整整齐齐,平仄合韵,可是一读之后,毫无诗味,这种人就不必做诗。一个人的才的分量是一定的,有几分就只有几分,学力不能加以增减。 A. B. C. D. 二、本大题7小题,共35分。 阅读下面的文言文,完成5-9小题。(22分) (一)游九华山记 清·施闰章 昔刘梦得尝爱终南、太华、女几、荆山,以为此外无奇秀。及见九华,始自悔其失言。是说也,尝窃疑之。而李太白以山有莲花峰,改九子为九华。予舟过江上,望数峰空翠可数,约略如八九仙子云。 其山外峻中夷,由青阳西南行,则峰攒岫复,瑰奇百出。而入其中则旷以隐。由山麓褰裳,则寒泉数十百道,喷激沙石,碎玉哀弦,而入其中则奥以静。盖岩壑盘旋,白云蓊郁,道士所族处者,是为化城。一峰屹然,四山云合,若龙之攫明珠者,是为金地藏塔。循檐送目,虚日之气远接江海,而四方数千里来礼塔者,踵接角崩,叫号动山谷,若疾痛之呼父母,蹈汤火之求救援。道士争缘为市,几以山为垄断矣,岂复知有云壑乎! 于是择其可游者曰东岩,其上有堆云洞、狮子石,僧屋数间,刻王文成手书。文成聚徒讲学,游憩于斯,有东岩燕坐诗。今求其讲堂,无复知者。 天柱峰最高,俯视化城如一盂。绝壁矗立,乱山无数。所谓九十九峰者,迷离莫辨,如海潮涌起,作层波巨浪,青则结绿,紫则珊瑚,夕阳倒蒸,意眩夺目。盖至此而九华之胜乃具。惜余非闲人,不得坐卧十日,招太白、梦得辈于云雾间相共语耳! 游以甲午岁十月,从之者查子素光、徐子道林。 (二)《改九子山为九华山联句》序 唐·李白 青阳县南有九子山,山高数十丈,上有九峰如莲华。按图征名,无所依据。太史公南游,略而不书,事绝古老之口,复阙名贤之纪。虽灵仙往复,而赋咏罕闻。予乃削其旧号,加以九华之目。时访道江汉,憩于夏侯回之堂,开檐岸帻,坐眺松雪,因与二三子联句,传之将来。 注释:褰裳:提衣。奥:深,隐蔽。化城:道观名,被四周之山环绕如城。角崩:以额撞地,即叩头。结绿:美玉名。岸帻:起头巾,露出前额。形容举止洒脱。 5.对下列句子中队加点词的解释,不正确的一项是( ) A.道士所族处者,是为化城 族:辈,类 B.而四方数千里来礼塔者 礼:礼拜,朝拜 C.有东岩燕坐诗 燕:闲暇 D. 复阙名贤之纪 阙:缺失 6.下列各组句子中加点的词的意义和用法,相同的一组是( ) A.而李太白以山有莲花峰 而入其中则奥以静 B.循檐送目,虚日之气远接江海 加以九华之目 C.于是择其可游者曰东岩 今求其讲堂 D.略而不书 虽灵仙往复,而赋咏罕闻 7.以下各组句子中,全都属于九华之胜的一组是( ) 峰攒岫复,瑰奇百出 喷激沙石,碎玉哀弦 踵接角崩,叫号动山谷 绝壁矗立,乱山无数 夕阳倒蒸,意眩夺目 开檐岸帻,坐眺松雪 A. B. C. D. 8.下了对原文有关内容的概括和分析,不正确的一项是( ) A.唐代的刘禹锡曾经很喜爱终南山、太华山等山,认为除这些外,天下没有奇秀之山。等他见到九华山,就后悔说错了话。 B. 李白因山上有一座山峰很像莲花,便将九子山改为九华山。从江上经过,看到的景象也大致印证了李白的描述。 C.九华山最高峰为天柱峰,往下看化城观小得好像一个器皿。峭绝的石壁矗立,众多的山峰没有秩序地排列着。 D. 李白认为司马迁南游的时候,忽略了九华山而没有记录于史书,关于九华山,年纪大的人也完全没有提及过,又缺少名家贤士的描述。 9.把第卷文言文阅读材料中画横线的句子翻译成现代汉语。(10分) (1)是说也,尝窃疑之。(3分) 译文: (2)道士争缘为市,几以山为垄断矣,岂复知有云壑乎?(4分) 译文: (3)惜余非闲人,不得坐卧十日,招太白、梦得辈于云雾间相共语耳!(3分) 译文: 10.阅读下面的诗歌,然后回答问题。(7分) 登舍身台 [明]戚继光 向来曾作舍身歌,今日登临意若何?指点封疆余独感,萧疏鬓发为谁皤? 剑分胡饼从人后,手掬流泉己自多。回首朱门歌舞地,尊前列鼎问调和。 【注】戚继光,明代抗倭名将;舍身台在河北遵化。 封疆:诗中指边界。皤:白。胡饼:即烧饼,指干粮。列鼎:列鼎而食,指权门的豪华生活;调和:菜肴的味道。 (1)本诗前三联刻画了一个怎样的形象,试作简要分析。(4分) (2)本诗后四句主要采用了哪种表现手法,请简要分析?(3分) 11.补写出下列名句名篇中的空缺部分。(任选3题,全选只按前3题计分)(6分) (1)子曰:夫仁者, , 。能近取譬,可谓仁之方也已。(《论语》) (2)鹤汀凫渚, ;桂殿兰宫, 。(王勃《滕王阁序》) (3)此时相望不相闻, 。鸿雁长飞光不度, 。(张若虚《春江花月夜》) (4)但以刘日薄西山,_______________,_________________,朝不虑夕。(李密《陈情表》) 三、本大题4小题,共16分。 阅读下面的文字,完成12-15小题。 消费时代文学的意义 蒋述卓 在当今消费社会中,文学艺术常常被其他的文化现象如广告传媒、时装表演、商品包装、各种节庆等所借用,并覆盖到大众的日常生活之中。这种借用造成了许多亚文学艺术现象,或称之为文学边界的扩大,从而形成审美的泛化或称日常生活审美化的态势。对此文化现象我们究竟如何应对? 首先我们应该看到,文学艺术的这种被借用不是什么坏事,对文学艺术的发展来说,反而会起到一种形式上的拓展与推进。历史上文学艺术常常被宗教所借用,产生诸如西方的教堂音乐、教堂壁画以及中国敦煌的变文等等。宗教看重的正是文学艺术的感染力。当今的广告借用文学增强它的影响力和感染力,若有独创性,亦可能产生广告文学这一新的文学体裁;网络文学更是借助网络的普遍使用而正逐渐形成它独有的文学体裁、语言等形式特征,并且改变着读者的阅读习惯,甚至改变了受众与生产者的相互关系。从马克思主义的观点看,当物质生产条件包括技术发生一定变化之后,意识形态包括文学艺术等上层建筑在内都会产生或快或慢的变化。一个时代有一个时代的文学艺术,在当今信息时代与消费时代,文学艺术发生扩容、变异并产生变种,应该是可以理解、容忍并逐渐接受的。 其次,文学艺术被其他领域所借用带来的日常生活审美化也并非坏事,而是好事。在全面建设小康社会的追求进程中,大众对美好生活的追求欲望只能是越来越强烈。大众要求他们的衣食住行越来越趋向于审美化,而生产者为了适应消费者的需求而将审美灌注于产品中,会成为消费社会的正常态势。美理应属于大众。大众在美的产品与全社会制造美的氛围中得到美的熏染进而提升自身的素质又有什么不好呢?在送人的礼品包装盒上印上唐诗不是既富人情味又富艺术性吗?在逛商场时顺便观赏它布置得美仑美奂的陈列橱窗,不也是赏心悦目吗?刺激消费当然是销售商的目的,但对灌注其中的艺术性难道我们就只有反感、排斥吗?日常生活成为审美文化的一部分,艺术也成为美好生活的一部分,艺术生产又成为文化制作的一部分,亚文学艺术现象亦能给大众带来美的享受,诗意泛化一下又有什么不妥呢? 再次,对什么是消费社会中的诗意问题,也应有一个新的理解。拿中国画来说,昔日描写幽壑高林、渔樵寺庙谓之有诗意,到岭南画派创始人高剑父以及现代国画大师齐白石等人,描写平民百姓以及百姓日常生活器物也不能说它就缺乏诗意。徐悲鸿画马固然符合传统的诗意,但写实写史的题材如《田横五百壮士》等也有诗意。当今的一些文入画,将候车的白领、闲居弄猫的妇人画进画中,也不能说就无诗意了。细想一下,西方的一些优秀画家,过去描写的也多是贵族的日常生活,如洗浴、梳妆、宴会等,它既是时尚,同时也充满诗意。如今的画家本着笔墨当随时代的精神,把笔触放到平民的日常生活中,只要思想深刻,也同样会获得诗意的。在科学技术发达的时代,通过一定的技术诗意还可能被放大与加强。如灯箱广告中的巨幅照片,电视中富有诗意与视觉冲击力的广告片等。在这一点上,我倒很赞赏法兰克福学派代表人物之一的本雅明,他认为在机械复制时代,以电影等为代表的现代机械复制艺术的诞生,虽然使得传统艺术的光韵(相当于诗意、韵味)消失,但因为它把艺术品从对礼仪的寄生中解放了出来,使艺术成为大众的东西,从而使得艺术的功能、价值以及接受都发生了根本改变。既然现代艺术的功能、价值以及接受都发生了变,为什么诗意就不会发生变呢?在当代社会,我宁可将诗意理解得更广泛些,正如海德格尔所说过的人应该诗意地栖居在大地上。这里的诗意不仅指人类应具备精神家园,亦指人与自然、人与人之间、人与社会之间的和谐关系。当代文艺具备丰富而深刻的思想,给陷入物质迷茫当中的人以启蒙与警醒,让人在现实中重建对合理生活的希望与信心,不也是当代社会的诗意吗? (本文选自《文学评论》2005/06,有删节) 12——13题为选择题,请在答题卡选择题答题区作答。(注:12题选对一项给2分,选对两项给5分,多选不给分) 12.下列说法,不符合文意的两项是( )( )(5分) A.当今社会,文学艺术被其他文化现象借用,出现了许多亚文学艺术现象,从而形成了日常生活审美化的态势。 B. 依据马克思主义的观点,当物质生产条件发生一定变化之后,文学艺术等上层建筑也会产生一定的变化。 C.生产者为了适应消费者的需求而将审美灌注于产品中,已经成为消费社会的正常态势。 D.现在的画家只要把笔触放到平民的日常生活中,就会获得应有的诗意。 E. 认为,在现代社会,通过一定的技术手段,诗意有可能被放大与加强。 13.下列说法,不符合文意的一项是( ) (3分) A. 列举西方的教堂音乐、教堂壁画以及中国敦煌的变文是为了证明历史上文学艺术与宗教的关系密切。 B. 一个时代有一个时代的文学艺术,这是文学艺术随生产条件和技术变化而变化的必然结果。 C.从文中可以推断出,中国古代画家一般以描写幽壑高林、渔樵寺庙为有诗意。 D.认为可以变对传统的诗意概念的理解,甚至可以理解得更广泛一些。 14.如何理解本雅明的机械复制把艺术品从对礼仪的寄生中解放了出来这句话? 15.综观全文,对消费时代艺术被借用,日常生活审美化这些文化现象有怎样的观点? 四、本大题为选考内容的两组试题。每组试题3小题,共15分。 选考内容的两组试题分别为文学类文本阅读试题组合实用类文本阅读试题组,考生任选一组作答。作答前,务必用2B铅笔在答题卡上填涂与所选试题组对应的信息点;信息点漏涂、错涂、多涂的,答案无效。 (一)文学类文本阅读