统计学第四章课后题及复习资料解析
- 格式:docx
- 大小:71.10 KB
- 文档页数:11
第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
第四章 假设检验填空(5题/章),选择(5题/章),判断(5题/章),计算(3题/章) 一、填空1、在做假设检验时容易犯的两类错误是 和2、如果提出的原假设是总体参数等于某一数值,这种假设检验称为 ,若提出的原假设是总体参数大于或小于某一数值,这种假设检验称为3、假设检验有两类错误,分别是 也叫第一类错误,它是指原假设H0是 的,却由于样本缘故做出了 H0的错误;和 叫第二类错误,它是指原假设H0是 的, 却由于样本缘故做出 H0的错误。
4、在统计假设检验中,控制犯第一类错误的概率不超过某个规定值α,则α称为 。
5、 假设检验的统计思想是小概率事件在一次试验中可以认为基本上是不会发生的,该原理称为 。
6、从一批零件中抽取100个测其直径,测得平均直径为5.2cm ,标准差为1.6cm ,想知道这批零件的直径是否服从标准直径5cm ,在显著性水平α下,否定域为7、有一批电子零件,质量检查员必须判断是否合格,假设此电子零件的使用时间大于或等于1000,则为合格,小于1000小时,则为不合格,那么可以提出的假设为 。
(用H 0,H 1表示)8、一般在样本的容量被确定后,犯第一类错误的概率为α,犯第二类错误的概率为β,若减少α,则β9、某厂家想要调查职工的工作效率,用方差衡量工作效率差异,工厂预计的工作效率为至少制作零件20个/小时,随机抽样30位职工进行调查,得到样本方差为5,试在显著水平为0.05的要求下,问该工厂的职工的工作效率 (有,没有)达到该标准。
KEY: 1、弃真错误,纳伪错误 2、双边检验,单边检验3、拒真错误,真实的,拒绝,取伪错误,不真实的,接受4、显著性水平5、小概率事件6、1.25>21α-z7、H 0:t≥1000 H 1:t <1000 8、增大 9、有二、 选择1、假设检验中,犯了原假设H 0实际是不真实的,却由于样本的缘故而做出的接受H 0的错误,此类错误是( )A 、α类错误B 、第一类错误C 、取伪错误D 、弃真错误 2、一种零件的标准长度5cm ,要检验某天生产的零件是否符合标准要求,建立的原假设和备选假设就为( )A 、0:5H μ=,1:5H μ≠B 、0:5H μ≠,1:5H μ>C 、0:5H μ≤,1:5H μ>D 、0:5H μ≥,1:5H μ< 3、一个95%的置信区间是指( ) A 、总体参数有95%的概率落在这一区间内 B 、总体参数有5%的概率未落在这一区间内C 、在用同样方法构造的总体参数的多个区间中,有95%的区间包含该总体参数D 、在用同样方法构造的总体参数的多个区间中,有95%的区间不包含该总体参数4、假设检验中,如果增大样本容量,则犯两类错误的概率( ) A 、都增大 B 、都减小 C 、都不变 D 、一个增大一个减小5、一家汽车生产企业在广告中宣称“该公司的汽车可以保证在2年或24000公里内无事故”,但该汽车的一个经销商认为保证“2年”这一项是不必要的,因为汽车车主在2年内行驶的平均里程超过24000公里。
《统计学原理》第四章习题及答案一.判断题部分题目1:同一个总体,时期指标值的大小与时期长短成正比,时点指标值的大小与时点间隔成反比。
()题目2:全国粮食总产量与全国人口对比计算的人均粮食产量是平均指标。
()题目3:根据分组资料计算算术平均数,当各组单位数出现的次数均相等时,按加权算数平均数计算的结果与按简单算数平均数计算的结果相同。
()题目4:同一总体的一部分数值与另一部分数值对比得到的相对指标是比较相对指标。
()题目5:某年甲、乙两地社会商品零售额之比为1:3,这是一个比例相对指标。
()题目6:某企业生产某种产品的单位成本,计划在上年的基础上降低2%,实际降低了3%,则该企业差一个百分点,没有完成计划任务。
()题目7:标准差系数是标准差与平均数之比,它说明了单位标准差下的平均水平。
()题目8:1999年与1998年相比,甲企业工人劳动生产率是乙企业的一倍,这是比较相对指标。
()题目9:中位数与众数都是位置平均数,因此用这两个指标反映现象的一般水平缺乏代表性。
()题目10:对两个性质相同的变量数列比较其平均数的代表性,都可以采用标准差指标。
()题目11:利用变异指标比较两总体平均数的代表性时,标准差越小,说明平均数的代表性越大;标准差系数越小,则说明平均数的代表性越小。
()题目12:标志变异指标数值越大,说明总体中各单位标志值的变异程度越大,则平均指标的代表性越小。
()题目13:权数对算数平均数的影响作用只表现为各组出现次数的多少,与各组次数占总次数的比重无关。
()题目14;能计算总量指标的总体必须是有限总体。
()二.单项选择题题目1:反映社会经济现象发展总规模、总水平的综合指标是()。
A、质量指标B、总量指标C、相对指标D、平均指标题目2:总量指标按反映时间状况的不同,分为()。
A、数量指标和质量指标B、时期指标和时点指标C、总体单位总量和总体标志总量D、实物指标和价值指标题目3:总量指标是用()表示的。
第四章统计数据的概括性描述4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:(1)(2)(3)(4)说明汽车销售分部的特征答:10名销售人员的在5月份销售的汽车数量较为集中。
4.2 随机抽取25个网络用户,得到他们的年龄数据如下:单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:1、排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄从频数看出,众数Mo有两个:19、23;从累计频数看,中位数Me=23。
(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
为分组情况下的直方图:为分组情况下的概率密度曲线:分组:1、确定组数:()l g 25l g ()1.3981115.64l g (2)l g 20.30103n K =+=+=+=,取k=62、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:4.3 某银行为缩短顾客到银行办理业务等待的时间。
第四章 差异量教学目的:1.理解全距、四分位距、百分位距、平均差、方差、标准差和差异系数等概念;2.掌握各种差异量指标的计算方法。
数据的分布特征不仅有集中趋势,还有离中趋势。
以动态的眼光,从不同的角度看,数据是向中间变动的,也是向两端变动的。
两组数据可能平均水平相同,但两组数据的分布特征并不完全相同。
【如】:比较以下两组数据 A 组:88、82、73、76、81 B 组:92、86、70、72、80两组平均数,80==B A X X 但R A =88-73=15,R B=92-70=22。
即A 组较集中,B 组较分散。
因此,我们描述一组数据的分布特征,既要描述其集中趋势,也要描述其离中趋势。
差异量:表示一组数据的离中趋势或变异程度的量称为差异量。
常用的差异量指标有全距、四分位距、百分位距、平均差、方差、标准差和差异系数。
第一节全距、四分位距、百分位距一、全距全距:是一组数距中最大值与最小值之差。
优点:意义明确,计算方便。
缺点:反响不灵敏,易受极端值影响。
二、四分位距〔一〕四分位距的的概念四分位距:是指一组按大小顺序排列的数据中间部位50%个频数距离的一半。
QD :表示四分位距; Q 3:表示第三四分位数; Q 1:表示第一四分位数。
所以:四分位距的公式又为: 〔二〕四分位数的计算方法 1、原始数据计算法〔1〕将数据由小到大进行排列;〔2〕分别求出三位四分位数〔点〕;〔3〕代入公式计算。
【例如】:有以下16个数据25、22、29、12、40、15、14、39、37、31、33、19、17、20、35、30,其中四分位距的计算方法如下:〔1〕先将原始数据从小到大排列好;12、14、15、17、*19、20、22、25、*29、30、31、33、*35、37、39、40Q1=18 Md=27 Q3=34〔2〕求出Q1、Md、Q3;〔3〕将Q1、Md、Q3的得数代入公式〔4.1〕。
2、频数分布表计算法利用频数分布表计算公式为:关键是分别计算P75和P25,百分位数计算方法掌握了,这里的计算就不会有什么问题。
第4章练习题1、一组数据中出现频数最多的变量值称为()A.众数B.中位数C.四分位数D.平均数2、下列关于众数的叙述,不正确的是()A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响3、一组数据排序后处于中间位置上的变量值称为()A.众数B.中位数C.四分位数D.平均数4、一组数据排序后处于25%和75%位置上的值称为()A.众数B.中位数C.四分位数D.平均数5、非众数组的频数占总频数的比例称为()A.异众比率B.离散系数C.平均差D.标准差6、四分位差是()A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.下四分位数与上四分位数的中间值7、一组数据的最大值与最小值之差称为()A.平均差B.标准差C.极差D.四分位差8、各变量值与其平均数离差平方的平均数称为()A.极差B.平均差C.方差D.标准差9、变量值与其平均数的离差除以标准差后的值称为()A.标准分数B.离散系数C.方差D.标准差10、如果一个数据的标准分数-2,表明该数据()A.比平均数高出2个标准差B.比平均数低2个标准差C.等于2倍的平均数D.等于2倍的标准差11、经验法则表明,当一组数据对称分布时,在平均数加减2个标准差的范围之内大约有()A.68%的数据B.95%的数据C.99%的数据D.100%的数据12、如果一组数据不是对称分布的,根据切比雪夫不等式,对于k=4,其意义是()A.至少有75%的数据落在平均数加减4个标准差的范围之内B. 至少有89%的数据落在平均数加减4个标准差的范围之内C. 至少有94%的数据落在平均数加减4个标准差的范围之内D. 至少有99%的数据落在平均数加减4个标准差的范围之内13、离散系数的主要用途是()A.反映一组数据的离散程度B.反映一组数据的平均水平C.比较多组数据的离散程度D.比较多组数据的平均水平14、比较两组数据离散程度最适合的统计量是()A.极差B.平均差C.标准差D.离散系数15、偏态系数测度了数据分布的非对称性程度。
第四章动态数列一﹑单项选择题1.下列动态数列中属于时点数列的是A.历年在校学生数动态数列B.历年毕业生人数动态数列C.某厂各年工业总产值数列D.某厂各年劳动生产率数列2.构成动态数列的两个基本要素是A.主词和宾词B.变量和次数C.分组和次数D.现象所属的时间及其指标值3.动态数列中各项指标数值可以相加的是A.相对数动态数列B.平均数动态数列C.时期数列D.时点数列4.最基本的动态数列是A.指数数列B.相对数动态数列C.平均数动态数列D.绝对数动态数列5.动态数列中,指标数值的大小与其时间长短没有直接关系的是A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列6.动态数列中,指标数值是经过连续不断登记取得的数列是A.时期数列B.时点数列C.相对数动态数列D.平均数动态数列7.下列动态数列中属于时期数列的是A.企业历年职工人数数列B.企业历年劳动生产率数列C.企业历年利税额数列D.企业历年单位产品成本数列8.动态数列中,各项指标数值不可以相加的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列9.动态数列中,指标数值大小与其时间长短有关的是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列10.动态数列中,指标数值是通过一次登记取得的数列是A.相对数动态数列B.绝对数动态数列C.时期数列D.时点数列11.编制动态数列的最基本原则是保证数列中各项指标必须具有A.可加性B.可比性C.连续性D.一致性12.基期为某一固定时期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量13.基期为前期水平的增长量是A.累计增长量B.逐期增长量C.平均增长量D.年距增长量14.累计增长量与逐期增长量之间的关系是A.累计增长量等于相应的各个逐期增长量之和B.累计增长量等于相应的各个逐期增长量之差C.累计增长量等于相应的各个逐期增长量之商D.累计增长量等于相应的各个逐期增长量之积15.平均增长量等于A.累计增长量B.逐期增长量C.逐期增长量之和除以逐期增长量的项D.以上均不对16.动态数列中的发展水平是指A.总量指标B.相对指标C.平均指标D.以上指标均可17.进行动态分析的基础指标是A.发展水平B.平均发展水平C.增长量D.平均增长量18.动态数列的分析指标主要包括两个类别,即A.发展水平和发展速度B.水平指标和速度指标C.平均发展水平和平均发展速度D.增长量和增长速度19.序时平均数和一般平均数的共同点在于两者A.都是根据动态数列计算B.都是根据变量数列计算C.都是反映现象的一般水平D.均可以消除现象波动的影响20.根据时期数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法21.根据间隔相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法22.根据间隔不相等连续时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法23.根据间隔相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法24.根据间隔不相等间断时点数列计算序时平均数应采用A.简单算术平均法B.加权算术平均法C.简单序时平均法D.加权序时平均法25.序时平均数计算中,“首未折半法”运用于A.时期数列的资料B.间隔相等的时点数列资料C.间隔不等的时点数列资料D.由两个时点数列构成的相对数动态数列26.将研究对象在不同时间上的数量差异抽象化,从动态上说明现象在某一时期内发展的一般水平的方法是A.一般平均数B.序时平均数C.平均发展速度D.平均增长速度27.间隔不相等的间断时点数列计算平均发展水平,应采取A.以每次变动持续的时间长度对各时点水平加权平均B.用各间隔长度对各间隔的平均水平加权平均C.对各时点水平简单算术平均D.以数列的总速度按几何平均法计算28.根据采用的对比基期不同发展速度有A.环比发展速度与定基发展速度B.环比发展速度与环比增长速度C.定基发展速度与定基增长速度D.环比增长速度与定基增长速度29.发展速度的计算方法可以表述为A.报告期水平与基期水平之差B.增长量与基期水平之差C.报告期水平与基期水平之比D.增长量与基期水平之比30.基期为前一期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D.平均发展速度31.基期为某一固定期水平的发展速度是A.定基发展速度B.环比发展速度C.年距发展速度D.平均发展速度32.定基发展速度和环比发展速度的关系是两个相邻时期的定基发展速度A.之商等于相应的环比发展速度B.之差等于相应的环比发展速度C.之和等于相应的环比发展速度D.之积等于相应的环比发展速度33.增长速度是A.动态数列水平之差B.动态数列水平之比C.增长量同发展速度之比D.增长量同作为比较基准的数列水平之比34.定基增长速度与环比增长速度的关系表现为A.定基增长速度等于各环比增长速度的连乘积B.定基增长速度等于各环比增长速度的连乘积的n次方根C.各环比增长速度连乘积加一等于定基增长速度加一D.定基增长速度等于各环比增长速度加一后的连乘积减一35.既然总速度是环比发展速度的连乘积,那么平均发展速度就应按A.简单算术平均数计算B.加权算术平均数计算C.几何平均数计算D.调和平均数计算36.发展速度与增长速度的关系是A.定基发展速度等于环比增长速度加一B.环比增长速度等于环比发展速度减一C.定基增长速度的连乘积等于定基发展速度D.环比增长速度的连乘积等于环比发展速度37.动态数列中的平均增长速度是A.各个时期环比增长速度的算术平均数B.各个时期环比增长速度的调和平均数C.各个时期环比增长速度的几何平均数D.各个时期环比增长速度的序时平均数38.采用几何平均法计算平均发展速度的理由是A.各期环比发展速度之积等于总速度B.各期环比发展速度之和等于总速度C.各期环比增长速度之积等于总速度D.各期环比增长速度之和等于总速度39.已知各期定基发展速度和时期数,而不知道各期水平要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算40.已知各时期发展水平之和与最初水平及时期数,要计算平均发展速度A.只能用水平法计算B.只能用累计法计算C.两种方法皆能计算D.两种方法都无法计算41.当动态数列分析目的是侧重于考察期未发展水平,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算42.当动态数列分析目的是侧重于考察整个时期中各年发展水平的总和,则平均发展速度A.应采用算术平均法计算B.应采用调和平均法计算C.应采用几何平均法计算D.应采用方程式法计算43.动态数列中的平均发展速度等于A.各时期定基发展速度的序时平均数B.各时期环比发展速度的序时平均数C.各时期环比发展速度的算术平均数D.各时期定基发展速度的算术平均数44.几何平均数所计算的平均发展速度的数值大小A.不受最初水平和最未水平的影响B.只受中间各期发展水平的影响C.只受最初水平和最未水平的影响D.既受最初水平和最未水平的影响,又受中间各期发展水平的影响45.累计法计算平均发展速度的实质是从最初水平出发A.按平均增长量增长,经过n期,正好达到最未水平B.按平均发展速度发展,经过n期,正好达到第n期实际水平C.按平均发展速度计算得到的各期理论水平之和正好等于各期的实际水平总和D.按平均发展速度发展得到的各期理论水平之和正好等于最未期的实际水平46.直线趋势方程Y C=a+bx中a和b的意义是是截距,b表示X=0的趋势值表示最初发展水平的趋势值,b表示平均发展水平表示最初发展水平的趋势值,b表示平均发展速度是直线的截距,表示最初发展水平的趋势值;b是直线的斜率,表示按最小平方法计算的平均增长量47.用最小平方法配合趋势直线方程Y C=a+bx在什么条件下,a=Y;b=ΣXY/ΣX2A.ΣX=0B.Σ(Y-Y)=0C.ΣY=0D.Σ(Y-Y)2=最小值二﹑多项选择题1.构成动态数列的两个基本要素是A.变量B.次数C.现象所属的时间D.现象所属的范围E.反映现象的统计指标数值2.动态数列按研究任务不同可以分为A.绝对数动态数列B.平均数动态数列C.相对数动态数列D.时期数列E.时点数列3.动态数列的作用表现在A.描述现象变化的过程B.说明现象发展的速度和趋势C.探索现象发展变化的规律性D.对现象的发展进行预测E.反映现象总体的分布特征4.时期数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其时期长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其时期长短有直接关系E.数列中指标数值通常是通过连续不断登记而取得的5.时点数列的特点A.数列中各个指标数值可以相加B.数列中指标数值大小与其间隔长短无直接关系C.数列中各个指标数值不能相加D.数列中指标数值大小与其间隔长短有直接关系E.数列中指标数值通常是通过间断登记而取得的6.下列动态数列中,各项指标数值不能相加的有A.绝对数动态数列B.相对数动态数列B.平均数动态数列 D.时期数列E.时点数列7.下列数列中,属于两个时期对比构成的相对数动态数列有A.全员劳动生产率动态数列B.百元产值利润率动态数列C.职工人数动态数列D.计划完成程度动态数列E.出勤率动态数列8.下列数列中属于时期数列的有A.历年年未人口总数B.历年出生人数B.历年工业增加值 D.各月商品库存量E.各月未银行存款余额9.下列数列中属于时点数列的有A.高校每年毕业生人数B.高校每年在校学生数C.银行每月未银行存款余额D.商店各月商品库存额E.我国历年外汇储备量10.编制动态数列应遵循的原则有A.时期长短应该相等B.指标的经济内容应该相同C.总体范围应该一致D.指标的计算方法应该一致E.指标的计算价格和计量单位应该一致11.动态数列中的水平分析指标有A.发展水平B.平均发展水平C.增长量D.平均增长量E.平均发展速度12.动态数列中的速度分析指标有A.平均发展水平B.增长速度C.平均发展速度D.平均增长速度E.发展速度13.下列指标中属于序时平均数的有A.平均发展水平B.平均增长量C.平均发展速度D.平均增长速度E.平均指标14.动态数列中的发展水平包括A.期初水平B.期未水平C.中间水平D.报告期水平E.基期水平15.将不同时期的发展水平加以平均所得到的平均数称为A.一般平均数B.算术平均数C.序时平均数D.动态平均数E.平均发展水平16.平均增长量的计算公式是A.逐期增长量之和/逐期增长量项数B.逐期增长量的序时平均数C.累计增长量/动态数列项数-1D.累计增长量/动态数列项数E.累计增长量/动态数列项数+117.定基发展速度与环比发展速度之间的关系表现为A.两个相邻时期的定基发展速度之商等于相应的环比发展速度B.定基发展速度等于相应的各个环比发展速度的连乘积C.定基发展速度等于环比发展速度加一D.定基发展速度等于环比增长速度加一后的连乘积E.环比发展速度乘积等于总速度18.增长速度和发展速度的关系为A.仅差一个基数B.发展速度=增长速度+1C.定基增长速度=各环比增长速度的连乘积C.定基发展速度=定基增长速度+1E.定基增长速度=各环比发展速度的连乘积-119.定基增长速度等于A.累计增长量除以基期发展水平B.定基发展速度减去一C.总速度减去一D.环比增长速度的连乘积E.逐期增长量除以前期发展水平20.环比增长速度等于A累计增长量除以基期发展水平 B.环比发展速度减去一C.定基发展速度减去一D.环比增长速度的连乘积E.逐期增长量除以前期发展水平21.动态数列中的发展水平可以是A.总量指标B.相对指标C.平均指标D.变异指标E.样本指标22.增长1%的绝对值等于A.累计增长量除以定基发展速度B.逐期增长量除以环比发展速度C.逐期增长量除以环比增长速度×100D.累计增长量除以定基增长速度×100E.固定期水平除以10023.计算平均发展速度的方法有A.几何平均法B.水平法C.方程式法D.累计法E.序时平均法24.平均发展速度从广义上讲属于A.静态平均数B.动态平均数C.序时平均数D.几何平均数E.调和平均数25.计算平均发展速度的几何平均法和方程式法的区别是A.数理依据不同B.侧重点不同C.适用条件不同D.适用范围不同E.对资料要求不同26.常用的长期趋势测定的方法有A.时距扩大法B.移动平均法C.分段平均法D.最小平方法E.季节比率法27.直线趋势方程Y c=a+bx的参数b是表示A.趋势值B.趋势线的截距C.趋势线的斜率D.当X=0时的Y c的数值E.当X每变动一个单位时Y c平均增减的数值三﹑填空题1.动态数列一般由两个基本要素构成,即和。
第四章总量指标和相对指标
一、名词解释
1、总量指标
2、时期指标
3、时点指标
4、标志总量
5、总体单位数
6、相对指标
7、强度相对数
二、简答题
1、简述总量指标在社会经济活动分析中的作用。
2、总量指标是如何进行分类的?
3、时期指标与时点指标的区别是什么?
4、简述先对指标的作用?
5、列举常见的集中相对数,并举例加以说明。
6、相对指标的计算与运用有哪些具体要求?
三、计算题
标。
2、某企业计划规定五年累计产量为245万吨,五年计划最后一年的年产量要达
间。
3、某企业劳动生产率计划比去年提高5%,实际提高了15%,试计算劳动生产率提高计划完成程度。
4、某企业2001年劳动生产率计划完成程度相对数为102%,比2000年提高6%,试计算2001年劳动生产率计划比上年增长的百分比。
5、某企业2001年计划产量比上年增长8%,2001年度产量计划完成程度为110%,试确定2001年比2000年增长的百分比。
6、某企业产品单位成本应在上期699元水平上降低12元,实际上本期单位成本672元,试确定降低单位成本的计划完成程度。
7、某企业某种产品成本2000年计划降低5%,实际降低了4%,试计算成本降低率计划完成程度。
统计学(贾俊平第八版)课后思考题及答案第一章:统计学基本概念和方法思考题1:什么是统计学?统计学的研究对象是什么?统计学是从观察数据的现象和规律出发,运用数理统计方法进行概括、分析和推断的科学。
统计学研究的对象是数据的概括和整体行为特征,即基本统计量和统计分布。
答案:统计学是一门应用数学的学科,其研究范围包括数据的收集、整理、描述、分析和推断等方面。
统计学通过运用数理统计方法,帮助我们从观察到的数据中发现其中的规律和趋势,从而对现象和问题作出合理的判断和推断。
统计学的研究对象主要包括两个方面。
一方面,统计学关注数据的概括和整体行为特征,例如对数据集的中心趋势(平均数、中位数)和离散程度(标准差、方差)进行描述和分析,这些统计量可以帮助我们对数据进行概括和比较。
另一方面,统计学研究数据的统计分布,即数据的分布形状和特征,例如正态分布、偏态分布等,这些分布有助于我们根据数据的特点进行进一步的推断和推测。
第二章:统计学的数据描述思考题2:试举例说明数据分为哪些类型?数据分为定性数据和定量数据两种类型。
答案:数据可以分为定性数据和定量数据两种类型。
定性数据是指不能用数字表示的数据,其特征主要是描述性的,例如性别、喜好等。
定性数据通常采用文字或符号进行记录和表达。
定量数据是指可以用数字表示的数据,其特征主要是数量性的,例如身高、体重等。
定量数据可以进行数学运算和统计分析。
举例来说,一个学生调查问卷中的“性别”以及“对某个电影的评价(好、中、差)”是属于定性数据;而问卷中的“年龄”和“观看该电影的次数”则是属于定量数据。
第三章:概率与概率分布思考题3:什么是概率?请以一个例子来解释。
概率是指某个事件发生的可能性。
它在统计学中用于描述随机现象的规律性和不确定性。
答案:概率是描述某个事件发生的可能性的数值。
概率可以从0到1之间的任何一个数值,其中0表示不可能发生,1表示肯定会发生。
举个例子来说明,假设有一个标准的骰子,每个面上有1到6的数字。
第三章数据资料的统计描述:统计表和统计图第一节定性资料的统计描述知识点:1、统计分组就是根据统计研究的需要,将统计总体按照一定的标志区分为若干组成部分的一种统计方法。
2、定性数据的频数、频率、百分数、累计频数、累积频率的概念及计算。
3、定性数据频数分布表示方法主要有条形图、扇形图。
第二节定量数据的统计描述知识点:1、定量数据频数分布表的编制:(1)整理原始资料;(2)确定变量数列的形式;(3)编制组距式变量数列。
应注意的问题:确定组距,确定组限。
考查的区间式分组数据按“上组限不在组内”的原则确定。
2、定量数据的频数、频率、百分数、累积频数、累计频率的概念及计算。
3、定量数据频数分布表示方法主要有直方图、折线图和曲线图三种。
第三节探索性数据分析——茎叶图知识点:1、基本茎叶图的理解及编制第四节相关表与相关图知识点:1、相关表,反映定性变量与定量变量之间的相关关系。
2、散点图,反映两个定量变量之间的相关关系。
根据散点图判断两个变量的相关关系。
第四章数据资料的统计描述:数值计算第一节集中趋势知识点:关于单值式分组和区间式分组数据的1、平均数的计算,包括算术平均数,几何平均数,调和平均数2、众数的计算3、中位数、四分位数的计算4、(补充知识点)平均数、众数、中位数三者之间的关系5、百分位数的计算6、截尾均值的计算第二节离散测度知识点:1、极差的计算2、关于单值式分组和区间式分组数据的四分位数差的计算3、关于单值式分组和区间式分组数据的方差、标准差的计算4、变异系数的计算5、(补充知识点)偏度、峰度的含义及计算第三节协方差与相关系数知识点:1、样本协方差的含义及计算2、相关系数的含义及计算第四节相对位置测度与奇异点知识点:1、数据的标准化处理2、奇异点的诊断:利用契比雪夫定理和经验规则第五节探索性分析——5点描述与箱线图知识点:1、5点描述法的理解2、箱线图的理解与运用第三章习题:一、填空题1、在对数据资料进行统计描述时,______反映了各个组中每一项目出现的次数,______反映了各个组中项目发生的比例。
思考与练习1. 怎样确定假设检验问题的零假设和备择假设?一般根据以下几个原则设置零假设和备择假设:把研究者要证明的假设作为备择假设;将所作出的声明作为零假设;把现状作为零假设;把不能轻易否定的假设作为零假设。
2. 什么是抽样分布?常用的抽样分布有哪些?抽样分布是指统计量的概率分布。
从总体中抽取一个样本量为n的随机样本,我们可以计算出统计量的一个值;如果从总体中重复抽取样本量为n的样本,就可以得到统计量的多个值。
统计量的抽样分布就是这一统计量所有可能值的概率分布。
常用的抽样分布有正态分布、t分布、F分布、2χ分布。
3. 假设检验有哪些步骤?假设检验一般可以分为以下几个步骤:1)根据实际问题提出一对假设(零假设和备择假设);2)构造某个适当的检验统计量,并确定其在零假设成立时的分布;3)根据观测的样本计算检验统计量的值;4)根据指定的显著性水平确定检验统计量的临界值并进而给出拒绝域;5)根据决策规则得出拒绝或不能拒绝零假设的结论。
4. 单侧和双侧假设检验问题的拒绝域有何区别?单侧检验的拒绝域为检验统计量取值的单侧区间,双侧检验问题的拒绝域为检验统计量取值的双侧区间5. 怎样理解假设检验问题的p值?如何根据p值和显著性水平的关系得出检验结论?p值是在零假设成立的条件下,出现检验统计量的样本观测结果或更极端结果的概率,是能拒绝H0的α的最小值。
将p值与显著性水平α比较,当p值小于α时拒绝零假设。
当p值大于等于α时接受零假设。
6. 根据表4-3对100名儿童随机调查的结果(数据文件:看电视时间.sav),能否认为(1)该地区儿童平均看电视的时间等于25.5小时?解:在SPSS中打开相应的数据文件,选择“分析”→“比较均值”→“单样本t检验”,在弹出的对话框中将体重变量作为检验变量,检验值框中填入25.5,其余使用系统默认值,输出结果如表1。
表1 单样本t检验根据题目的要求,这里应采用双侧检验,零假设和备择假设为:25.5:25.5:10≠↔=μμH H 。
2.ANOVA实验结果Sum of Squares df Mean Square F Sig. Between Groups 43.194 3 14.398 13.697 .000 Within Groups 37.842 36 1.051Total 81.036 39Multiple ComparisonsDependent Variable: 实验结果Dunnett t (2-sided)a(I) 分组(J) 分组Mean Difference(I-J) Std. Error Sig. 95% Confidence IntervalLower Bound Upper Bound0.5 对照组-2.15000*.45851 .000 -3.2743 -1.02571.0 对照组-2.27000*.45851 .000 -3.3943 -1.1457 1.5 对照组-2.66000*.45851 .000 -3.7843 -1.5357F=13.697 P=0.000004P A=0.000113 P B=0.000051 P C=0.000004均小于0.001根据完全随机资料的方差分析,按α=0.05水准,拒绝H0,接受H1,认为四组治疗组小白鼠的肿瘤重量总体均数不全相等,即不同剂量药物注射液的抑癌作用有差别。
3.Tests of Between-Subjects EffectsDependent Variable: 重量Source Type III Sum ofSquaresdf Mean Square F Sig.Hypothesis 99736.333 1 99736.333 58.489 .005Error 5115.667 3 1705.222a治疗Hypothesis 6503.167 2 3251.583 44.867 .000Error 434.833 6 72.472b分组Hypothesis 5115.667 3 1705.222 23.529 .001Error 434.833 6 72.472bF:44.867 23.529P:0.000246 0.001020<0.01根据随机区组资料的方差分析,按α=0.05水准,拒绝H0,接受H1,三组注射不同剂量雌激素的大白鼠子宫重量总体均数不全相等,即注射不同剂量的雌激素对大白鼠子宫重量有影响5.Tests of Between-Subjects EffectsDependent Variable: 脉搏次数df Mean Square F Sig. Source Type III Sum ofSquaresHypothesis 348005.606 1 348005.606 436.868 .000Error 3845.883 4.828 796.592aHypothesis 218.026 4 54.506 1.243 .344防护服Error 526.141 12 43.845bHypothesis 2853.674 4 713.418 16.271 .000受试者Error 526.141 12 43.845bHypothesis 508.074 4 127.018 2.897 .068试验日期Error 526.141 12 43.845bF:1.243 16.271 2.897P:0.344 0.000086 0.068根据拉丁方设计资料的方差分析,0.344>0.05,按α=0.05水准,接受H0,拒接H1,认为穿五种防护服时的脉搏数总体均数相等,即尚不能认为五种防护服对脉搏数有不同影响。
《统计学》第四版 第四章练习题答案4.1 (1)众数:M 0=10; 中位数:中位数位置=n+1/2=5.5,M e =10;平均数:6.91096===∑nxx i(2)Q L 位置=n/4=2.5, Q L =4+7/2=5.5;Q U 位置=3n/4=7.5,Q U =12 (3)2.494.1561)(2==-=∑-n i s x x (4)由于平均数小于中位数和众数,所以汽车销售量为左偏分布。
4.2 (1)从表中数据可以看出,年龄出现频数最多的是19和23,故有个众数,即M 0=19和M 0=23。
将原始数据排序后,计算中位数的位置为:中位数位置= n+1/2=13,第13个位置上的数值为23,所以中位数为M e =23(2)Q L 位置=n/4=6.25, Q L ==19;Q U 位置=3n/4=18.75,Q U =26.5(3)平均数==∑nx x i600/25=24,标准差65.612510621)(2=-=-=∑-n i s x x(4)偏态系数SK=1.08,峰态系数K=0.77(5)分析:从众数、中位数和平均数来看,网民年龄在23-24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大差异。
从偏态系数来看,年龄分布为右偏,由于偏态系数大于1,所以,偏斜程度很大。
由于峰态系数为正值,所以为尖峰分布。
4.3 (1(2)==∑nx x i63/9=7,714.0808.41)(2==-=∑-n i s x x (3)由于两种排队方式的平均数不同,所以用离散系数进行比较。
第一种排队方式:v 1=1.97/7.2=0.274;v 2=0.714/7=0.102.由于v 1>v 2,表明第一种排队方式的离散程度大于第二种排队方式。
(4)选方法二,因为第二种排队方式的平均等待时间较短,且离散程度小于第一种排队方式。
4.4 (1)==∑nx x i8223/30=274.1中位数位置=n+1/2=15.5,M e =272+273/2=272.5(2)Q L 位置=n/4=7.5, Q L ==(258+261)/2=259.5;Q U 位置=3n/4=22.5,Q U =(284+291)/2=287.5(3) 17.211307.130021)(2=-=-=∑-n i s x x4.5 (1)甲企业的平均成本=总成本/总产量=41.193406600301500203000152100150030002100==++++乙企业的平均成本=总成本/总产量=29.183426255301500201500153255150015003255==++++原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
第四章 抽样分布与参数估计3.某地区粮食播种面积5000亩,按不重复抽样方法随机抽取了100亩进行实测,调查结果,平均亩产450公斤,亩产量标准差为52公斤。
试以95%的置信度估计该地区粮食平均亩产量和总产量的置信区间。
解:已知X =450公斤,n =100(大样本),n/N=1/50,11≈-Nn,不考虑抽样方式的影响,用重复抽样计算。
s =52公斤,1-α=95%,α=5%。
这时查标准正态分布表,可得临界值:96.1025.02/==z z α该地区粮食平均亩产量的置信区间是:1005296.14502⨯±=±nsz x α=[439.808,460.192] (公斤) 总产量的置信区间是:[439.808⨯5000,460.192⨯5000] (公斤) =[2199040,2300960](公斤)4.已知某种电子管使用寿命服从正态分布。
从一批电子管中随机抽取16只,检测结果,样本平均寿命为1490小时,标准差为24.77小时。
试以95%的置信度估计这批电子管的平均寿命的置信区间。
解:(1)已知X =1490小时,n =16,s =24.77小时,1-α=95%,α=5%。
这时查t 分布表,可得 2.13145)1(2/=-n t α该批电子管的平均寿命的置信区间是:1677.2413145.214902⨯±=±nst x α=[ 1476.801,1503.199](小时)因此,这批电子管的平均寿命的置信区间在1476.801小时与1503.199小时之间。
6.采用简单随机重复抽样的方法,从2 000件产品中抽查200件,其中合格品190件。
要求:(1)计算合格品率及其抽样平均误差。
(2)以95.45%的置信度,对合格品率和合格品数量进行区间估计。
(3)如果极限误差为2.31%,则其置信度是多少? 解:(1)合格品率:P=190/200⨯100%=95% 抽样平均误差:np p p )1()(-=σ=0.015(2)%3%95%100015.02%95)(22/02275.02/±=⨯⨯±=±==p Z P Z Z σαα]19601840[]2000%982000%92[(%]98%92[,,的置信区为:件合格品数量,:合格品率的置信区间为=⨯⨯)(3)%64.87)(8764.01,54.1%31.2%100015.0%31.2)(2/2/2/==-==⨯⨯==∆z F Z Z p Z ασααα查表得7.从某企业工人中随机抽选部分进行调查,所得工资分布数列如下:试求:(1)以95.45%的置信度估计该企业工人平均工资的置信区间,以及该企业工人中工资不少于800元的工人所占比重的置信区间;(2)如果要求估计平均工资的允许误差范围不超过30元,估计工资不少于800元的工人所占比重的允许误差范围不超过10%,置信度仍为95.45%,试问至少应抽多少工人? 解(1)通过EXCEL 计算可得: X =816元,n =50人,s =113.77元。
第四章 静态指标分析法(一)一、填空题1、数据分布集中趋势的测度值(指标)主要有、和。
其中和用于测度品质数据集中趋势的分布特征,用于测度数值型数据集中趋势的分布特征。
2、标准差是反映的最主要指标(测度值)。
3、几何平均数是计算和的比较适用的一种方法。
4、当两组数据的平均数不等时,要比较其数据的差异程度大小,需要计算。
5、在测定数据分布特征时,如果M M e X 0==,则认为数据呈分布。
6、当一组工人的月平均工资悬殊较大时,用他们工资的比其算术平均数更能代表全部工人工资的总体水平。
二.选择题单选题:1.反映的时间状况不同,总量指标可分为( )A 总量指标和时点总量指标B 时点总量指标和时期总量指标C 时期总量指标和时间指标D 实物量指标和价值量指标2、某厂1999年完成产值200万元,2000年计划增长10%,实际完成了231万元,超额完成( )A 5.5%B 5%C 115.5%D 15.5%3、在同一变量数列中,当标志值(变量值)比较大的次数较多时,计算出来的平均数( )A 接近标志值小的一方B 接近标志值大的一方C 接近次数少的一方D 接近哪一方无法判断4、在计算平均数时,权数的意义和作用是不变的,而权数的具体表现( )A 可变的B 总是各组单位数C 总是各组标志总量D 总是各组标志值 5、1998年某厂甲车间工人的月平均工资为520元,乙车间工人的月平均工资为540元,1999年各车间的工资水平不变,但甲车间的工人占全部工人的比重由原来的40%提高到了60%,则1999年两车间工人的总平均工资比1998年( )A 提高B 不变C 降低D 不能做结论 6、在变异指标(离散程度测度值)中,其数值越小,则( )A 说明变量值越分散,平均数代表性越低B 说明变量值越集中,平均数代表性越高C 说明变量值越分散,平均数代表性越高D 说明变量值越集中,平均数代表性越低7、有甲、乙两数列,已知甲数列:07.7,70==甲甲σX ;乙数列:41.3,7==乙乙σX 根据以上资料可直接判断( )A 甲数列的平均数代表性大B 乙数列的平均数代表性大C 两数列的平均数代表性相同D 不能直接判别8、杭州地区每百人手机拥有量为90部,这个指标是 ( )A 、比例相对指标B 、比较相对指标C 、结构相对指标D 、强度相对指标 9、某组数据呈正态分布,计算出算术平均数为5,中位数为7,则该数据分布为 ( ) A 、左偏分布 B 、右偏分布 C 、对称分布 D 、无法判断10、加权算术平均数的大小 ( )A 主要受各组标志值大小的影响,与各组次数多少无关;B 主要受各组次数多少的影响,与各组标志值大小无关;C 既与各组标志值大小无关,也与各组次数多少无关;D 既与各组标志值大小有关,也受各组次数多少的影响11、已知一分配数列,最小组限为30元,最大组限为200元,不可能是平均数的为 ( ) A 、50元 B 、80元 C 、120元 D 、210元12、比较两个单位的资料,甲的标准差小于乙的标准差,则 ( ) A 两个单位的平均数代表性相同 B 甲单位平均数代表性大于乙单位C 乙单位平均数代表性大于甲单位D 不能确定哪个单位的平均数代表性大 13、若单项数列的所有标志值都增加常数9,而次数都减少三分之一,则其算术平均数 ( ) A 、增加9 B 、增加6C 、减少三分之一 D 、增加三分之二 14、如果数据分布很不均匀,则应编制( )A 开口组B 闭口组C 等距数列D 异距数列 15、计算总量指标的基本原则是:( ) A 总体性B 全面性C 同质性D 可比性16、某企业的职工工资分为四组:800元以下;800-1000元;1000—1500元;1500以上,则1500元以上这组组中值应近似为()A1500元 B 1600元 C 1750元D 2000元 17、统计分组的首要问题是( )A 选择分组变量和确定组限B 按品质标志分组C 运用多个标志进行分组,形成一个分组体系D 善于运用复合分组18、某连续变量数列,其末组为开口组,下限为200,又知其邻组的组中值为170,则末组组中值为( )A 230B 260C 185D 215 19、分配数列中,靠近中间的变量值分布的次数少,靠近两端的变量值分布的次数多,这种分布的类型是( )A 钟型分布B U 型分布C J 型分布D 倒J 型分布 20、要了解上海市居民家庭的开支情况,最合适的调查方式是:() A 普查B 抽样调查C 典型调查D 重点调查21、已知两个同类企业的职工平均工资的标准差分别为5元和6元,而平均工资分别为3000元,3500元则两企业的工资离散程度为 ( )A 甲大于乙B 乙大于甲C 一样的D 无法判断 22、加权算术平均数的大小取决于( )A 变量值B 频数C 变量值和频数D 频率23、如果所有标志值的频数都减少为原来的1/5,而标志值仍然不变.那么算术平均数( ) A 不变 B 扩大到5倍 C 减少为原来的1/5 D 不能预测其变化 24、 计算平均比率最好用 ( )A 算术平均数B 调和平均数C 几何平均数D 中位数25、若两数列的标准差相等而平均数不同,在比较两数列的离散程度大小时,应采用() A 全距 B 平均差 C 标准差 D 标准差系数26、若n=20,∑∑==2080,2002x x ,标准差为( )A 2B 4C 1.5D 327、已知某总体3215,3256==eMM,则数据的分布形态为( )A左偏分布B正态分布 C 右偏分布DU型分布28、一次小型出口商品洽谈会,所有厂商的平均成交额的方差为156.25万元,标准差系数为14.2%,则平均成交额为( )万元A11 B 177.5 C 22.19 D 8826、欲粗略了解我国钢铁生产的基本情况,调查了上钢、鞍钢等十几个大型的钢铁企业,这是()A普查B重点调查C典型调查D抽样调查多选题:1.某企业计划2000年成本降低率为8%,实际降低了10%。
1 / 11 第四章 练习题 一、单项选择题 1.由反映总体单位某一数量特征的标志值汇总得到的指标是( ) A.总体单位总量 B.质量指标 C.总体标志总量 D.相对指标 2.各部分所占比重之和等于1或100%的相对数( ) A.比例相对数 B.比较相对数 C.结构相对数 D.动态相对数 3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为( ) A.104.76% B.95.45% C.200% D.4.76% 4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度( ) A.14.5% B.95% C.5% D.114.5% 5.在一个特定总体内,下列说法正确的是( ) A.只存在一个单位总量,但可以同时存在多个标志总量 B.可以存在多个单位总量,但必须只有一个标志总量 C.只能存在一个单位总量和一个标志总量 D.可以存在多个单位总量和多个标志总量 6.计算平均指标的基本要求是所要计算的平均指标的总体单位应是( ) A.大量的 B.同质的 C.有差异的 D.不同总体的 7.几何平均数的 计算适用于求( ) A.平均速度和平均比率 B.平均增长水平 C.平均发展水平 D.序时平均数 8.一组样本数据为3、3、1、5、13、12、11、9、7这组数据的中位数是( ) A.3 B.13 C.7.1 D.7 9.某班学生的统计学平均成绩是70分,最高分是96分,最低分是62分,根据这些信息,可以计算的测度离散程度的统计量是( ) A.方差 B.极差 C.标准差 D.变异系数 10.用标准差比较分析两个同类总体平均指标的代表性大小时,其基本的前提条件是( ) A.两个总体的标准差应相等 B.两个总体的平均数应相等 C.两个总体的单位数应相等 D.两个总体的离差之和应相等 11.已知4个水果商店苹果的单价和销售额,要求计算4个商店苹果的平均单价,应采用( ) A.简单算术平均数 B.加权算术平均数 C.加权调和平均数 D.几何平均数 12.算术平均数、众数和中位数之间的数量关系决定于总体次数的分布状况。在对称的钟形分布中( ) A.算术平均数=中位数=众数 B.算术平均数>中位数>众数 C.算术平均数算术平均数>众数 2 / 11
二、多项选择题 1.下列属于时点指标的有( ) A.某地区人口数 B.某地区死亡人口数 C.某地区出生人口数 D.某地区生产总值 E.某地区的学校数 2.下列属于时期指标的有( ) A. 工业总产值 B.商品销售额 C.职工人数 D.生猪存栏数 E.商品库存额 3.下列属于强度相对指标的有( ) A.人均国民收入 B.人口平均年龄 C.粮食亩产量 D.人口密度 E.人均粮食产量 4.相对指标中,分子分母可以互换位置的有( ) A.结构相对数 B.比例相对数 C.部分强度相对数 D.比较相对数 E.动态相对数 5.下列指标中属于平均指标的有( ) A.人均国民收入 B.人口平均年龄 C.粮食亩产量 D.人口密度 E.人口自然增长率 6.下列属于数值平均数的有( ) A.算术平均数 B.调和平均数 C.中位数 D.几何平均数 E.众数 7.下列属于平均指标的有( ) A.人均国民收入 B.人口平均年龄 C.粮食亩产量 D.人口密度 E.人均粮食产量
三、填空题 1.总量指标的局限性表现在_________。 2.检查长期计划的完成情况时,若计划任务规定的是长期计划应达到的总水平,检查计划完成程度应采用_________法。 3.某企业工人劳动生产率计划提高5%,实际提高了10%,则提高劳动生产率的计划完成程度为_________ 4.某企业计划规定产品成本比上年度降低10%实际产品成本比上年降低了14.5%,则产品成本计划完成程度为_________ 5.权数有两种表现形式,一种是频数形式,一种是_________形式。 6.各个变量值与其算术平均数的离差和为_________。 7.平均指标说明变量数列中变量值的_______,而变异度指标则说明变量值的________。 8.众数是变量数列中_________的标志值。 9.用几何平均数求银行贷款的平均年利率时,应首先求贷款的_________,在此基础上再求平均年利率。 10.是非标志的平均数是_________,是非标志的标准差是_________。
四、判断题 1. 某企业6月末实有生产设备1 730台,是时期指标( ) 2. 结构相对指标和比例相对指标,是反映现象总体内部组成情况的相对指标,因此,说 明的问题是一样的,只是表现形式不同( ) 3. 2004年我国第一、二、三产业结构比为15.2 : 53 : 31.8,这是比较相对指标( ) 4. 计划完成程度相对指标大于100%一定都是超额完成计划,小于100%一定是未完成3 / 11
计划( ) 5. 某企业的产值计划在去年的基础上提高10%,计划执行的结果仅提高5%。产值的 计划任务仅完成一半( ) 6. 人均国民生产总值是平均指标,人口死亡率和流通费用率是相对指标( ) 7. 权数的作用在于绝对数的多少,而不在于次数的分布的结构( ) 8. 由职工人数和职工工资额资料,可用调和平均数方法计算平均工资( ) 9. 中位数是根据各个变量值计算的, 不受极端变量值位置的影响( ) 10. 在甲乙两组变量数列中,若甲x≠乙x,甲>乙,说明甲的平均指标的代表性低于乙的代表性 ( ) 五、名词解释 1.总量指标 2.相对指标 3.时期指标 4.时点指标 5.强度相对数 6.比较相对数 7.比例相对数 8.平均指标 9.变异指标 10.是非标志
六、简答题 1.时期指标和时点指标的区别是什么? 2.强度相对指标和算术平均指标的区别是什么? 3.相对指标的作用是什么? 4.总量指标的作用是什么? 5.实物指标和价值指标的优缺点是什么? 6.简述平均指标的特点是什么?平均指标的作用是什么? 7.加权算术平均数和加权调和平均数的区别和联系? 8.如何理解权术的意义?在什么情况下应用简单算术平均数和加权算术平均数 9.应用平均指标应注意的问题是什么? 10.变异指标的意义和作用是什么? 七、计算题 1. 分别已知某企业资料如下: (1)已知计划实际完成情况如表4-23所示: 表4-23 按计划完成百分比分组(%) 实际产值(万元) 80 — 90 90 — 100 100 — 110 110 — 120 68 57 126 184 根据以上资料,计算该企业的平均计划完成百分比。 (2) 已知计划任务情况如表4-24所示: 表4-24 4 / 11
按计划完成百分比分组(%) 计划产值(万元) 80 — 90 90 — 100 100 — 110 110 — 120 70 60 120 180 根据以上资料,计算企业的平均计划完成百分比。 2. 某局所属15个企业产量计划完成情况如表4-25所示: 表4-25 计划完成程度(%) 企业数 计划总任务数(万件) 90 - 100 100 - 110 110 — 120 5 8 2 100 800 100 合计 15 1000 根据以上资料,分别以企业数和计划任务数计算企业的平均产量计划完成程度,并比较说明在所给条件下哪种方法更恰当?为什么? 3. 某企业按五年计划规定,某产品最后一年产量应达到200万吨,各年实际生产情况如表4-26所示: 第 一 年 第 二 年 第 三 年 第四年 第五年
一季 二季 三季 四季 一季 二季 三季 四季 产量 160 165 165 40 40 45 45 50 50 55 60 试计算该产品五年计划完成程度和提前完成五年计划指标的时间。 4. 某地区“十五”计划规定五年固定资产投资额300亿元,各年实际投资完成情况如表4-27所示:(其中,2005年1-7月累计实际投资40亿元) 表4-27 2001年 2002年 2003年 2004年 2005年 固定资产投资额(亿元) 60 62 68 70 73 试计算该地区“十五”时期固定资产投资额计划完成程度和提前完成“十五”计划的时间。 5. 甲乙两个企业生产三种商品的单位成本和总成本资料如表4-28所示: 表4-28 产品名称 单位成本 (元) 总成本(元) 甲企业 乙企业 A 15 2100 3255 B 20 3000 1500 C 30 1500 1500 要求:比较两企业的总平均成本哪个高?并分析其原因。 6. 某乡甲乙两个村的粮食生产情况如表4-29所示: 表4-29 按耕地自然条件分组 甲村 乙村 平均亩产(千克/亩) 粮食产量(千克) 平均亩产(千克/亩) 播种面积(亩)
山地 丘陵地 平原地 100 150 400 25000 150000 500000 150 200 450 1250 500 750