药物动力学 第6章 非线性药物动力学模型
- 格式:ppt
- 大小:215.04 KB
- 文档页数:14
BCS:是依据药物的渗透性和溶解度,将药物分成四大类,并可根据这两个特征参数预测药物在体内-体外的相关性。
Css(稳态血药浓度/坪浓度):指药物进入体内的速率等于体内消除的速率时的血药浓度。
MRT:药物在体内平均滞留时间。
阿霉素;是一个有效的化疗药物,但由于对心脏的毒性较大,常常使用受到限制。
半衰期:指药物在体内消除一半所用的时间或血浆药物浓度降低一半所需的时间。
特点:一级速率过程的消除半衰期与剂量无关,而消除速率常数成反比因而半衰期为常数。
包合作用:将药物分子包钳与另一种物质分子的空穴结构内的制剂技术被动扩散:存在于膜两侧的药物服从浓度梯度扩散的过程。
(存在于膜两侧的药物顺浓度梯度,即从高浓度向低浓度一侧扩散的过程。
)被动转运:是指药物的膜转运服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散的过程。
崩解:系指固体制剂在检查时限内全部崩解或溶解成碎粒的过程表观分布容积:是血药浓度与体内药物间的一个比值,意指在药物充分分布的前提下,体内药物按血浆中同样浓度分布时所需的液体总容积,并不代表具体生理空间。
反映药物分布的广泛程度或药物与组织成分的结合程度波动百分数:系指稳态最大血药浓度与稳态最小血药浓度之差与稳态最大血药浓度值的百分数。
波动度:系指稳态最大血药浓度与稳态最小血药浓度之差与平稳血药浓度的比值。
残数法:是药物动力学中把一条曲线分段分解成若干指数函数的一种常用方法。
肠肝循环:是指在胆汁中排泄的药物或其代谢物在小肠中移动期间重新被吸收返回肝门静脉,并经肝脏重新进入全身循环,然后再分泌,直至最终从尿中排出的现象。
处置:分布、代谢和排泄的总过程。
促进扩散:是指某些药物在细胞膜载体的帮助下,由膜高浓度一侧向低浓度一侧的转运。
达坪分数fss(n):是指n次给药后的血药浓度Cn与坪浓度Css相比,相当于Css的分数。
代谢:药物在吸收过程或进入人体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。
药物的药物动力学模型建立与评价药物动力学是研究药物在体内吸收、分布、代谢和排泄等过程的科学,通过建立药物动力学模型可以揭示药物在体内的行为以及与药效之间的关系。
本文将讨论药物动力学模型的建立和评价方法。
一、药物动力学模型的建立药物动力学模型的建立是通过对药物在体内的动力学过程进行数学建模,具体步骤如下:1. 数据收集:通过实验或临床观察获取药物在体内的浓度数据。
2. 模型假设:根据药物在体内的特性和机制,假设药物服用后符合一定的分布、代谢和排泄规律。
3. 模型建立:根据数据收集的结果和模型假设,选择合适的数学模型来描述药物在体内的动力学过程。
4. 模型参数估计:利用统计学方法,对模型的未知参数进行估计,以获得与观测数据最拟合的模型参数。
5. 模型验证:将估计得到的参数代入模型,与独立的数据进行比较,验证模型的可靠性和适用性。
6. 模型优化:根据验证结果,对模型进行优化,以提高模型的准确性和预测能力。
二、常用的药物动力学模型常用的药物动力学模型包括一室模型、两室模型和非线性模型等。
1. 一室模型(单室模型):一室模型假设药物在体内均匀分布,只有一种速度常数用来描述药物的消除速率。
这种模型适用于药物的分布、代谢和排泄速率较为一致的情况。
2. 两室模型(双室模型):两室模型假设药物在体内存在分布和消除两个隔室,需要两种不同的速度常数来描述药物的消除过程。
这种模型适用于药物在体内存在不同组织间分布不均和代谢速率不同的情况。
3. 非线性模型:非线性模型考虑药物在体内动力学过程中存在浓度依赖的现象,通常采用麦克尔-门特就Navier-Stokes方程来描述药物的动力学。
这种模型适用于药物在体内存在饱和性吸收或代谢的情况。
三、药物动力学模型的评价药物动力学模型的评价是为了检验模型的可靠性和适用性,常用的评价指标包括残差分析、预测误差和模型选择准则等。
1. 残差分析:残差是观测值与模型预测值之间的差异,通过对残差进行统计分析,可以评估模型的拟合程度和误差分布是否符合假设。