实验九配合物与沉淀溶解平衡资料讲解
- 格式:doc
- 大小:47.00 KB
- 文档页数:5
化学沉淀溶解平衡知识点化学沉淀溶解平衡是指在溶液中,溶解物质与沉淀物质之间达到动态平衡的过程。
在这个过程中,溶解物质会从溶液中析出形成沉淀,而沉淀物质也会重新溶解进入溶液。
沉淀溶解平衡的调控因素主要有溶度积、离子浓度、温度等。
沉淀溶解平衡的相关知识点如下:1.溶度积:溶度积是沉淀溶解平衡的一个特征参数,表示在一定温度下,溶液中沉淀物质的最大溶解度。
溶度积的大小决定了沉淀能否生成或溶解。
当溶液中的离子浓度乘积大于溶度积时,沉淀会生成;当离子浓度乘积小于溶度积时,沉淀会溶解;当离子浓度乘积等于溶度积时,沉淀处于平衡状态。
2.酸碱溶解法:这是一种通过加入酸或碱来调控沉淀溶解平衡的方法。
例如,在碳酸钙中加入盐酸,氢离子会消耗碳酸根离子,促使碳酸钙溶解。
3.盐溶解法:这是一种通过加入可溶性盐来调控沉淀溶解平衡的方法。
例如,向硫酸钡沉淀中加入氯化钠,氯化钠会与硫酸钡反应生成可溶性的硫酸钠,从而使硫酸钡沉淀溶解。
4.生成配合物使沉淀溶解:这是一种通过生成配合物来调控沉淀溶解平衡的方法。
例如,在氯化银沉淀中滴加氨水,沉淀会溶解并形成银氨溶液。
5.发生氧化还原反应使沉淀溶解:这是一种通过氧化还原反应来调控沉淀溶解平衡的方法。
例如,在硫化铜沉淀中加入稀硝酸,硫化铜会氧化生成硫淡∗∗沉淀。
6.溶度积的计算:溶度积是指在一定温度下,沉淀物质的最大溶解度。
可以通过实验方法或理论计算得到。
已知溶度积后,可以判断在一定条件下沉淀能否生成或溶解。
7.判断沉淀生成和溶解的方法:通过比较溶液中的离子浓度乘积(Qc)与溶度积(Ksp)的大小。
当Qc > Ksp时,溶液过饱和,有沉淀析出;当Qc = Ksp时,溶液饱和,处于平衡状态;当Qc < Ksp时,溶液未饱和,无沉淀析出。
总之,化学沉淀溶解平衡是一个涉及溶度积、离子浓度、温度等多个因素的复杂过程。
了解和掌握这些知识点,有助于我们更好地理解沉淀溶解现象,并在实际应用中调控溶液的组成。
实验九配合物与沉淀溶解平衡试验九配合物与沉淀——溶解平衡⼀.实验⽬的:1.加深理解配合物的组成和稳定性。
了解配合物形成时特征2.加深理解沉淀—溶解平衡和溶度积的概念。
掌握溶度积规则及其应⽤3.初步学习利⽤沉淀反应和配位溶解的⽅法,分离常见混合阳离⼦4.学习电动离⼼机的使⽤和固—液分离操作⼆.实验原理:配合物⽯油形成体(⼜称为中⼼离⼦或原⼦)与⼀定数⽬的配位体(负离⼦或中性分⼦)。
以配位键结合⽽形成的⼀类复杂化合物,是路易斯(Lewis)酸和路易斯(Lewis)碱的加合物。
配合物的内层与外层之间以离⼦键结合,在⽔溶液中完全解离。
配位个体在⽔溶液中分步解离,其类似于弱电解质。
在⼀定条件下,中⼼离⼦。
配位个体和配位个体之间达到配位平衡。
例:Cu2++ 4NH3——[Cu(NH3)4]2+相应反应的标准平衡常数Kf Q。
成为配合物的稳定常数。
对于相同类型的配合物Kf Q数值愈⼤就愈稳定。
在⽔溶液中,配合物的⽣成反应。
主要有配位体的取代反应和加合反应例:[Fe(SCN)n]3++ ===[FeF6]3-+ nScn-HgI2(s) + 2I-==[HgI4]2-配合物形成时,往往伴随溶液颜⾊、酸碱性(即PH)。
难溶电解质溶解度,中⼼离⼦氧化还原的改变等特征。
2.沉淀—溶解平衡在含有难溶电解质晶体的饱和溶液中,难溶强电解质与溶液中相应离⼦间的多相离⼦平衡。
称为:沉淀—溶解平衡。
⽤通式表⽰如下;AnBn(s) == mA n+(ag)+ nB m-(ag)其溶度积常数为:Ksp Q(A m B n)==[c(A n+)/c Q]m[c(B m-)/c Q]n沉淀的⽣成和溶解。
可以根据溶度积规则判断:J Q> Ksp Q有沉淀析出、平衡向右移动J Q= Ksp Q 处于平衡状态、溶液为饱和溶液J Q< Ksp Q⽆沉淀析出、或平衡向右移动,原来的沉淀溶解溶液PH的改变,配合物的形成发⽣氧化还原反应。
《沉淀溶解平衡》讲义一、什么是沉淀溶解平衡在一定温度下,当沉淀溶解和沉淀生成的速率相等时,形成电解质的饱和溶液,达到平衡状态,我们把这种平衡称为沉淀溶解平衡。
比如说,将难溶电解质氯化银(AgCl)放入水中,尽管它在水中溶解度很小,但仍有一部分氯化银会溶解,形成银离子(Ag⁺)和氯离子(Cl⁻)。
同时,溶解的银离子和氯离子又会结合生成氯化银沉淀。
当溶解的速率和沉淀的速率相等时,就达到了沉淀溶解平衡。
沉淀溶解平衡可以用以下的式子来表示:AgCl(s) ⇌ Ag⁺(aq) +Cl⁻(aq) 。
这里的“s”表示固体,“aq”表示在水溶液中。
二、影响沉淀溶解平衡的因素1、温度一般来说,大多数难溶电解质的溶解过程是吸热的,升高温度,平衡向溶解的方向移动,溶解度增大;降低温度,平衡向沉淀的方向移动,溶解度减小。
但也有少数电解质的溶解过程是放热的,情况则相反。
2、浓度对于平衡 AgCl(s) ⇌ Ag⁺(aq) + Cl⁻(aq) ,加水稀释,平衡向溶解的方向移动,这是因为离子浓度减小,要减弱这种变化,就会促使更多的氯化银溶解。
3、同离子效应在难溶电解质的溶液中,加入含有相同离子的强电解质,会使难溶电解质的溶解度降低。
例如,在氯化银溶液中加入氯化钠,由于氯化钠完全电离出氯离子,氯离子浓度增大,平衡向生成氯化银沉淀的方向移动,氯化银的溶解度减小。
4、盐效应在难溶电解质的溶液中,加入不含相同离子的强电解质,会使难溶电解质的溶解度增大。
这是因为加入的电解质离子会使溶液中的离子强度增大,从而影响离子的活度系数,使得难溶电解质的溶解度有所增加。
三、沉淀溶解平衡的应用1、沉淀的生成如果要生成沉淀,就要使溶液中离子的浓度幂之积大于溶度积(Ksp)。
例如,在含有银离子的溶液中,加入氯离子,当银离子和氯离子的浓度幂之积大于氯化银的溶度积时,就会生成氯化银沉淀。
这在化学分析和工业生产中有广泛的应用,比如用于分离和提纯物质。
2、沉淀的溶解要使沉淀溶解,可以通过降低离子浓度来实现。
配合物与沉淀溶解平衡实验报告
合金水化溶解平衡实验是利用溶解反应的平衡性,测定含有多种溶质的合金的溶解度的常用实验。
本实验目的是探究在某温度下,某合金的溶解度及沉淀配合物形成的情况,研究其热力学参数。
实验取得的基本原始数据是,在室温25℃的情况下,合金溶液中分别含有0、250、500、1000、1250mg/L的各种溶质,并于24小时内采集溶液和沉淀物的样品,进行示踪分析测定,确定溶液和沉淀物中溶质含量,以计算其实验数据,并分析溶液和沉淀物的組成及出现的化学反应。
根据实验结果,当不同溶质的溶液量级相同时,沉淀物的组成物质基本相同,但其形成量与溶质质量不断增加成正比,且溶液以一定数量的溶质饱和。
另外,再结合配置曲线及热力学计算,实验验证了同反应条件下,当不同溶质组分溶质量相同时,K值以及溶质沉淀均是相同的,即沉淀量跟溶质量成正比,越大的溶质量,沉淀量越大,而热力学参数也确定了所测定的反应热常数。
综上所述,合金水化溶解平衡实验可以用来定量测量一个特定合金在给定条件下的溶质沉淀情况,从而为热力学参数及其变化规律的研究提供来源和依据。
沉淀溶解平衡知识简介第一节溶度积一、溶度积在一定的温度下,用难溶的电解质氯化银配成饱和溶液时,溶液中未溶解的固态氯化银和溶液中的银离子氯离子存在一个溶解与沉淀的平衡,简称沉淀平衡。
溶解AgCL (固) 二Ag++C匚沉淀这是一个动态平衡,平衡时的溶液是饱和溶液,达到溶解沉淀时,服从化学平衡规律。
即+ — -[Ag][ CL ]Ki=[AgCL]一定温度下,Ki是常数,氯化银是固体,也可以看成常数。
所以Ki* [AgCL]也为常数,用Ksp 表示。
+ — -Ksp=[ Ag][ CL ]Ksp表示难溶电解质饱和溶液中,有关离子浓度的乘积在一定温度下是个常数。
它的大小与物质溶解度有关因而称为溶度积常数。
简称溶度积。
室温时,氯化银的溶度积是1.56X1O10,写成K spAgCL=1.56X1O1°。
对于电离出2个或多个相同离子的难溶电解质,如氯化铅,氢氧化铁的溶度联系式中,各离子浓度应取其电离方程式中该离子的系数为指数。
例如2+ -PbCl2=Pk2 +2CLKspPbCL=[Pb|[CL-]Fe (OH) 3=F£+3OH3+ 3K spFe(OH) 3=[Fe ][OH-]二、溶度积规则某难溶电解质溶液中,离子浓度的乘积称为离子积,用符号Qi表示。
如氢氧化镁溶液的Qi=[Mg2+|[OH-]2。
Qi与Ksp的表达式相同。
但两者的概念是有区别的水sp是难溶电解质溶解平衡时,即饱和溶液中离子浓度的乘积。
对某种难溶电解质,在一定温度下Ksp为一常数。
而Qi表示任何情况下离子浓度的乘积,其数值不定。
Qi是Ksp的一个特例。
Qi与Ksp有下列3种情况:①Qi=Ksp时,沉淀溶解达到动态平衡,是饱和溶液;②Qi<Ksp时,无沉淀析出,是不饱和溶液;③Qi>Ksp时,有沉淀析出,是过饱和溶液。
以上称为溶度积规则。
但有时根据计算结果Qi>Ksp,应有沉淀析出,实际上,往往因为有过饱和现象或沉淀极少,肉眼观察不出沉淀。
配合物与沉淀溶解平衡实验报告实验目的:通过本次实验,我们旨在探究配合物与沉淀溶解平衡的相关知识,了解配合物的形成、溶解和沉淀溶解平衡的影响因素,以及实验方法和步骤。
实验原理:配合物是由中心离子和配体通过配位键结合而成的化合物,其形成、溶解和沉淀溶解平衡受到多种因素的影响,包括温度、浓度、PH值等。
在实验中,我们将通过添加不同的试剂,观察配合物的形成、溶解和沉淀溶解平衡的变化,从而加深对这些知识的理解。
实验步骤:1. 准备实验所需的试剂和设备,包括中心离子、配体、溶剂等。
2. 将一定量的中心离子溶解于溶剂中,形成中心离子的溶液。
3. 逐步加入配体试剂,观察是否形成配合物沉淀。
4. 如果形成了沉淀,尝试加入过量的配体试剂,观察沉淀是否溶解。
5. 记录实验过程中的观察结果和现象变化。
实验结果与分析:在本次实验中,我们观察到了配合物与沉淀溶解平衡的一些重要现象。
首先,当我们逐步加入配体试剂时,出现了沉淀的形成,这表明配合物已经形成。
随后,当我们加入过量的配体试剂时,观察到了沉淀的溶解现象,说明沉淀溶解平衡发生了变化。
这些实验结果说明了配合物与沉淀溶解平衡受到配体浓度的影响,当配体浓度增加时,沉淀溶解平衡向溶解方向移动。
这与我们实验原理中所述的影响因素是一致的。
另外,温度和PH值等因素也会对配合物与沉淀溶解平衡产生影响,这些可以作为进一步研究的方向。
实验结论:通过本次实验,我们深入了解了配合物与沉淀溶解平衡的相关知识,了解了配合物的形成、溶解和沉淀溶解平衡受到多种因素的影响。
实验结果表明,配体浓度的变化会影响沉淀溶解平衡的位置,这为我们进一步研究配合物的行为提供了重要的参考。
总而言之,本次实验为我们提供了深入了解配合物与沉淀溶解平衡的机会,我们将继续深入研究这一领域,以期更好地应用这些知识。
试验九配合物与沉淀——溶解平衡
一.实验目的:
1.加深理解配合物的组成和稳定性。
了解配合物形成时特征
2.加深理解沉淀—溶解平衡和溶度积的概念。
掌握溶度积规则及其应用
3.初步学习利用沉淀反应和配位溶解的方法,分离常见混合阳离子
4.学习电动离心机的使用和固—液分离操作
二.实验原理:
配合物石油形成体(又称为中心离子或原子)与一定数目的配位体(负离子或中性分子)。
以配位键结合而形成的一类复杂化合物,是路易斯(Lewis)酸和路易斯(Lewis)碱的加合物。
配合物的内层与外层之间以离子键结合,在水溶液中完全解离。
配位个体在水溶液中分步解离,其类似于弱电解质。
在一定条件下,中心离子。
配位个体和配位个体之间达到配位平衡。
例:
Cu2++ 4NH3——[Cu(NH3)4]2+
相应反应的标准平衡常数Kf Q。
成为配合物的稳定常数。
对于相同类型的配合物Kf Q数值愈大就愈稳定。
在水溶液中,配合物的生成反应。
主要有配位体的取代反应和加合反应
例:[Fe(SCN)n]3++ ===[FeF6]3-+ nScn-
HgI2(s) + 2I-==[HgI4]2-
配合物形成时,往往伴随溶液颜色、酸碱性(即PH)。
难溶电解质溶解度,中心离子氧化还原的改变等特征。
2.沉淀—溶解平衡
在含有难溶电解质晶体的饱和溶液中,难溶强电解质与溶液中相应离子间的多相离子平衡。
称为:沉淀—溶解平衡。
用通式表示如下;
AnBn(s) == mA n+(ag)+ nB m-(ag)
其溶度积常数为:
Ksp Q(A m B n)==[c(A n+)/c Q]m[c(B m-)/c Q]n
沉淀的生成和溶解。
可以根据溶度积规则判断:
J Q> Ksp Q有沉淀析出、平衡向右移动
J Q= Ksp Q 处于平衡状态、溶液为饱和溶液
J Q< Ksp Q无沉淀析出、或平衡向右移动,原来的沉淀溶解
溶液PH的改变,配合物的形成发生氧化还原反应。
往往会引起难溶电解质溶解度的改变。
对于相同类型的难溶电解质。
可以根据其Ksp Q的相对大小判断沉淀的先后顺序,对于不同类型的难溶电解质,则要根据计算所需测定试剂浓度的大小来判断测定的先后顺序。
两种测定间相互转换的难易程度,要根据沉淀转化反应的标准平衡常数确定。
利用测定反应和配位溶解。
可以分离溶液中心某些离子。
四.思考题
1.比较[FeCl4]-,[Fe(NCS)3-和[FeF6]3-稳定性。
2.比较[Ag(NH3)2]+,[Ag(S2O3)2]3-和[AgI]-的稳定性3.试计算0.1mo l·L-1Na2H2Y溶液的pH
4.如何正确地使用电动离心机?。