(物理)物理动量定理练习及解析
- 格式:doc
- 大小:437.00 KB
- 文档页数:8
【物理】物理动量定理练习题及答案一、高考物理精讲专题动量定理1.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
(g取10m/s2)【答案】1.5xl03N;方向向上【解析】【详解】设运动员从人处下落,刚触网的速度为匕=,2ghi=8m/s运动员反弹到达高度生,,网时速度为v2=q2gh2=10m/s在接触网的过程中,运动员受到向上的弹力F和向下的重力mg,设向上方向为正,由动量定理有(F-)得F=1.5xlO3N方向向上2. 一质量为0.5kg的小物块放在水平地面上的八点,距离八点5m的位置B处是一面墙,如图所示,物块以vo=9m/s的初速度从人点沿方向运动,在与墙壁碰撞前瞬间的速度为7m/s,碰后以6m/s的速度反向运动直至静止.g取10m/s2.为质点)放在的木板左端,物块与木板间的动摩擦因数〃=0.4。
质量m°=0.005kg的子弹以速度%=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取3B⑴求物块与地面间的动摩擦因数〃;(2)若碰撞时间为0.05s,求碰撞过程中墙面对物块平均作用力的大小F.【答案】(1)〃=0.32(2)F=130N【解析】试题分析:(1)对A到墙壁过程,运用动能定理得:代入数据解得:户032.(2)规定向左为正方向,对碰墙的过程运用动量定理得:Fat=mv—mv,代入数据解得:F=130N.3.如图所示,质量M=l.Okg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视10m/s2。
求:(1)物块的最大速度VI:(2)木板的最大速度(3)物块在木板上滑动的时间t%m【答案】(l)3m/s;(2)lm/s:(3)0.5s o【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:movo=(m+m。
(物理)物理动量定理练习题20篇及解析一、高考物理精讲专题动量定理1.如图所示,固定在竖直平面内的4光滑圆弧轨道AB与粗糙水平地面BC相切于B点。
质量m=0.1kg的滑块甲从最高点A由静止释放后沿轨道AB运动,最终停在水平地面上的C 点。
现将质量m=0.3kg的滑块乙静置于B点,仍将滑块甲从A点由静止释放结果甲在B点与乙碰撞后粘合在一起,最终停在D点。
已知B、C两点间的距离x=2m,甲、乙与地面间的动摩擦因数分别为=0.4、=0.2,取g=10m/s,两滑块均视为质点。
求:(1)圆弧轨道AB的半径R;(2)甲与乙碰撞后运动到D点的时间t【答案】(1) (2)【解析】【详解】(1)甲从B点运动到C点的过程中做匀速直线运动,有:v B2=2a1x1;根据牛顿第二定律可得:对甲从A点运动到B点的过程,根据机械能守恒:解得v B=4m/s;R=0.8m;(2)对甲乙碰撞过程,由动量守恒定律:;若甲与乙碰撞后运动到D点,由动量定理:解得t=0.4s2.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s【解析】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s3.一质量为m的小球,以初速度v0沿水平方向射出,恰好垂直地射到一倾角为30°的固定斜面上,并立即沿反方向弹回.已知反弹速度的大小是入射速度大小的34.求在碰撞过程中斜面对小球的冲量的大小.【答案】72mv0【解析】【详解】小球在碰撞斜面前做平抛运动,设刚要碰撞斜面时小球速度为v,由题意知v的方向与竖直线的夹角为30°,且水平分量仍为v0,由此得v=2v0.碰撞过程中,小球速度由v变为反向的34v,碰撞时间极短,可不计重力的冲量,由动量定理,设反弹速度的方向为正方向,则斜面对小球的冲量为I=m3()4v-m·(-v)解得I=72mv0.4.在距地面20m高处,某人以20m/s的速度水平抛出一质量为1kg的物体,不计空气阻力(g取10m/s2)。
高考物理动量定理及其解题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.蹦床运动是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0m 高处。
已知运动员与网接触的时间为1.2s ,若把这段时间内网对运动员的作用力当作恒力来处理,求此力的大小和方向。
(g 取10m/s 2) 【答案】1.5×103N ;方向向上 【解析】 【详解】设运动员从h 1处下落,刚触网的速度为1128m /s v gh =运动员反弹到达高度h 2,,网时速度为22210m /s v gh ==在接触网的过程中,运动员受到向上的弹力F 和向下的重力mg ,设向上方向为正,由动量定理有()21()F mg t mv mv -=--得F =1.5×103N方向向上3.如图所示,足够长的木板A 和物块C 置于同一光滑水平轨道上,物块B 置于A 的左端,A 、B 、C 的质量分别为m 、2m 和3m ,已知A 、B 一起以v 0的速度向右运动,滑块C 向左运动,A 、C 碰后连成一体,最终A 、B 、C 都静止,求:(i )C 与A 碰撞前的速度大小(ii )A 、C 碰撞过程中C 对A 到冲量的大小. 【答案】(1)C 与A 碰撞前的速度大小是v 0; (2)A 、C 碰撞过程中C 对A 的冲量的大小是32mv 0. 【解析】 【分析】 【详解】试题分析:①设C 与A 碰前速度大小为1v ,以A 碰前速度方向为正方向,对A 、B 、C 从碰前至最终都静止程由动量守恒定律得:01(2)3?0m m v mv -+= 解得:10v v =. ②设C 与A 碰后共同速度大小为2v ,对A 、C 在碰撞过程由动量守恒定律得:012 3(3)mv mv m m v =+-在A 、C 碰撞过程中对A 由动量定理得:20CA I mv mv =- 解得:032CA I mv =-即A 、C 碰过程中C 对A 的冲量大小为032mv . 方向为负.考点:动量守恒定律 【名师点睛】本题考查了求木板、木块速度问题,分析清楚运动过程、正确选择研究对象与运动过程是解题的前提与关键,应用动量守恒定律即可正确解题;解题时要注意正方向的选择.4.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F0时,安全气囊爆开.某次试验中,质量m1=1 600 kg的试验车以速度v1 = 36 km/h正面撞击固定试验台,经时间t1 = 0.10 s碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧5.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不分开,C的v-t图象如图乙所示.求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1(3)4—12s内墙壁对物块B的冲量大小I【答案】(1) 2kg (2) 27J (3) 36N s×【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg.(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J(3)取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·s6.如图所示,用0.5kg的铁睡把钉子钉进木头里去,打击时铁锤的速度v=4.0m/s,如果打击后铁锤的速度变为0,打击的作用时间是0.01s(取g=10m/s2),那么:(1)不计铁锤受的重力,铁锤钉钉子的平均作用力多大?(2)考虑铁锤的重力,铁锤钉钉子的平均作用力又是多大?【答案】(1)200N,方向竖直向下;(2)205N,方向竖直向下【解析】【详解】(1)不计铁锤受的重力时,设铁锤受到钉子竖直向上的平均作用力为1F,取铁锤的速度v的方向为正方向,以铁锤为研究对象,由动量定理得10F t mv-=-则10.5 4.0N200N0.01mvFt ⨯===由牛顿第三定律可知,铁锤钉钉子的平均作用力1F'的大小也为200N,方向竖直向下。
动量定理题型及例题讲解动量定理是物理学中的一个重要定理,它描述了力、质量和时间之间的关系。
动量定理指出,在一个惯性系中,外力的冲量等于物体动量的增量。
下面我将介绍动量定理的题型和例题讲解。
一、动量定理题型动量定理题型一般可分为以下三种:1. 动量守恒定律应用题动量守恒定律是指在一个系统内,若不存在外力作用,则系统的总动量保持不变。
在这类题型中,考生需要根据动量守恒定律,计算出系统的总动量,然后根据动量定理,求解外力对系统的作用。
2. 动量定理公式应用题在这类题型中,考生需要根据动量定理,计算出物体的动量增量,然后根据动量守恒定律,求解外力对物体的作用。
3. 碰撞问题应用题碰撞问题是物理学中的一个重要问题,它涉及到动量守恒定律和动量定理。
在这类题型中,考生需要根据动量守恒定律和动量定理,计算出碰撞前后物体的动量变化,然后根据碰撞原理,求解外力对物体的作用。
二、动量定理例题讲解下面我们来看几个动量定理的例题:1. 动量守恒定律应用题例题:一个质量为 2 千克的物体,以 5 米/秒的速度沿水平面滑行,如果在物体表面放置一个弹簧,求弹簧的弹力。
解析:根据动量守恒定律,由于物体的速度不变,系统的总动量守恒。
因此,外力的冲量等于物体的动量增量。
即:I = m * v其中,I 为外力的冲量,m 为物体的质量,v 为物体的速度。
根据题意,可知:I = m * v = 2 * 5 = 10 J因此,外力对物体的作用为:F = I / a = 10 / 1 = 10 N。
2. 动量定理公式应用题例题:一个质量为 2 千克的物体,以 5 米/秒的速度沿水平面滑行,如果在物体表面放置一个弹簧,求弹簧的弹力。
解析:根据动量定理,在外力作用期间,物体的动量增量为:p = m * v"其中,p 为物体的动量,m 为物体的质量,v"为物体的速度。
根据题意,可知:v" = v - at其中,a 为物体的水平加速度,t 为物体滑行的时间。
高二物理动量定理试题答案及解析1.如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以A.减小球的动量的变化量B.减小球对手作用力的冲量C.减小球的动量变化率D.延长接球过程的时间来减小动量的变化量【答案】C【解析】由动量定理,而接球时先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前为了延长时间,减小受力,即,也就是减小了球的动量变化率,故C正确。
【考点】动量定理2.在光滑的水平桌面上有等大的质量分别为M="0.6" kg,m="0.2" kg的两个小球,中间夹着一个被压缩的具有E="10.8" J弹性势能的轻弹簧(弹簧与两球不相连),原来处于静止状态.现突然p释放弹簧,球m脱离弹簧后滑向与水平面相切、半径为R="0.425" m的竖直放置的光滑半圆形轨道,如图所示.g取10 m/s2.则下列说法正确的是:A.球m从轨道底端A运动到顶端B的过程中所受合外力冲量大小为3.4 N·sB.M离开轻弹簧时获得的速度为9m/sC.若半圆轨道半径可调,则球m从B点飞出后落在水平桌面上的水平距离随轨道半径的增大而减小D.弹簧弹开过程,弹力对m的冲量大小为1.8 N·s【答案】AD【解析】据题意,由动量守恒定律可知:,即,又据能量守恒定律有:,求得,则弹簧对小球冲量为:,故选项B错误而选项D正确;球从A到B速度为:,计算得到:,则从A到B过程合外力冲量为:,故选项A正确;半径越大,飞行时间越长,而小球的速度越小,水平距离不一定越小,故选项C错误。
【考点】本题考查动量守恒定律、能量守恒定律和动量定理。
距离的B处放有一3.(10分). “┙”型滑板,(平面部分足够长),质量为4m,距滑板的A壁为L1质量为m,电量为+q的大小不计的小物体,小物体与板面的摩擦不计,整个装置处于场强为E的匀强电场中,初始时刻,滑板与小物体都静止,试求:(1)释放小物体,第一次与滑板A壁碰前小物体的速度v多大?1(2)若小物体与A壁碰后相对水平面的速度大小为碰前的,碰撞时间极短,则碰撞后滑板速度多大?(均指对地速度)(3)若滑板足够长,小物体从开始运动到第二次碰撞前,电场力做功为多大?【答案】(1) (2) (3)【解析】(1)对物体,根据动能定理,有,得′;滑板的速度为v,(2)物体与滑板碰撞前后动量守恒,设物体第一次与滑板碰后的速度为v1则.若,则,因为,不符合实际,故应取,则.(3)在物体第一次与A壁碰后到第二次与A壁碰前,物体做匀变速运动,滑板做匀速运动,在这段时间内,两者相对于水平面的位移相同.∴即.对整个过程运用动能定理得;电场力做功.【考点】考查动量守恒定律和动能定理在碰撞问题中的综合应用.4.一个小钢球竖直下落,落地时动量大小为0.5 kg·m/s,与地面碰撞后又以等大的动量被反弹。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1. 2022年将在我国举办第二十四届冬奥会, 跳台滑雪是其中最具观赏性的项目之一. 某滑道示意图如下, 长直助滑道AB 与弯曲滑道BC 平滑衔接, 滑道BC 高h=10 m, C 是半径R=20 m 圆弧的最低点, 质量m=60 kg 的运动员从A 处由静止开始匀加速下滑, 加速度a=4.5 m/s2, 到达B 点时速度vB=30 m/s. 取重力加速度g=10 m/s2.(1)求长直助滑道AB 的长度L ;(2)求运动员在AB 段所受合外力的冲量的I 大小;(3)若不计BC 段的阻力, 画出运动员经过C 点时的受力图, 并求其所受支持力FN 的大小.【答案】(1)100m (2)1800N s ⋅(3)3 900 N【解析】(1)已知AB 段的初末速度, 则利用运动学公式可以求解斜面的长度, 即2202v v aL -=可解得:2201002v v L m a-== (2)根据动量定理可知合外力的冲量等于动量的该变量所以01800B I mv N s =-=⋅(3)小球在最低点的受力如图所示由牛顿第二定律可得:从B 运动到C 由动能定理可知:221122C B mgh mv mv =- 解得;3900N N =故本题答案是: (1) (2) (3)点睛:本题考查了动能定理和圆周运动, 会利用动能定理求解最低点的速度, 并利用牛顿第二定律求解最低点受到的支持力大小.2. 图甲为光滑金属导轨制成的斜面, 导轨的间距为 , 左侧斜面的倾角 , 右侧斜面的中间用阻值为 的电阻连接。
在左侧斜面区域存在垂直斜面向下的匀强磁场, 磁感应强度大小为 , 右侧斜面轨道及其右侧区域中存在竖直向上的匀强磁场, 磁感应强度为 。
在斜面的顶端e 、f 两点分别用等长的轻质柔软细导线连接导体棒ab, 另一导体棒cd 置于左侧斜面轨道上, 与导轨垂直且接触良好, ab 棒和cd 棒的质量均为 , ab 棒的电阻为 , cd 棒的电阻为 。
动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
物理动量定理题20套(带答案)及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.质量0.2kg的球,从5.0m高处自由下落到水平钢板上又被竖直弹起,弹起后能达的最大高度为4.05m.如果球从开始下落到弹起达最大高度所用时间为1.95s,不考虑空气阻力,g取10m/s2.求小球对钢板的作用力.【答案】78N【解析】【详解】自由落体过程v12=2gh1,得v1=10m/s;v1=gt1得t1=1s小球弹起后达到最大高度过程0− v22=−2gh2,得v2=9m/s0-v2=-gt2得t2=0.9s小球与钢板作用过程设向上为正方向,由动量定理:Ft′-mg t′=mv2-(-mv1)其中t′=t-t1-t2=0.05s得F=78N由牛顿第三定律得F′=-F,所以小球对钢板的作用力大小为78N,方向竖直向下;3.如图所示,质量的小车A静止在光滑水平地面上,其上表面光滑,左端有一固定挡板。
高考物理动量守恒定律题20套(带答案)含解析一、高考物理精讲专题动量守恒定律1.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。
已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。
求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A 、B 、C ,三球的质量分别为m A =1kg 、m B =2kg 、m C =6kg ,初状态BC 球之间连着一根轻质弹簧并处于静止,B 、C 连线与杆垂直并且弹簧刚好处于原长状态,A 球以v 0=9m/s 的速度向左运动,与同一杆上的B 球发生完全非弹性碰撞(碰撞时间极短),求:(1)A 球与B 球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B 球的最小速度. 【答案】(1);(2);(3)零.【解析】试题分析:(1)A 、B 发生完全非弹性碰撞,根据动量守恒定律有:碰后A 、B 的共同速度损失的机械能(2)A 、B 、C 系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A 、B 在前,C 在后.此后C 向左加速,A 、B 的加速度沿杆向右,直到弹簧恢复原长,故A 、B 继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A 、B 的速度,C 的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数36μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1, 解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s4.如图所示,质量分别为m 1和m 2的两个小球在光滑水平面上分别以速度v 1、v 2同向运动,并发生对心碰撞,碰后m 2被右侧墙壁原速弹回,又与m 1碰撞,再一次碰撞后两球都静止.求第一次碰后m 1球速度的大小.【答案】【解析】设两个小球第一次碰后m 1和m 2速度的大小分别为和,由动量守恒定律得:(4分) 两个小球再一次碰撞,(4分)得:(4分)本题考查碰撞过程中动量守恒的应用,设小球碰撞后的速度,找到初末状态根据动量守恒的公式列式可得5.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m 、厚度为2d 的钢板静止在水平光滑桌面上.质量为m 的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d 、质量均为m 的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv20-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13(26v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解6.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L时与第二辆车相碰,两车以共同速度继续运动了距离L时与第三车相碰,三车以共同速度又运动了距离L时停止。
高中物理动量定理基础题(含答案)一、单选题1.如图所示,质量为m 的小滑块沿倾角为θ的粗糙斜面向上滑动,经过时间1t 速度为零然后下滑,经过时间2t 回到斜面底端,滑块在运动过程中受到的摩擦力大小始终恒定。
在整个过程中,重力对滑块的总冲量为( )A .()12sin mg t t θ+B .()12sin mg t t θ-C .()12mg t t +D .()12cos mg t t θ+2.人从高处跳到地面,为了安全,一般都是让脚尖先着地,接着让整个脚底着地,并让人下蹲,这样做是为了( )A .减小人受到的冲量B .增大人受到的冲量C .延长与地面的作用时间,从而减小人受到的作用力D .延长与地面的作用时间,从而减小人动量的变化3.“守株持兔"是众所周知的寓言故事.假设兔子质量为3kg ,以10m /s 的速度奔跑,撞树后几乎不反弹、作用时间约为0.02s ,则兔子受到的平均撞击力大小为( ) A .1.5N B .15N C .150N D .1500N 4.如图,质量2kg m =的木块放在水平地面上,与地面间的动摩擦因数0.2μ=,木块在5N F =的水平恒力作用下由静止开始向右运动了10s ,210m/s =g ,在这10s 内,下列说法正确的是( )A .重力的冲量为0B .摩擦力的冲量为40N s -⋅C .物体动量的变化为20kg m/s ⋅D .合外力的冲量为50N·s5.如图,一物体静止在水平地面上,受到与水平方向成θ角的恒定拉力F 作用时间t 后,物体仍保持静止。
以下说法中正确的是( )A .物体的动量变化量为FtB .物体所受重力的冲量大小为0C .物体所受摩擦力的冲量大小为cos Ft θD .物体所受拉力F 的冲量大小是cos Ft θ二、多选题6.质量为1kg 的物块在水平力F 的作用下由静止开始在水平地面上做直线运动,F 与时间t 的关系如图所示。
高考物理考点《动量守恒定律》真题练习含答案1.[2024·全国甲卷](多选)蹦床运动中,体重为60 kg的运动员在t=0时刚好落到蹦床上,对蹦床作用力大小F与时间t的关系如图所示.假设运动过程中运动员身体始终保持竖直,在其不与蹦床接触时蹦床水平.忽略空气阻力,重力加速度大小取10 m/s2.下列说法正确的是()A.t=0.15 s时,运动员的重力势能最大B.t=0.30 s时,运动员的速度大小为10 m/sC.t=1.00 s时,运动员恰好运动到最大高度处D.运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N答案:BD解析:根据牛顿第三定律结合题图可知,t=0.15 s时,蹦床对运动员的弹力最大,蹦床的形变量最大,此时运动员处于最低点,运动员的重力势能最小,故A错误;根据题图可知运动员从t=0.30 s离开蹦床到t=2.3 s再次落到蹦床上经历的时间为2 s,根据竖直上抛运动的对称性可知,运动员上升时间为1 s,则在t=1.3 s时,运动员恰好运动到最大高度处,t=0.30 s时运动员的速度大小v=10×1 m/s=10 m/s,故B正确,C错误;同理可知运动员落到蹦床时的速度大小为10 m/s,以竖直向上为正方向,根据动量定理F·Δt-mg·Δt=mv-(-mv),其中Δt=0.3 s,代入数据可得F=4 600 N,根据牛顿第三定律可知运动员每次与蹦床接触到离开过程中对蹦床的平均作用力大小为4 600 N,故D正确.故选BD.2.[2022·山东卷]我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭.如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空.从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量答案:A解析:从火箭开始运动到点火的过程中,火箭先加速运动后减速运动,当加速度为零时,动能最大,A项正确;高压气体释放的能量转化为火箭的动能和重力势能及火箭与空气间因摩擦产生的热量,B项错误;根据动量定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f的冲量矢量和等于火箭动量的变化量,C项错误;根据动能定理可得高压气体对火箭的推力F、火箭自身的重力mg和空气阻力f对火箭做的功之和等于火箭动能的变化量,D项错误.3.[2022·湖南卷]1932年,查德威克用未知射线轰击氢核,发现这种射线是由质量与质子大致相等的中性粒子(即中子)组成.如图,中子以速度v0分别碰撞静止的氢核和氮核,碰撞后氢核和氮核的速度分别为v1和v2.设碰撞为弹性正碰,不考虑相对论效应,下列说法正确的是()A.碰撞后氮核的动量比氢核的小B.碰撞后氮核的动能比氢核的小C.v2大于v1D.v2大于v0答案:B解析:设中子质量为m0,被碰粒子质量为m,碰后中子速度为v′0,被碰粒子速度为v,二者发生弹性正碰,由动量守恒定律和能量守恒定律有m 0v 0=m 0v ′0+m v ,12 m 0v 20 =12m 0v ′20 +12 m v 2,解得v ′0=m 0-m m 0+m v 0,v =2m 0m 0+mv 0,因为当被碰粒子分别为氢核(m 0)和氮核(14m 0)时,有v 1=v 0,v 2=215 v 0,故C 、D 项错误;碰撞后氮核的动量为p 氮=14m 0·v 2=2815m 0v 0,氢核的动量为p 氢=m 0·v 1=m 0v 0,p 氮>p 氢,故A 错误;碰撞后氮核的动能为E k 氮=12·14m 0v 22 =28225 m 0v 20 ,氢核的动能为E k 氢=12 ·m 0·v 21 =12m 0v 20 ,E k 氮<E k 氢,故B 正确. 4.[2021·全国乙卷]如图,光滑水平地面上有一小车,一轻弹簧的一端与车厢的挡板相连,另一端与滑块相连,滑块与车厢的水平底板间有摩擦.用力向右推动车厢使弹簧压缩,撤去推力时滑块在车厢底板上有相对滑动.在地面参考系(可视为惯性系)中,从撤去推力开始,小车、弹簧和滑块组成的系统( )A .动量守恒,机械能守恒B .动量守恒,机械能不守恒C .动量不守恒,机械能守恒D .动量不守恒,机械能不守恒答案:B解析:撤去推力后,小车、弹簧和滑块组成的系统所受合外力为零,满足系统动量守恒的条件,故系统动量守恒;由于撤去推力时滑块在车厢底板上有相对滑动,存在摩擦力做功的情况,故系统机械能不守恒,所以选项B 正确.5.[2023·新课标卷](多选)使甲、乙两条形磁铁隔开一段距离,静止于水平桌面上,甲的N 极正对着乙的S 极,甲的质量大于乙的质量,两者与桌面之间的动摩擦因数相等.现同时释放甲和乙,在它们相互接近过程中的任一时刻( )A .甲的速度大小比乙的大B .甲的动量大小比乙的小C .甲的动量大小与乙的相等D .甲和乙的动量之和不为零答案:BD解析:对甲、乙两条形磁铁分别做受力分析,如图所示对于整个系统,由于μm 甲g >μm 乙g ,合力方向向左,合冲量方向向左,所以合动量方向向左,甲的动量大小比乙的小,m 甲v 甲<m 乙v 乙,又m 甲>m 乙,故v 甲<v 乙,B 、D 正确,A 、C 错误.故选BD.6.[2021·全国乙卷](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12m v 20 B .在此过程中F 的冲量大小等于32m v 0 C .物体与桌面间的动摩擦因数等于v 20 4s 0gD .F 的大小等于物体所受滑动摩擦力大小的2倍答案:BC解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F 做的功为W F =Fs 0=12m v 20 +μmgs 0,选项A 错误;物体通过路程s 0时,速度大小为v 0,撤去F 后,由牛顿第二定律有μmg =ma 2,根据匀变速直线运动规律有v 20 =2a 2·2s 0,联立解得μ=v 20 4s 0g ,选项C 正确;水平桌面上质量为m 的物体在恒力F 作用下从静止开始做匀加速直线运动,有F -μmg =ma 1,又v 20 =2a 1s 0,可得a 1=2a 2,可得F =3μmg ,即F 的大小等于物体所受滑动摩擦力大小的3倍,选项D 错误;对F 作用下物体运动的过程,由动量定理有Ft -μmgt=m v 0,联立解得F 的冲量大小为I F =Ft =32m v 0,选项B 正确.。
(物理)物理动量定理专项习题及答案解析及解析一、高考物理精讲专题动量定理1.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg。
用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙壁相接触。
另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,C的v-t图象如图乙所示。
求:(1)C的质量m C;(2)t=8s时弹簧具有的弹性势能E p1,4~12s内墙壁对物块B的冲量大小I;(3)B离开墙后的运动过程中弹簧具有的最大弹性势能E p2。
【答案】(1)2kg ;(2)27J,36N·S;(3)9J【解析】【详解】(1)由题图乙知,C与A碰前速度为v1=9m/s,碰后速度大小为v2=3m/s,C与A碰撞过程动量守恒m C v1=(m A+m C)v2解得C的质量m C=2kg。
(2)t=8s时弹簧具有的弹性势能E p1=12(m A+m C)v22=27J取水平向左为正方向,根据动量定理,4~12s内墙壁对物块B的冲量大小I=(m A+m C)v3-(m A+m C)(-v2)=36N·S(3)由题图可知,12s时B离开墙壁,此时A、C的速度大小v3=3m/s,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v41 2(m A+m C)23v=12(m A+m B+m C)24v+E p2解得B离开墙后的运动过程中弹簧具有的最大弹性势能E p2=9J。
2.半径均为52mR=的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R,让质量为1kg的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s⋅,重力加速度g取210m/s,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
高考物理《动量和动量定理》真题练习含答案1.[2024·江苏省徐州市期中考试]两个具有相同动能的物体A 、B ,质量分别为m A 、m B ,且m A >m B ,比较它们的动量,则( ) A .物体B 的动量较大 B .物体A 的动量较大 C .动量大小相等 D .不能确定 答案:B解析:根据动能的表达式E k =12 m v 2,动量的表达式p =m v ,联立可得p =2mE k ,物体A 、B 动能E k 相同,m A >m B ,则p A >p B ,即物体A 的动量较大,B 正确.2.[2024·河北省唐山市十县一中联盟联考]质量为0.5 kg 的金属小球,从距水平地面3.2 m 的高处以6 m/s 的速度水平抛出,g 取10 m/s 2,小球落地的运动过程中( ) A .物体的初动量大小16 kg·m/s B .物体的末动量大小19 kg·m/s C .重力的冲量大小2 N·s D .重力的冲量大小4 N·s 答案:D解析:物体的初动量大小p 1=m v 0=0.5×6 kg·m/s =3 kg·m/s ,A 错误;竖直方向小球做自由落体运动,则v 2y =2gh ,小球落地时竖直方向的分速度v y =2gh =2×10×3.2 m/s =8 m/s ,小球落地时的合速度v =v 20 +v 2y =62+82 m/s =10 m/s ,物体的末动量大小p 2=m v =0.5×10 kg·m/s =5 kg·m/s ,B 错误;由h =12gt 2得t =2hg= 2×3.210s =0.8 s ,重力的冲量大小I =mgt =0.5×10×0.8 N·s =4 N·s ,C 错误,D 正确.3.[2024·湖南省名校联合体联考]如图,某物体在恒定拉力F 的作用下没有运动,经过时间t 后,则( )A .拉力的冲量为0B .合力的冲量为0C .重力的冲量为0D .拉力的冲量为Ft cos θ 答案:B解析:拉力的冲量为Ft,重力的冲量为mgt,物体处于静止状态,根据动量定理可知合力的冲量为0,B正确.4.[2024·江苏省无锡市教学质量调研]一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒击打后,反向水平飞回,速度大小为45 m/s,以垒球初速度的方向为正方向,则垒球被棒击打前后动量变化量为()A.+3.6 kg·m/s B.-3.6 kg·m/sC.+12.6 kg·m/s D.-12.6 kg·m/s答案:D解析:初动量为p1=m v1=0.18×25 kg·m/s=4.5 kg·m/s,击打后动量为p2=m v2=0.18×(-45)kg·m/s=-8.1 kg·m/s,动量变化为Δp=p2-p1=-12.6 kg·m/s,D正确.5.[2024·江苏省连云港市期中考试]如图所示,将一杯水放在桌边,杯下压一张纸条.若缓慢抽出纸条,杯子会滑落;若快速抽出纸条时,杯子并没有滑落.对于该实验,下列说法正确的是()A.缓慢抽出时,杯子获得的动量较小B.快速抽出时,杯子获得的动量较大C.缓慢抽出过程中,摩擦力对杯子的冲量较大D.快速抽出过程中,摩擦力对杯子的冲量较大答案:C解析:根据题意可知,无论缓慢抽出还是快速抽出,纸条和杯子间的摩擦力不变,缓慢抽出时间长,由公式I=ft可知,缓慢抽出过程中,摩擦力对杯子的冲量较大,由动量定理可知,缓慢抽出时,杯子获得的动量较大,C正确.6.[2024·广东省江门市一模](多选)数据表明,在电动车事故中,佩戴头盔可防止85%的头部受伤,大大减小损伤程度.头盔内部的缓冲层与头部的撞击时间延长至6 ms 以上,人头部的质量约为2 kg ,则下列说法正确的是( )A.头盔减小了驾驶员头部撞击过程中的动量变化率 B .头盔减少了驾驶员头部撞击过程中撞击力的冲量C .事故中头盔对头部的冲量与头部对头盔的冲量大小相等D .若事故中头部以6 m/s 的速度水平撞击缓冲层,则头部受到的撞击力最多为2 000 N 答案:ACD解析:根据F ·Δt =Δp 得F =ΔpΔt,头盔内部的缓冲层与头部的撞击时间延长了,头盔减小了驾驶员头部撞击过程中的动量变化率,A 正确;同理,可知头盔并没有减少驾驶员头部撞击过程中撞击力的冲量,B 错误;根据I =F ·Δt ,头盔对头部的作用力与头部对头盔的作用力等大反向,作用时间相同,所以事故中头盔对头部的冲量与头部对头盔的冲量大小相等,C 正确;撞击力F =2×66×10-3 N =2 000 N ,事故中头部以6 m/s 的速度水平撞击缓冲层,则头部受到的撞击力最多为2 000 N ,D 正确.7.[2024·安徽省部分学校一模]如图,在光滑的水平桌面上,质量为m 的小球在轻绳的作用下,绕O 点以速率v 做匀速圆周运动.已知轻绳长为l .对小球由A 转过90°到B 的过程,下列说法正确的是( )A .小球重力冲量大小为0B .绳子拉力冲量大小为πm v2C .小球动量的变化量大小为0D .小球动量的变化率大小为m v 2l答案:D解析:小球由A 转到B 的过程,所需时间为t =14×2πl v =πl2v ,小球重力冲量大小为I G=mgt =mg πl2v ,A 错误;小球动量的变化量大小Δp =m Δv =2 m v ,C 错误;由动量定理可得I F =Δp =2 m v ,B 错误;根据F ·Δt =Δp 可知小球动量的变化率大小为F =ΔpΔt,又F=m v 2l ,联立解得Δp Δt =m v 2l,D 正确.8.[2024·江苏省苏州市期中考试]如图所示,一大型气球初始时悬停在空中,喷气口被绳系着,某时刻系在喷气口的绳子突然松开,内部气体竖直向下喷出,由于反冲作用气球开始向上运动.已知内部气体的密度为ρ,气球连同内部气体最初的质量为m ,喷气口的横截面积为S ,绳子松开瞬间喷出气体的速度为v ,重力加速度为g ,不计空气阻力,则绳子松开瞬间气球的加速度大小为( )A .ρS v 2mB .ρS v 2m -gC .ρS v 2m +gD .ρS v m答案:B解析:取极短时间Δt 内喷出的气体为研究对象,根据动量定理得F Δt =(ρv ΔtS )v -0,解得F =ρv 2S ,根据牛顿第三定律知气体对气球的作用力大小为ρv 2S ,方向竖直向上.对气球,根据牛顿第二定律得ρv 2S -mg =ma ,解得a =ρS v 2m-g ,B 正确.9.[2024·河北省沧州市月考]在光滑水平面上,一质量为4 kg 的滑块以1 m/s 的速率沿x 轴负方向运动,某时刻开始给滑块施加作用力F ,F 随时间变化的图像如图所示,其中4~8 s 和8~12 s 的两段曲线关于点(8,0)中心对称.规定力F 沿x 轴正方向时为正,滑块在12 s 末的速度大小为( )A .3 m/sB .4 m/sC .5 m/sD .6 m/s 答案:B解析:由图像围成的面积物理意义为F 的冲量即合外力的冲量,根据动量定理得I 0~4=I 0~12=m v -m v 0,解得v =m v 0+I 0~4m =-4+5×44m/s =4 m/s ,B 正确. 10.东京奥运会女子蹦床决赛,整套动作完美发挥的朱雪莹,以56.635分夺得金牌,帮助中国蹦床队时隔13年重获该项目冠军.队友刘灵玲收获一枚银牌.已知朱雪莹的体重为45 kg ,在比赛中,朱雪莹从离水平网面3.2 m 高处自由下落,着网后沿竖直方向蹦回离水平网面5.0 m 高处.已知朱雪莹与网接触的时间为0.15 s ,g 取10 m/s 2,求:(1)朱雪莹下落接触网面前瞬间的速率v 1和上升离开网面瞬间的速率v 2; (2)网面对朱雪莹的平均作用力F 的大小. 答案:(1)8 m/s ,10 m/s (2)5 850 N 解析:(1)运动员下落接触网面前瞬间的速度大小为 v 1=2gh 1 =2×10×3.2 m/s =8 m/s 运动员上升离开网面瞬间的速度大小为 v 2=2gh 2 =2×10×5.0 m/s =10 m/s(2)取竖直向上为正方向,运动员和网接触过程中,由动量定理知(F -mg )t =m v 2-m (-v 1)可解得F =m v 2-m (-v 1)t+mg=45×10-45×(-8)0.15N +45×10 N =5 850 N11.小明家里有一个喷泉,喷泉竖直喷出的水柱和小明一样高,小明身高1.8 m ,喷管的面积为S =10 cm 2,当小明把一个玩具放在水柱上时,玩具能稳定地悬停在空中,玩具底面相对于喷口的高度为1 m ,玩具底部为平板(面积略大于喷泉横截面积),水柱冲击到玩具底板后,在竖直方向水的速度变为零,在水平方向朝四周均匀散开,水的密度为ρ=103 kg/m 3,不考虑空气阻力,g 取10 m/s 2.求:(1)喷泉喷水的初速度大小;(2)用于喷泉喷水的电动机的输出功率; (3)玩具的质量.答案:(1)6 m/s (2)108 W (3)1.6 kg解析:(1)设喷泉的初速度为v 0,则有v 20 =2gH解得v 0=6 m/s(2)设在喷水口处很短Δt 时间内喷出水的质量为Δm ,则Δm=ρ·v0·S·ΔtΔt时间内电动机做功PΔt=12Δm v2解得P=108 W(3)设水柱冲击玩具的速度为v,则有v2-v20=-2gh解得v=4 m/s很短Δt′时间内,冲击玩具水柱的质量Δm′=ρ·v·S·Δt′对该部分水柱由动量定理得(F+Δm′g)·Δt′=Δm′·v由于Δt′很小,Δm′gΔt′也很小,可以忽略,则F·Δt′=Δm′·v 又因为玩具能稳定地悬停在空中,有F=Mg解得M=1.6 kg.。
高中物理动量定理及其解题技巧及练习题(含答案)一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.汽车碰撞试验是综合评价汽车安全性能的有效方法之一.设汽车在碰撞过程中受到的平均撞击力达到某个临界值F 0时,安全气囊爆开.某次试验中,质量m 1=1 600 kg 的试验车以速度v 1 = 36 km/h 正面撞击固定试验台,经时间t 1 = 0.10 s 碰撞结束,车速减为零,此次碰撞安全气囊恰好爆开.忽略撞击过程中地面阻力的影响.(1)求此过程中试验车受到试验台的冲量I0的大小及F0的大小;(2)若试验车以速度v1撞击正前方另一质量m2 =1 600 kg、速度v2 =18 km/h同向行驶的汽车,经时间t2 =0.16 s两车以相同的速度一起滑行.试通过计算分析这种情况下试验车的安全气囊是否会爆开.【答案】(1)I0 = 1.6×104 N·s ,1.6×105 N;(2)见解析【解析】【详解】(1)v1 = 36 km/h = 10 m/s,取速度v1 的方向为正方向,由动量定理有-I0 =0-m1v1 ①将已知数据代入①式得I0 = 1.6×104 N·s ②由冲量定义有I0 = F0t1 ③将已知数据代入③式得F0 = 1.6×105 N ④(2)设试验车和汽车碰撞后获得共同速度v,由动量守恒定律有m1v1+ m2v2 = (m1+ m2)v⑤对试验车,由动量定理有-Ft2 = m1v-m1v1 ⑥将已知数据代入⑤⑥式得F= 2.5×104 N ⑦可见F<F0,故试验车的安全气囊不会爆开⑧3.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m=1.0kg、可视为质点的物体,以v0=6.0m/s的初速度沿斜面上滑。
【物理】 物理动量守恒定律专题练习(及答案)及解析一、高考物理精讲专题动量守恒定律1.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑14圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。
一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。
已知小物块质量m =1kg ,取g =10m/s 2。
求:(1)小物块与小车BC 部分间的动摩擦因数;(2)小物块从A 滑到C 的过程中,小车获得的最大速度。
【答案】(1)0.5(2)1m/s【解析】【详解】解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0由能量守恒得: mgR mgL μ=解得:0.5R Lμ== (2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv =由能量守恒得 :22121122mgR mv Mv =+ 联立解得: 21/ v m s =2.如图所示,一个带圆弧轨道的平台固定在水平地面上,光滑圆弧MN 的半径为R =3.2m ,水平部分NP 长L =3.5m ,物体B 静止在足够长的平板小车C 上,B 与小车的接触面光滑,小车的左端紧贴平台的右端.从M 点由静止释放的物体A 滑至轨道最右端P 点后再滑上小车,物体A 滑上小车后若与物体B 相碰必粘在一起,它们间无竖直作用力.A 与平台水平轨道和小车上表面的动摩擦因数都为0.4,且最大静摩擦力与滑动摩擦力大小相等.物体A 、B 和小车C 的质量均为1kg ,取g =10m/s 2.求(1)物体A 进入N 点前瞬间对轨道的压力大小?(2)物体A 在NP 上运动的时间?(3)物体A 最终离小车左端的距离为多少?【答案】(1)物体A 进入N 点前瞬间对轨道的压力大小为30N ;(2)物体A 在NP 上运动的时间为0.5s(3)物体A 最终离小车左端的距离为3316m 【解析】 试题分析:(1)物体A 由M 到N 过程中,由动能定理得:m A gR=m A v N 2在N 点,由牛顿定律得 F N -m A g=m A联立解得F N =3m A g=30N由牛顿第三定律得,物体A 进入轨道前瞬间对轨道压力大小为:F N ′=3m A g=30N(2)物体A 在平台上运动过程中μm A g=m A aL=v N t-at 2代入数据解得 t=0.5s t=3.5s(不合题意,舍去)(3)物体A 刚滑上小车时速度 v 1= v N -at=6m/s从物体A 滑上小车到相对小车静止过程中,小车、物体A 组成系统动量守恒,而物体B 保持静止(m A + m C )v 2= m A v 1小车最终速度 v 2=3m/s此过程中A 相对小车的位移为L 1,则 2211211222mgL mv mv μ=-⨯解得:L 1=94m物体A 与小车匀速运动直到A 碰到物体B ,A ,B 相互作用的过程中动量守恒: (m A + m B )v 3= m A v 2此后A ,B 组成的系统与小车发生相互作用,动量守恒,且达到共同速度v 4(m A + m B )v 3+m C v 2=" (m"A +m B +m C ) v 4此过程中A 相对小车的位移大小为L 2,则 222223*********mgL mv mv mv μ=+⨯-⨯解得:L 2=316m 物体A 最终离小车左端的距离为x=L 1-L 2=3316m 考点:牛顿第二定律;动量守恒定律;能量守恒定律.3.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块并留在其中,与木块用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧被压缩瞬间的速度,木块、的质量均为.求:•子弹射入木块时的速度;‚弹簧被压缩到最短时弹簧的弹性势能.【答案】22()(2)Mm aM m M m++b【解析】试题分析:(1)普朗克为了对于当时经典物理无法解释的“紫外灾难”进行解释,第一次提出了能量量子化理论,A正确;爱因斯坦通过光电效应现象,提出了光子说,B正确;卢瑟福通过对粒子散射实验的研究,提出了原子的核式结构模型,故正确;贝克勒尔通过对天然放射性的研究,发现原子核有复杂的结构,但没有发现质子和中子,D错;德布罗意大胆提出假设,认为实物粒子也具有波动性,E错.(2)1以子弹与木块A组成的系统为研究对象,以子弹的初速度方向为正方向,由动量守恒定律得:解得:.2弹簧压缩最短时,两木块速度相等,以两木块与子弹组成的系统为研究对象,以木块的初速度方向为正方向,由动量守恒定律得:解得:由机械能守恒定律可知:.考点:本题考查了物理学史和动量守恒定律4.如图所示,在光滑的水平面上放置一个质量为2m的木板B,B的左端放置一个质量为m的物块A,已知A、B之间的动摩擦因数为μ,现有质量为m的小球以水平速度0υ飞来与A物块碰撞后立即粘住,在整个运动过程中物块A始终未滑离木板B,且物块A和小球均可视为质点(重力加速度g).求:①物块A相对B静止后的速度大小;②木板B至少多长.【答案】①0.25v0.②216v Lgμ=【解析】试题分析:(1)设小球和物体A碰撞后二者的速度为v1,三者相对静止后速度为v2,规定向右为正方向,根据动量守恒得,mv0=2mv1,① (2分)2mv1=4mv2② (2分)联立①②得,v2=0.25v0.(1分)(2)当A 在木板B 上滑动时,系统的动能转化为摩擦热,设木板B 的长度为L ,假设A 刚好滑到B 的右端时共速,则由能量守恒得,③ (2分)联立①②③得,L=考点:动量守恒,能量守恒.【名师点睛】小球与 A 碰撞过程中动量守恒,三者组成的系统动量也守恒,结合动量守恒定律求出物块A 相对B 静止后的速度大小;对子弹和A 共速后到三种共速的过程,运用能量守恒定律求出木板的至少长度.5.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】02Mv m nv =【解析】试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mv v v M=- 车上的人第二次将小球抛出,由动量守恒:Mv 1-mv=Mv 2+mv 得:2022mv v v M=-⋅ 同理,车上的人第n 次将小球抛出后,有02n mv v v n M =-⋅由题意v n =0, 得:02Mv m nv= 考点:动量守恒定律6.匀强电场的方向沿x 轴正向,电场强度E 随x 的分布如图所示.图中E 0和d 均为已知量.将带正电的质点A 在O 点由能止释放.A 离开电场足够远后,再将另一带正电的质点B 放在O 点也由静止释放,当B 在电场中运动时,A 、B 间的相互作用力及相互作用能均为零;B 离开电场后,A 、B 间的相作用视为静电作用.已知A 的电荷量为Q ,A 和B 的质量分别为m和.不计重力.(1)求A在电场中的运动时间t,(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m【答案】(1)(2)145QE0d (3)Q【解析】【分析】【详解】解:(1)由牛顿第二定律得,A在电场中的加速度 a ==A在电场中做匀变速直线运动,由d =a得运动时间 t ==(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得QE0d =mqE0d =A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,由动量守恒定律得:(m +)v,= mv A0 +v B0由能量守恒定律得:E Pm= (m+)—)且 q =Q解得相互作用能的最大值 E Pm=145QE0d(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用根据动量守恒定律得:mv A+v B= mv A0 +v B0根据能量守恒定律得:m+=m+解得:v B = -+因为B不改变运动方向,所以v B = -+≥0解得:q≤Q则B所带电荷量的最大值为:q m =Q7.装甲车和战舰采用多层钢板比采用同样质量的单层钢板更能抵御穿甲弹的射击.通过对一下简化模型的计算可以粗略说明其原因.质量为2m、厚度为2d的钢板静止在水平光滑桌面上.质量为m的子弹以某一速度垂直射向该钢板,刚好能将钢板射穿.现把钢板分成厚度均为d、质量均为m的相同两块,间隔一段距离水平放置,如图所示.若子弹以相同的速度垂直射向第一块钢板,穿出后再射向第二块钢板,求子弹射入第二块钢板的深度.设子弹在钢板中受到的阻力为恒力,且两块钢板不会发生碰撞不计重力影响.【答案】【解析】设子弹初速度为v0,射入厚度为2d的钢板后,由动量守恒得:mv0=(2m+m)V(2分)此过程中动能损失为:ΔE损=f·2d=12mv20-12×3mV2(2分)解得ΔE=13mv20分成两块钢板后,设子弹穿过第一块钢板时两者的速度分别为v1和V1:mv1+mV1=mv0(2分)因为子弹在射穿第一块钢板的动能损失为ΔE损1=f·d=mv2(1分),由能量守恒得:1 2mv21+12mV21=12mv2-ΔE损1(2分)且考虑到v1必须大于V1,解得:v1=13 () 26+v0设子弹射入第二块钢板并留在其中后两者的共同速度为V2,由动量守恒得:2mV2=mv1(1分)损失的动能为:ΔE′=12mv21-12×2mV22(2分)联立解得:ΔE′=13(1)2+×mv20因为ΔE′=f·x(1分),可解得射入第二钢板的深度x为:(2分)子弹打木块系统能量损失完全转化为了热量,相互作用力乘以相对位移为产生的热量,以系统为研究对象由能量守恒列式求解8.如图所示,甲、乙两船的总质量(包括船、人和货物)分别为10m、12m,两船沿同一直线、同一方向运动,速度分别为2v0、v0.为避免两船相撞,乙船上的人将一质量为m 的货物沿水平方向抛向甲船,甲船上的人将货物接住,求抛出货物的最小速度.(不计水的阻力)【答案】04v【解析】【分析】在抛货物的过程中,乙船与货物组成的动量守恒,在接货物的过程中,甲船与货物组成的系统动量守恒,在甲接住货物后,甲船的速度小于等于乙船速度,则两船不会相撞,应用动量守恒定律可以解题.【详解】设抛出货物的速度为v,以向右为正方向,由动量守恒定律得:乙船与货物:12mv 0=11mv 1-mv ,甲船与货物:10m×2v 0-mv=11mv 2,两船不相撞的条件是:v 2≤v 1,解得:v≥4v 0,则最小速度为4v 0.【点睛】本题关键是知道两船避免碰撞的临界条件是速度相等,应用动量守恒即可正确解题,解题时注意研究对象的选择以及正方向的选择.9.如图,一质量为M 的物块静止在桌面边缘,桌面离水平地面的高度为h.一质量为m 的子弹以水平速度v 0射入物块后,以水平速度v 0/2 射出.重力加速度为g.求:(1)此过程中系统损失的机械能;(2)此后物块落地点离桌面边缘的水平距离.【答案】(1)20138m E mv M ⎛⎫∆=- ⎪⎝⎭ (2)02mv h s M g= 【解析】【分析】【详解】 试题分析:(1)设子弹穿过物块后物块的速度为V ,由动量守恒得mv 0=m+MV ①解得②系统的机械能损失为ΔE =③ 由②③式得ΔE =④ (2)设物块下落到地面所需时间为t ,落地点距桌面边缘的水平距离为s ,则⑤s=Vt ⑥由②⑤⑥得S =⑦考点:动量守恒定律;机械能守恒定律.点评:本题采用程序法按时间顺序进行分析处理,是动量守恒定律与平抛运动简单的综合,比较容易.10.一个静止的铀核23292U (原子质量为232.0372u )放出一个α粒子(原子质量为4.0026u )后衰变成钍核22890Th (原子质量为228.0287 u ).(已知:原子质量单位271u 1.6710kg -=⨯,1u 相当于931MeV )(1)写出核衰变反应方程;(2)算出该核衰变反应中释放出的核能;(3)假设反应中释放出的核能全部转化为钍核和α粒子的动能,则钍核获得的动能有多大?【答案】(1)232228492902U Th+He → (2)5.49MeV (3)0.095MeV 【解析】【详解】(1)232228492902U Th+He →(2)质量亏损U αTh 0.0059u m m m m ∆=--=△E =△mc 2=0.0059×931MeV=5.49MeV(3)系统动量守恒,钍核和α粒子的动量大小相等,即Th αp p =2Th kTh Th2p E m = 2αk αα2p E m = kTh k αE E E +=∆ 所以钍核获得的动能kTh αTh α40.095MeV 4228m E E E m m =⨯∆=⨯∆=++11.如图所示,光滑固定斜面的倾角Θ=30°,一轻质弹簧一端固定,另一端与质量M=3kg 的物体B 相连,初始时B 静止.质量m=1kg 的A 物体在斜面上距B 物体处s1=10cm 静止释放,A 物体下滑过程中与B 发生碰撞,碰撞时间极短,碰撞后与B 粘在一起,已知碰后整体经t=0.2s 下滑s2=5cm 至最低点. 弹簧始终处于弹性限度内,A 、B 可视为质点,g 取10m/s 2.(1)从碰后到最低点的过程中,求弹簧最大的弹性势能;(2)碰后至返回到碰撞点的过程中,求弹簧对物体B 的冲量大小.【答案】(1)1.125J ;(2)10Ns【解析】【分析】(1)A 物体下滑过程,A 物体机械能守恒,求得A 与B 碰前的速度;A 与B 碰撞是完全非弹性碰撞,A 、B 组成系统动量守恒,求得碰后AB 的共同速度;从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得从碰后到最低点的过程中弹性势能的增加量.(2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度;对AB 从碰后至返回到碰撞点的过程应用动量定理,可得此过程中弹簧对物体B 冲量的大小.【详解】(1)A 物体下滑过程,A 物体机械能守恒,则:02101302mgS sin mv = 解得:0012302100.10.51m m v gS sin s s==⨯⨯⨯= A 与B 碰撞是完全非弹性碰撞,据动量守恒定律得:01()mv m M v =+解得:10.25m v s= 从碰后到最低点的过程中,A 、B 和弹簧组成的系统机械能守恒,则:20121()()302PT E m M v m M gS sin =+++增 解得: 1.125PT E J =增(2)从碰后至返回到碰撞点的过程中,A 、B 和弹簧组成的系统机械能守恒,可求得返回碰撞点时AB 的速度大小210.25m v v s== 以沿斜面向上为正,由动量定理可得:[]021()302()()T I m M gsin t m M v m M v -+⨯=+--+解得:10T I N s =⋅12.如图所示,用气垫导轨做“验证动量守恒”实验中,完成如下操作步骤:A .调节天平,称出两个碰撞端分别贴有尼龙扣滑块的质量m 1和m 2.B .安装好A 、B 光电门,使光电门之间的距离为50cm .导轨通气后,调节导轨水平,使滑块能够作_________运动.C .在碰撞前,将一个质量为m 2滑块放在两光电门中间,使它静止,将另一个质量为m 1滑块放在导轨的左端,向右轻推以下m 1,记录挡光片通过A 光电门的时间t 1.D .两滑块相碰后,它们粘在一起向右运动,记录挡光片通过_______________的时间t 2.E .得到验证实验的表达式__________________________.【答案】匀速直线运动 小车经过光电门的时间()12112m m m t t += 【解析】【详解】为了让物块在水平方向上不受外力,因此当导轨通气后,调节导轨水平,使滑块能够作匀速直线运动;根据实验原理可知,题中通过光电门来测量速度,因此应测量小车经过光电门的时间 设光电门的宽度为l ,则有:经过光电门的速度为11l v t =整体经过光电门的速度为:22l v t = 由动量守恒定律可知,11122(+)m v m m v =代入解得:11212()m m m t t +=。