《电力系统分析理论》课件第8章 三相不对称短路分析
- 格式:ppt
- 大小:1.88 MB
- 文档页数:73
武汉理工大学《电力系统分析》课程设计说明书目录摘要 (3)1 电力系统短路故障的基本概念 (4)1.1短路故障的概述 (4)1.2 三序网络原理 (5)1.2.1 同步发电机的三序电抗 (5)1.2.2 变压器的三序电抗 (5)1.2.3 架空输电线的三序电抗 (6)1.3 标幺制 (6)1.3.1 标幺制概念 (6)1.2.2标幺值的计算 (7)1.4 短路次暂态电流标幺值和短路次暂态电流 (8)2 简单不对称短路的分析与计算 (9)2.1单相(a相)接地短路 (9)2.2 两相(b,c相)短路 (10)2.3两相(b相和c相)短路接地 (12)2.4 正序等效定则 (14)3 不对称短路的计算的实际应用 (14)3.1 设计任务及要求 (14)3.2 等值电路及参数标幺值的计算 (15)3.3 各序网络的化简和计算 (17)3.3.1 正序网络 (17)3.3.2 负序网络 (19)3.3.3 零序网络 (20)3.4 短路点处短路电流、冲击电流的计算 (20)4 实验结果分析 (21)5 心得体会 (22)6 参考文献 (23)2摘要电力系统的安全、稳定、经济运行无疑是历代电力工作者所致力追求的,但是从电力系统建立之初至今电力系统就一直伴随着故障的发生而且电力系统的故障类型多样。
在电力系统运行过程中,时常会发生故障,且大多是短路故障。
短路通常分为三相短路、单相接地短路、两相短路和两相接地短路。
其中三相短路为对称短路,后三者为不对称短路。
电力运行经验指出单相接地短路占大多数,因此分析与计算不对称短路具有非常重要意义。
求解不对称短路,首先应该计算各原件的序参数和画出等值电路。
然后制定各序网络。
根据不同的故障类型,确定出以相分量表示的边界条件,进而列出以序分量表示的边界条件,按边界条件将三个序网联合成复合网,由复合网求出故障处各序电流和电压,进而合成三相电流电压。
关键词: 不对称短路计算、对称分量法、节点导纳矩阵31电力系统短路故障的基本概念1.1短路故障的概述在电力系统运行过程中,时常发生故障,其中大多数是短路故障。
摘要电力系统发生不对称短路故障的可能性是最大的,本课题要求通过对电力系统分析不对称短路故障进行分析与计算,为电力系统的规划设计、安全运行、设备选择和继电保护等提供重要的依据。
关键字:标么值;等值电路;不对称故障目录一、基础资料 (3)二、设计内容 (3)1.选择110kV为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数。
(3)2.化简各序等值电路并求出各序总等值电抗。
(6)3.K处发生单相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(7)4.设在K处发生两相直接接地短路,列出边界条件并画出复合相序图。
求出短路电流。
(9)5.讨论正序定则及其应用。
并用正序定则直接求在K处发生两相直接短路时的短路电流。
(11)三、设计小结 (12)四、参考文献 (12)附录 (12)一、基础资料1. 电力系统简单结构图如图1所示。
图1 电力系统结构图在K 点发生不对称短路,系统各元件标幺值参数如下:(为简洁,不加下标*) 发电机G1和G2:S n =120MV A ,U n =10.5kV ,次暂态电动势标幺值1.67,次暂态电抗标幺值0.9,负序电抗标幺值0.45;变压器T1:S n =60MV A ,U K %=10.5 变压器T2:S n =60MV A ,U K %=10.5线路L=105km ,单位长度电抗x 1= 0.4Ω/km ,x 0=3 x 1, 负荷L1:S n =60MV A ,X 1=1.2,X 2=0.35 负荷L2:S n =40MV A ,X 1=1.2,X 2=0.35 取S B =120MV A 和U B 为所在级平均额定电压。
二、设计内容1.选择110kV 为电压基本级,画出用标幺值表示的各序等值电路。
并求出各序元件的参数(要求列出基本公式,并加说明)在产品样本中,电力系统中各电器设备如发电机、变压器、电抗器等所给出的都是标么值,即以本身额定值为基准的标么值或百分值。
第八章 电力系统不对称故障的分析计算主要内容提示:电力系统中发生的故障分为两类:短路和断路故障。
短路故障包括:单相接地短路、两相短路、三相短路和两相接地短路;断路故障包括:一相断线和两相断线。
除三相短路外,均属于不对称故障,系统中发生不对称故障时,网络中将出现三相不对称的电压和电流,三相电路变成不对称电路。
直接解这种不对称电路相当复杂,这里引用120对称分量法,把不对称的三相电路转换成对称的电路,使解决电力系统中各种不对称故障的计算问题较为方便。
本章主要内容包括:对称分量法,电力系统中主要元件的各序参数及各种不对称故障的分析与计算。
§8—1 对称分量法及其应用利用120对称分量法可将一组不对称的三相量分解为三组对称的三序分量(正序分量、负序分量、零序分量)之和。
设c b a F F F ∙∙∙为三相系统中任意一组不对称的三相量、可分解为三组对称的三序分量如下:()()()()()()()()()021021021c c c c b b b b a a a a F F F F F F F F F F F F ∙∙∙∙∙∙∙∙∙∙∙∙++=++=++= 三组序分量如图8-1所示。
正序分量: ()1a F ∙、()1b F ∙、()1c F ∙三相的正序分量大小相等,彼此相位互差120°,与系统正常对称运行方式下的相序相同,达到最大值的顺序a →b →c ,在电机内部产生正转磁场,这就是正序分量。
此正序分量为一平衡的三相系统,因此有:()()()111c b a F F F ∙∙∙++=0。
负序分量:()2a F ∙、()2b F ∙、()2c F ∙三相的负序分量大小相等,彼此相位互差120°,与系图 8-1 三序分量Fc(0) ·零序F b(0) ·F a(0) ·120°120° 120° 正序F b(1)·F a(1)·F c(1) ·ω120°120°120°负序 F a(2)·F c(2)·F b(2)·ω统正常对称运行方式下的相序相反,达到最大值的顺序a →c →b ,在电机内部产生反转磁场,这就是负序分量。
第8章 不对称短路的分析计算主要内容1、 不对称短路的边界条件(序、相)、复合序网2、不对称短路故障处电压、电流及非故障处电压、电流的计算§8.1 对称分量法• 三个不对称相量可用三组对称相量来表示⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡)0()2()1(2211111a a a c b aF F F a a a a F F F S P F T F ∙= • 三个不对称相量可以分解为三组对称相量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c b a a a a F F F a a a a F F F 111113122)0()2()1( P S F T F ∙=-1 特点1:对称分量具有明确的物理意义 §8.2 在不对称故障分析中的应用 1. 三相阻抗的对称分量 三相静止对称元件:三相对称:s cc bb aa z z z z ===,m ac bc ab z z z z === 支路电压方程:缩写为: pp pI z U =∆ 作变换: p pp I T T z T U T 111---∙=∆ 得: s s p I z U =∆其中: ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--==-m s m s ms p s z z z z z z T z T z 20000001以序分量表示的支路电压方程为:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∙⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆)0()2()1()0()2()1()0()2()1()0()92)1(0000002000000a a a a a a m s m s ms a a a I I I z z z I I I z z z z z z U U U⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡∆∆∆c b a s mm m s mm msc b a cc cb ca bc bb ba ac abaac b a I I I z z z z z z z z z I IIz z z z z z z z z U U U三相对称系统对称分量变换为三个互不耦合的正、负、零序系统。
第八章电力系统不对称故障的分析和计算8-1 简单不对称短路的分析8-2 电压和电流对称分量经变压器后的相位变换8-3 非全相断线的分析8-4 应用节点阻抗矩阵计算不对称故障8-5 复杂故障的计算方法第八章电力系统不对称故障的分析和计算本章主要内容各种简单不对称故障的序分量边界条件复合序网的概念和正序等效定则电压电流对称分量经过变压器后的相位变换利用阻抗矩阵计算不对称故障的原理和方法序网方程(1)(1)(1)fa eq ff fa V E Z I =− (2)(2)(2)fa ff fa V Z I =− (0)(0)(0)fa ff fa V Z I =− (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (1)fa I (1)ff jX (1)fa V (0)fV8-1 简单不对称短路的分析1. 单相(a 相)接地短路—序分量边界条件0, 0(1), 0fa fb fcV I I === 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)0002fafa fa fa fb fb fb fb fc fc fc fc V V V V I I I I I I I I =++==++==++= ()对称分量表示的边界条件0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)2(1)(2)(0)2(1)(2)(0)0030fafa fa fa fb fa fa fa fc fa fa fa a V V V VI I I I I I I I αααα=++==++==++= ()以相为参考相(1)(2)(0)(1)(2)(0)0(8-42)fa fa fa fa fa fa V V V I I I ⎫++=⎪⎬==⎪⎭()序分量边界条件:8-1 简单不对称短路的分析1. 单相(a 相)接地短路—联立方程求解0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)(1)(2)(0)0(82)fa fa fa fa fa fa V V V I I I ⎫++=⎪−⎬==⎪⎭ (0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭ (0)(1)(1)(2)(0)(83)()ffa ff ff ff V I j X X X =−++ ()(0)(1)(1)(1)(2)(0)(1)(2)(2)(2)(0)(0)(0) (84)fa f ff fa ff ff fa fa ff fa fa ff fa V V jX I j X X I V jX I V jX I ⎫=−⎪⎪=+⎪−⎬=−⎪⎪=−⎪⎭8-1 简单不对称短路的分析1. 单相(a 相)接地短路—复合序网0faV = fbV fcV faI 0fbI = 0fcI = a bc (1)(2)(0)(1)(2)(0)0(82)fa fa fa fa fa fa V V V I I I ⎫++=⎪−⎬==⎪⎭ (0)(1)(1)(2)(0)(83)()ffa ff ff ff V I j X X X =−++ ()(0)(1)(1)(1)(2)(0)(1)(2)(2)(2)(0)(0)(0) fa f ff fa ff ff fa fa ff fa fa ff fa V V jX I j X X I V jX I V jX I ⎫=−⎪⎪=+⎪⎬=−⎪⎪=−⎪⎭ ——将各序网络在故障端口连接起来所构成的网络(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—故障点各相电流电压222(1)(2)(0)(2)(0)(1)22(1)(2)(0)(2)(0)(1)0()(1)()(1)fafb fa fa fa ff ff fa fc fa fa fa ff ff fa V V V V V j X X I V V V V j X X I αααααααααα=⎡⎤=++=−+−⎣⎦⎡⎤=++=−+−⎣⎦ (1)(2)(0)2(1)(2)(0)2(1)(2)(0)fa fa fa fa fb fa fa fa fc fa fa fa I I I I I I I I I I I I αααα=++=++=++ (0)(1)(1)(2)(0)3()0, 0ff faff ff ff fb fcV I I j X X X I I ==++== ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1), , fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—相量图(1)fa I (1)fb I (1)fc I (2)fa I (2)fc I(2)fb I (0)fa I faI (0)fb I(0)fa I (0)fc I (2)fa I (2)fb I (2)fc I (1)fa I(1)fc I (1)fb I (1)fa I 以为参考相量(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (1)fa V (2)fa V (0)fa VfcV fbV (2)fb V (0)fa V 0fa V = ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(I&II)(0)(0(1)(1)(2)(0)(1))(()3)0)1(3Case I >()ff faff ff ff f f f f ff f f V V I j X X X I X jX I X ==⇒=+>+ :(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (2)fb V fbV fcV 0fa V = (0)Case II ff X →:短路点靠近中性点直0,接接地点()(1)(2)(0)(1)(2)(2)(1)(1(0)(01)))(0fa ff ff fa f fa a ff fa fa ff fa V j X X I V jX I V V jX I ≈−=−≈=+=− (0)0, 32fa fb fc f V V V V ===(1)(2)(0)2fa ffa V VV ≈≈8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(III)(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(0)faV (0)fbV (0)fcV 0fa V = fbV f cV (0)(0)fa faV V =− 60D(1)fb V(1)fc V (0)Case III ff X →∞:中性点,不接地系统()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− (0)(0)0, 3fa fb fc f abV V V V V ====(0)(0)(1)(2)(0), 0, fa f fa fa f V V V V V ===− (1)(2)(0)22(1)(2)(0)(1)2(1)(2)(0)(1)=0(1)(1)fa fa fa fa fb fa fa fa fa fc fa fa fa fa V V V V V V V V V V V V V V αααααα=++=++=−=++=− 8-1 简单不对称短路的分析1. 单相(a 相)接地短路—特例分析(IV)(1)(2)(0),ff ff ff X X X ≈:与系统中性点接地情况有关(2)(0)(2)(0)(1)Case IV 12ff ff fa fa fa X X V V V =⇒==− :()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)fa ff ff fa fa ff fa fa ff fa V j X X I V jX I V jX I =+=−=− (1)fb V (1)fc V (2)fc V (1)fa V (2)fa V (0)fa V fcV fbV (2)fb V 0faV = 120D(0)(1)(1(2)(0))()fff ff ff fa V j X X X I =++ ()(1)(2)(0)(1)(2)(2)(1)(0)(0)(1)(0)(0)(0)231313fa ff ff fa fa ff fa fa ff f fffa V j X X I V jX I V jX I V V V −=+==−==−=− (0)(1)32fb fc fa f V V V V ===8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—序分量边界条件, 0(1), 0fb fc fa fb fcV V I I I ==+= 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)(1)(2)(0)(1)(2)(0)002fb fb fb fc fc fc fa fa fa fb fb fb fc fc fc V V V VV V I I I I I I I I I ++=++++=+++++= ()对称分量表示的边界条件fa V fb fcV V = 0faI = fbI fcI a bc(1)(2)(1)(2)(0)40(8-7)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=⎬⎪=⎪⎭()序分量边界条件:22(1)(2)(1)(2)(0)22(1)(2)(0)()()0()()203fa fa fa fa fa fa fa fa VV I I I I I a I αααααααα−+−=++=++++= ()以相为参考相8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—联立方程求解(0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭(0)(1)(1)(2)(88)()ffa ff ff V I j X X =−+ (2)(1)(1)(2)(2)(2)(2)(1)(0)(0)(0)(89)0fa fa fa fa ff fa ff fa fa ff fa I I V V jX I jX I V jX I ⎫=−⎪⎪==−=−⎬⎪=−=⎪⎭(1)(2)(1)(2)(0),0(87)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=−⎬⎪=⎪⎭ fa V fb fcV V = 0faI = fbI fcI a bc8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—复合序网(0)(1)(1)(2)(88)()ffa ff ff V I j X X =−+ fa V fb fcV V = 0faI = fbI fcI a bc(1)(2)(1)(2)(0),0(87)0fa fa fa fa fa V V I I I ⎫=⎪⎪+=−⎬⎪=⎪⎭ (2)(1)(1)(2)(2)(1)(0)(0)(0)(89)0fa fa fa fa ff fa fa ff fa I I V V jX I V jX I ⎫=−⎪⎪==−⎬⎪=−=⎪⎭(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—故障点各相电流电压(1)(2)(0)(1)(2)(1)2(1)(2)(0)(1)2(1)(2)(0)(1)2222fa fa fa fa fa ff fa fb fa fa fa fa fa fc fa fa fa fa faV V V V V j X I V V V V V V V V V V V V αααα=++===++=−=−=++=−=− (1)(2)(0)22(1)(2)(0)(1)(1)(1)+ 0+ ()33fa fa fa fa fb fa fa fa fa fa fc fb fa I I I I I I I I I j I I I j I αααα=+==+=−=−=−= (2)(1)(0)(1)(2)(2)(1)(0), 0, , 0fa fa fa fa fa ff fa fa I I I V V jX I V =−==== fa V fb fcV V = 0faI = fbI fcI a bc8-1 简单不对称短路的分析2. 两相(b 相和c 相)短路—相量图(1)fa I(1)fb I (1)fc I (2)fa I(2)f c I(2)fb I f bI (1)f a V (1)fc V (1)fb Vfc I(2)f b V(2)fc Vf bV f c V f a V(1)fa I以为参考相量(2)fa V (2)(1)(0)(1)(2)(2)(1)(0), 0, , 0fa fa fa fa fa ff fa fa I I I V V jX I V =−==== 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—序分量边界条件(1)0, 0fb fc faV V I === 相量表示的边界条件:(1)(2)(0)(1)(2)(0)(1)(2)(0)0002fb fb fb fc fc fc fa fa fa V V V V V V I I I ++=++=++= ()对称分量表示的边界条件faV 0fb fc V V == 0faI = fbI fcI a bc(1)(2)(0)(1)(2)(0)(8-13)04fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭()序分量边界条件:2(1)(2)(0)2(1)(2)(0)(1)(2)(0)0003fa fa fa fa fa fa fa fa fa V V VV V V I I a I αααα++=++=++= ()以相为参考相8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—联立方程求解(0)(1)(1)(1)(2)(2)(2)(0)(0)(0) (81) fa f ff fa fa ff fa fa ff fa V V jX I V jX I V jX I ⎫=−⎪⎪=−−⎬⎪=−⎪⎭(0)(1)(1)(2)(0)(814)(//)ffa ff ff ff V I j X X X =−+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)(815)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪−⎬⎪=−⎪+⎭faV 0fb fc V V == 0faI = fbI fcI a bc(1)(2)(0)(1)(2)(0)(8-13)0fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+ 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—复合序网(1)(2)(0)(1)(2)(0)(8-13)0fa fa fa fa fa fa V V V I I I ⎫==⎪⎬++=⎪⎭(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ (2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭faV 0fb fc V V == 0faI = fbI fcI a bc(1)fa I (1)ff jX (1)fa V (2)fa I (2)ff jX (2)fa V (0)fa I (0)ff jX (0)fa V (0)fV 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—故障点各相电流电压(2)(0)(1)(2)(0)(1)(1)(2)(0)30ff ff fa fa fa fa fa fa ff ff fb fcX X V V V V V j I X X V V =++==+== (1)(2)(0)(2)(0)22(1)(2)(0)(1)(2)(0)2(2)(0)2(1)(2)(0)(1)(2)(0)+ 0+ + fa fa fa fa ff ff fb fa fa fa fa ff ff ff ff fc fa fa fa fa ff ff I I I I X X I I I I I X X X X I I I I I X X αααααααα=+=⎛⎞+=+=−⎜⎟⎜⎟+⎝⎠⎛⎞+=+=−⎜⎟⎜⎟+⎝⎠(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—相量图(1)fa V (1)fb V (1)fc V (2)fa V (2)fc V (2)fb V (0)fa V faV (1)fa I (2)fa I (0)fa IfcIfbI 0faI = (1)fc I (1)fb I (2)fc I (2)fb I 8-1 简单不对称短路的分析3. 两相(b 相和c 相)短路接地—故障点入地电流(2)(0)(1)(2)(0)(1)(2)(0)ff ff fa fa fa fa ff ff X X V V V j I X X ===+(0)(1)(1)(2)(0)(//)ffa ff ff ff V I j X X X =+ faV 0fb fc V V == 0faI = fbI fcI abceI (2)(0)(1)(2)(0)33ff e fb fc fa fb fc fa fa ff ff X I I I I I I I I X X =+=++==−+ (0)(0)(1)(0)(1)(0)(2)33fe fa ff ff ff ff ff VI I jX X X X X ==++ (0)(2)(1)(2)(0)(2)(0)(1)(2)(0)ff fa fa ff ff ff fa fa ff ff X I I X X X I I X X ⎫=−⎪+⎪⎬⎪=−⎪+⎭8-1 简单不对称短路的分析8-1 简单不对称短路的分析—小结简单不对称短路的分析方法小结¾制定各序网络;根据系统运行方式确定故障口正常电压、各序输入阻抗,建立序网方程;(Chapter 7)¾根据故障情况选取参考相,确定用序分量表示的边界条件;¾由序网方程和序分量边界条件求解故障口电流电压各序分量(复合序网、方程求解等);¾对电流电压各序分量进行综合即可得到故障口的电流和电压相量。