截面与反应率资料
- 格式:ppt
- 大小:1.46 MB
- 文档页数:59
E E r 第一章—核反响堆的核物理根底直接相互作用:入射中子直接与靶核内的某个核子碰撞,使其从核里放射出来,而中子却留在了靶核内的核反响。
中子的散射:散射是使中于慢化(即使中子的动能减小)的主要核反响过程。
非弹性散射:中子首先被靶核吸取而形成处于激发态的复合核,然后靶核通过放出中子并放射 γ 射线而返回基态。
弹性散射:分为共振弹性散射和势散射。
微观截面:一个中子和一个靶核发生反响的几率。
宏观截面:一个中子和单位体积靶核发生反响的几率。
平均自由程:中子在介质中运动时,与原子核连续两次相互作用之间穿行的平均距离叫作平均自由程。
核反响率:每秒每单位体积内的中子与介质原子核发生作用的总次数(统计平均值)。
中子通量密度:某点处中子密度与相应的中子速度的乘积,表示单位体积内全部中子在单位时间内穿行距离的总和。
多普勒效应:由于靶核的热运动随温度的增加而增加,所以这时共振峰的宽度将随着温度的上升而增加,同时峰值也渐渐减小,这种现象称为多普勒效应或多普勒展宽。
瞬发中子和缓发中子:裂变中,99%以上的中子是在裂变的瞬间(约 10-14s)放射出来的,把这些中子叫瞬发中子;裂变中子中,还有小于1%的中子是在裂变碎片衰变过程中放射出来的,把这些中子叫缓发中子。
其次章—中子慢化和慢化能谱慢化时间:裂变中子能量由裂变能慢化到热能所需要的平均时间。
集中时间:无限介质内热中子在自产生至被俘获以前所经过的平均时间。
平均寿命:在反响堆动力学计算中往往需要用到快中子自裂变产生到慢化成为热中子,直至最终被俘获的平均时间,称为中子的平均寿命。
慢化密度:在 r 处每秒每单位体积内慢化到能量E 以下的中子数。
分界能或缝合能:通常把某个分界能量 以下的中子称为热中子, 称为分界能或缝合能。
c c第三章—中子集中理论中子角密度:在 r 处单位体积内和能量为 E 的单位能量间隔内,运动方向为 的单位立体角内的中子数目。
慢化长度:中子从慢化成为热中子处到被吸取为止在介质中运动所穿行的直线距离。
核素:具有相同质子数Z 和中子数N 的一类原子核,称为一种核素。
同位素:质子数相同,中子数不同的核素称为同位素。
同中子素:中子数相同,质子数不同的核素称为同中子数,或称同中异位素。
同量异位素:质量数相同,质子数不同的核素称为同量异位素。
同核异能素:质量数和质子数均相同(当然中子数也相等),而能量状态不同的核素称为同核异能素。
镜像素:质子数和中子数互换的一对原子核,称为镜像素。
原子核的自旋:原子核的角动量,通常称为核的自旋。
衰变常量(λ):衰变常量λ是在单位时间内每个原子核的衰变概率。
它的量纲是时间的倒数。
t e N N λ-=0;dtN N d -=λ(分子N N d -表示每个原子核的衰变概率) 放射性活度(A ):在单位时间内有多少核发生衰变,亦即放射性核素的衰变率dtdN -,或叫放射性活度A 。
t t e A e N N dtdN A λλλλ--===-≡00 半衰期(21T ):半衰期21T 是放射性原子核衰减到原来数目的一半所需的时间。
ττλλ693.02ln 693.02ln 21====T 平均寿命(τ):平均寿命τ是指放射性原子核平均生存的时间。
平均寿命和衰变常量互为倒数。
λτ1= 核的结合能:原子核的质量比组成它的核子的总质量小,表明由自由核子结合而成原子核的时候,有能量释放出来。
这种表示自由核子组成原子核所释放的能量称为原子核的结合能。
核素的结合能用),(A Z B 表示,它与核素的质量亏损),(A Z M ∆关系是:2),(),(c A Z M A Z B ∆= 比结合能:原子核平均每个核子的结合能又称为比结合能,用ε表示。
A B /=ε比结合能表示了若把原子核拆成自由核子,平均对于每个核子所需要做的功。
比结合能ε的大小可用以标志原子核结合得松紧的程度。
ε越大的原子核结合得越紧;ε较小的原子核结合得较松。
质量亏损:组成某一原子核的核子质量和与该原子核质量之差称为原子核的质量亏损。
核裂变相关方程式综述核裂变是指重原子核在一定条件下发生分裂的过程,具有广泛的应用和重要的科学意义。
在核裂变过程中,会涉及到一系列与能量转化和守恒相关的方程式。
本文将对核裂变相关方程式进行综述,探讨其基本原理和应用。
一、能量守恒方程式在核裂变过程中,能量守恒是基本的原理之一。
根据质能等效原理,质量和能量之间存在着转换关系,由爱因斯坦提出的质能方程E=mc^2 揭示了质量和能量之间的对应关系。
在核裂变过程中,原子核的质量发生变化,因此能量也会发生变化。
能量守恒方程式可以表达为:E_总 = E_核 + E_剩 + E_产其中,E_总代表裂变反应前后系统的总能量,E_核代表裂变反应产生的核能量,E_剩代表未参与反应的原子核的能量,E_产代表产生的其他形式的能量。
二、裂变反应速率方程式核裂变反应的速率可以通过反应速率方程式来描述。
一般情况下,核裂变反应的速率与裂变产物的浓度成正比。
裂变反应速率方程式可以表达为:r = k[A]其中,r代表裂变反应的速率,k代表反应速率常数,[A]代表裂变产物的浓度。
三、裂变链式反应方程式核裂变通常涉及到链式反应的过程,裂变链式反应方程式可以用来描述链式反应的整个过程。
裂变链式反应可以分为三个阶段:起始阶段、自持阶段和爆炸阶段。
裂变链式反应方程式可以表达为:N = N_0(2^n)其中,N代表裂变链式反应中的反应物或产物的数量,N_0代表起始时的反应物或产物的数量,n代表经过的链式反应的次数。
这一方程式是裂变链式反应的基本特征之一。
四、裂变产物生成速率方程式核裂变产物的生成速率也可以通过方程式来描述。
裂变产物生成速率方程式可以表达为:d[A]/dt = λ[A]其中,d[A]/dt代表裂变产物的生成速率,λ代表裂变产物的衰变常数。
五、裂变反应的截面方程式核裂变反应的截面可以通过方程式来描述。
截面可以看作是衡量核反应发生概率大小的物理量。
裂变反应的截面方程式可以表达为:σ = A/P其中,σ代表裂变反应的截面,A代表裂变的总截面积,P代表入射粒子的流强度。
22.54 中子与物质的相互作用及应用(2004年春季)第一讲 (2004年2月3日) 概述:与物质的相互作用,分类,截面及应用在大量关于核物理的文献中,有许多参考资料,从中我们可以找到关于中子反应的介绍或详细的论述,下面列出的是我本人多年来使用过的文献,但这还远非全部,你们在学习时还可以参考其它文献。
B. T. Feld, “The Neutron”, in Experimental Nuclear Physics , E. Segre, ed. (Wiley, 1953), vol. II, p. 208;A. M. Weinberg and E. Wigner, The Physical Theory of Neutron Chain Reactors (Univ.Chicago Press, 1958), Chap 2.J. E.Lynn, The Theory of Neutron Resonance Reactions (Clarendon, Oxford, 1968), Chap 1.A. Foderaro, The Elements of Neutron Interaction Theory (MIT Press, 1971), Chaps 1, 3.C. G. Shull, "Neutron Interactions with Atoms", Trans. Am. Cryst. Assoc. 3, 1 (1967). 中子的特色学习“中子的相互作用”是我们核工程系的特有专业课程,其它系没有开这门课。
中子在核工系的三个学科领域中扮演着核心角色:裂变——裂变反应链的“传递者”,维持反应堆燃烧的“点火器”;聚变——聚变反应的产物,如(D,T),会导致辐射损伤或活化;辐射科学与技术——加速器技术,治疗,成像,材料研究等。
中子的特性(请回忆22.101),中子由查德威克(J. Chadwick)*于1932年发现;中子不带电(能够容易地穿过原子核);质量略大于质子(在碰撞反应中动量改变明显);热中子波长与X射线相当,但能量更低;我们所感兴趣中子的能量范围分布很宽(包含多种反应类型);中子的自旋为1/2(与核子发生的相互作用是自旋相关的);中子具有磁矩(在磁散射中与原子磁矩发生耦合);中子具有半衰期(自由中子是不稳定的);*有关中子的其它重大事件:1938年发现裂变反应;1942年第一次发现链式反应。
质量反应截面-概述说明以及解释1.引言1.1 概述概述质量反应截面是描述核反应中粒子相互作用强度的重要物理量。
它可以用来描述核反应的可能性和速率,是研究核物理和核工程中的重要参数之一。
质量反应截面的大小直接影响着核反应的强度和速率,因此对其进行准确的计算和理解至关重要。
本文将首先介绍质量反应截面的定义和基本概念,然后探讨其在核物理研究中的重要性和应用价值。
接着将详细介绍质量反应截面的计算方法,包括理论模型和数值计算等方面。
最后,通过总结和展望,揭示出当前研究中存在的问题和未来的发展方向,以期对相关领域的研究和应用起到促进作用。
1.2 文章结构文章结构部分主要是对整篇文章的组织和框架进行介绍,让读者了解本文的主要内容和结构安排。
本文分为引言、正文和结论三个部分。
- 引言部分包括概述、文章结构和目的,通过引言部分引出本文的主题和目的,并对质量反应截面做简要介绍。
- 正文部分主要包括质量反应截面的定义、重要性和计算方法,通过详细的介绍和分析,阐述质量反应截面在物理学中的重要性和应用。
- 结论部分对本文的内容进行总结,并展望未来对质量反应截面研究的发展方向,最终得出结论。
整篇文章结构清晰,逻辑性强,帮助读者更好地理解和掌握质量反应截面的相关知识。
1.3 目的质量反应截面作为核物理研究中的一个重要概念,其主要目的是为了帮助科学家们更好地理解原子核内部的反应过程。
通过研究质量反应截面,可以更深入地了解核反应的机制,从而为核能的应用提供更加准确和可靠的理论依据。
此外,质量反应截面还可以用于预测和解释实验数据,帮助科学家们发现新的物理规律和现象。
因此,研究质量反应截面的目的不仅是为了推动核物理研究的进展,同时也为核能领域的发展提供了重要参考和支持。
2.正文2.1 质量反应截面的定义质量反应截面是描述核反应发生概率大小的一个重要参数。
在核物理领域中,当一个核粒子与另一个核粒子相互作用时,会发生核反应。
而质量反应截面就是描述这种核反应发生概率的物理量。
核反应堆工程复习参考题1、压水堆与沸水堆的主要区别是什么?沸水堆采用一个回路,压水堆有两个回路;沸水堆由于堆芯顶部要安装汽水分离器等设备,故控制棒需从堆芯底部向上插入,控制棒为十字形控制棒,压水堆为棒束型控制棒,从堆芯顶部进入堆芯;沸水堆具有较低的运行压力(约为70 个大气压),冷却水在堆内以汽液形式存在,压水堆一回路压力通常达 150个大气压,冷却水不产生沸腾。
2、简要叙述一种常用堆型的基本工作原理?沸水堆( Boiling Water Reactor)字面上来看就是采用沸腾的水来冷却核燃料的一种反应堆,其工作原理为:冷却水从反应堆底部流进堆芯,对燃料棒进行冷却,带走裂变产生的热能,冷却水温度升高并逐渐气化,最终形成蒸汽和水的混合物,经过汽水分离器和蒸汽干燥器,利用分离出的蒸汽推动汽轮进行发电。
压水堆(Pressurized Water Reactor)字面上看就是采用高压水来冷却核燃料的一种反应堆,其工作原理为:主泵将 120~160 个大气压的一回路冷却水送入堆芯,把核燃料放出的热能带出堆芯,而后进入蒸汽发生器,通过传热管把热量传给二回路水,使其沸腾并产生蒸汽;一回路冷却水温度下降,进入堆芯,完成一回路水循环;二回路产生的高压蒸汽推动汽轮机发电,再经过冷凝器和预热器进入蒸汽发生器,完成二回路水循环.3、重水堆的燃料富集度为什么可以比压水堆的低,哪种堆型对燃料的燃尽性更好?因为卸料燃耗较浅,用重水(D2O,D 为氘)作慢化剂,其热中子吸收截面约为轻水( H2O)的 1/700 ,慢化中子能力不如后者,需要更多的碰撞次数,可直接利用天然铀作核燃料。
4、快中子堆和热中子堆相比有哪些优缺点?优:快中子堆没有慢化剂,所以体积小,功率密度高。
缺:快中子堆必须有较高的核燃料富集度,初装量也大。
快中子堆燃料元件加工及乏燃料后处理要求高,快中子辐照通量率大,对材料要求苛刻。
平均寿命比热中子堆短,控制艰难。
5、压水堆堆芯中水主要起什么作用?作冷却剂和慢化剂.6、气冷堆与压水堆相比有何优缺点?优:能在不高的压力下得到较高的出口温度,可提高电站二回路蒸汽温度,从而提高热效率.缺:镁合金包壳不能承受高温 ,限制了二氧化碳气体出口温度 ,限制了反应堆热工性能的进一步提高。