酶非水相催化理论及应用特性
- 格式:ppt
- 大小:645.50 KB
- 文档页数:39
酶的非水相催化考研考点总结●水相酶反应的限制●仅限于水溶性底物●大部分有机物在水中溶解性差●水会引发副反应或造成产物分解●不利于反应平衡向产物推进●产物回收困难●非水相催化的优势●增加非极性底物的溶解度●使某些原本在水相不能进行的反应顺利进行,如肽的合成、酯的合成等●可减少在水相容易发生的副反应,如酸酐的水解、卤化物的水解等●容易分离回收●无微生物污染●相关问题●非水相并不代表完全无水,完全无水的情况下酶是无活性的●极性较强的溶剂可能剥离掉酶分子中必须的水,导致酶失活;而疏水性溶剂对水的溶解能力较低●在无水溶剂中,酶蛋白分子的刚性增加,空间构象较难发生改变●非水相催化的类型●有机介质中的酶催化●气相介质中的酶催化●超临界流体介质中的酶催化●离子液介质中的酶催化由有机阳离子与有机(无机)阴离子构成的在室温条件下呈液态的低熔点盐类●非水相催化的体系●与水不溶性有机溶剂组成的两相或多相体系●(正)胶束体系●反胶束体系●与水溶性有机溶剂组成的均一体●微水介质体系●酶非水相催化的影响因素●水●水对酶分子构象的影响酶分子需要一层水化层,以维持其完整的空间构象●水对酶催化反应速度的影响●水活度在有机介质体系中,酶的催化活性随着结合水量的增加而提高●有机溶液●有机溶剂对酶结构与功能的影响在有机溶剂中,酶分子(经过修饰后可溶于有机溶剂者除外)不能直接溶解,而是悬浮在溶剂中进行催化反应●有机溶剂对酶分子表面结构的影响●有机溶剂对酶活性中心结合位点的影响溶剂有可能渗入到酶分子的活性中心,与底物竞争活性中心的结合位点●有机溶剂对酶活性的影响有机溶剂的极性越强,越容易夺取酶分子结合水●有机溶剂对底物和产物分配的影响●酶的催化特性●底物专一性可能受影响●对映体选择性●区域选择性酶能够选择底物分子中某一区域的基团优先进行反应●健选择性●热稳定性更好●pH值特性:pH记忆●非水相催化条件的控制●水含量●酶的选择●底物的选择和浓度控制●有机溶剂的选择●温度控制。
第一章绪论1.何谓酶工程,试述其主要内容和任务。
酶的生产、改性与应用的技术过程称为酶工程。
酶工程的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用等。
酶工程的主要任务是经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。
2.酶有哪些显著的催化特性?酶是生物催化剂,与非酶催化剂相比,具有专一性强、催化效率高和作用条件温和等显著特点。
3.简述影响酶催化作用的主要因素。
酶的催化作用受到底物浓度、酶浓度、温度、pH、激活剂浓度、抑制剂浓度等诸多因素的影响。
5.简述酶活力单位的概念和酶活力的测定方法。
酶活力单位:在特定条件下(温度可采用25℃,pH等条件均采用最适条件),每1min催化1μmol的底物转化为产物的酶量定义为1个酶活力单位,这个单位称为国际单位(IU)。
在特定条件下,每秒催化1mol底物转化为产物的酶量定义为1卡特(kat)酶活力的测定方法:振荡测定法,酶柱测定法,连续测定法,固定化酶的比活力测定,酶结合效率与酶活力回收率的测定,相对酶活力的测定。
或者测定方法:化学测定法、光学测定法、气体测定法其它.酶的发展历史:4000多年前的夏禹时代——酿酒技术。
3000多年前的周朝——制造饴糖、食酱等食品。
1833年——佩恩和帕索兹从麦芽的水抽提物中得到淀粉酶。
19世纪中叶——巴斯德对酵母的乙醇发酵进行研究。
1913年——米彻利斯和曼吞根据中间产物学说,推导出米氏方程。
1926年——萨姆纳得到脲酶结晶,并证明它具有蛋白质的性质。
1960年——雅各和莫诺德提出操纵子学说。
1982年——切克发现核酸类酶。
1983年——阿尔特曼发现核糖核酸酶P的RNA 部分M1RNA具有核糖核酸酶P的催化活性。
酶的专一性分为绝对专一性和相对专一性。
相对专一性又可分为键专一性和基团专一性米氏方程:酶的可逆性抑制作用可以分为竞争性抑制、非竞争性抑制和反竞争性抑制。
1 绪论酶作为生物催化剂,具有专一性、高效性、反应条件温和等优点,是一种具有特殊三维空间构象的蛋白质,它们在体内几乎参与了所有的转变过程, 催化生物分子的转化。
同时, 它们也催化许多体内存在的物质发生变化, 使人体正常的新陈代谢得以运行。
因此受到人们的普遍关注。
近年来, 特别是随着生化技术的进展, 酶催化反应越来越多地被有机化学家作为一种手段应用于有机合成, 特别是催化不对称合成反应。
光学活性化合物或天然产物的合成, 已应用于医药、农药、食品添加剂、香料、日用化学品等精细有机合成领域。
酶催化不会污染环境, 经济可行, 符合绿色化学的方向, 具有广阔的前景。
2 酶催化与有机合成反应对于酶催化反应在有机合成中的应用, 有机合成工作者做了大量工作。
随着科技进步的日新月异, 酶催化反应越来越多地被有机化学家作为一种手段用于有机合成特别是不对称合成反应, 进行光学活性化合物或天然产物的合成时, 能为天然或非天然产物的合成提供丰富的手性源, 其应用前景将是难以估量的。
2.1 不同反应体系中的酶促反应2.1.1 有机介质中的酶促反应酶在有机介质中不但能保持其活性,还表现出一些特殊性质,并具有如下优越性:有利于疏水性底物的反应;产物和酶易于回收;可改变反应平衡移动的方向;可控制底物专一性;可防止由水引起的副反应;可扩大反应pH值的适应性;可提高酶稳定性;可避免微生物污染等。
在保证必需含水量;选择合适的酶及酶形式;选择合适的溶剂;选择最佳pH值;选择合适的反应体系的条件下,则在有机介质中酶可显示很高的催化活性。
目前在有机介质中已成功用酶进行了氧化、、脱氢、脱氨、还原、羟基化、甲基化、环氧化、酯化、酰胺化、磷酸化、开环反应、异构化、侧链切除、缩合及卤化等反应。
过去人们认为酶在有机介质不稳定,但研究发现大多数酶在低水有机介质中比在水介质中更稳定。
一是表现在热稳定性提高。
在有机介质中,在不同温度下保温脉酶,发现热处理导致酶活性增加,而且酶在温度远超过其在水溶液中最适温度的情况下也不失活。
一. 何谓酶工程,试述其主要内容和任务。
酶的生产、改性与应用的技术过程称为酶工程。
酶工程的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化,酶非水相催化,酶定向进化,酶反应器和酶的应用。
酶工程的主要任务是经过预先设计,通过人工操作获得人们所需的酶,并通过各种方法使酶的催化特性得以改进,充分发挥其催化功能。
二. 蛋白类酶和核酸类酶的分类和命名有何异同?按照分子中起催化作用的主要组分的不同,酶可以分为蛋白类酶和核酸类酶两大类别。
它们的分类和命名总原则是相同的,都是根据酶作用的底物和催化反应的类型进行分类和命名。
两者分类与命名的显著区别是蛋白类酶只能催化其他分子进行反应,而核酸类酶既可以催化酶分子本身也可以催化其他分子进行反应。
三. 蛋白类酶的分类原则如下:1.按照酶催化作用的类型,将蛋白类酶分为六大类:第一大类,氧化还原酶;第二大类,转移酶;第三大类,水解酶;第四大类,裂合酶;第五大类,异构酶;第六大类,合成酶;2.每个大类中,按照酶作用的底物、化学键或基团的不同,分为若干亚类;3.每一亚类中再分为若干小类;4.每一小类中包含若干个具体的酶。
四. 核酸类酶采用以下分类原则:1.根据酶作用的底物是其本身RNA分子还是其他分子,将核酸类酶分为分子内催化R酶(自我剪切酶、自我剪接酶)和分子间R酶(RNA剪切酶、DNA剪切酶、多肽剪切酶、多糖剪切酶、氨基酸酯剪切酶、多功能酶)两大类;2.在每个大类中,根据酶的催化类型不同,将R酶分为若干亚类。
五. 酶活力单位:在特定条件下,每1min催化1μmol的底物转化为产物的酶量定义为1个酶活力单位,单位为UI。
六. 酶活力的测定方法:1.根据酶催化的专一性,选择适宜的底物,并配制一定浓度的底物溶液;2.根据酶的动力学性质,确定酶催化反应的温度、pH、底物浓度、激活剂浓度等反应条件;3.在一定条件下,将一定量的酶液和底物溶液混合均匀,适时记下反应开始的时间;4.反应到一定的时间,取出适量的反应液,运用各种生化检测技术,测定产物的生成量或底物的减少量七. 酶的生物合成有生长偶联型、中期合成型、延续合成型和非生长偶联型4种模式。
名词解释非水相催化:(据说酶工程上有)物质在非水介质中的催化作用反应计量学:是对反应物系的组成和转化程度的数量化研究。
得率系数:又称宏观系数,常用Y j i /表示,其中i 表示细胞或产物,j 表示底物。
Y j i /=j i m m ∆∆ 本征反应动力学:是一种仅描述反应生物反应本身的动力学规律的动力学。
酶的固定化:通过物理或化学的方法使溶液酶转变为在一定空间内收到约束的一种不溶于水但仍有酶活性的酶。
细胞固定化:与酶的固定化相似,通过各种手段将细胞与水不溶性载体结合,之辈固定化细胞的过程反胶束体系:是由水、有机相及表面活性剂组成,是表面活性剂分散于连续有机相中自发形成的一种具有微水池结构的油包水微乳液。
细胞生长:细胞的生长,主要是指细胞体积的增大,细胞分化完成后并不是所有的细胞都有生长的过程 (百度)代谢工程:通过某些特定生化反应的修饰来定向改善细胞的特性或运用DNA 重组技术来创造新的化合物的过程。
代谢网络:分解代谢途径、合成代谢途径和膜输送体系的有序组合构成代谢网络。
广义的代谢网络包括物质代谢网络和能量代谢网络。
代谢通量:物质或信息通过代谢途径被加工的速率。
节点:网络分流处的代谢产物细胞破碎:指利用外力(物理、化学、酶或机械的方法)破坏细胞膜和细胞壁,使细胞内容物包括目的产物成分释放出来的技术。
表面活性剂:是由亲水的极性头和疏水的非极性尾组成的物质。
(书本上的定义)具有固定的亲水亲油基团,在溶液的表面能定向排列,并能使表面张力显著下降的物质。
(百度) 宏观反应动力学:是一种描述反应生物化学反应和传递因素对动力学综合影响结果的动力学 酶固定时的酶活力表现率:指实际测定的固定化酶活力与被固定化酶在溶液状态下的总获利之比。
)(323E E E + 其中,2E 是固定化造成的失活,3E 指实测的固定化酶活力。
代谢途径:指催化总的代谢物的转化,信息传递和其他新报功能的酶促反应的集合。
载流途径:代谢主流途径中的代谢途径称为主要载流途径,简称载流途径。
DOI:CNKI:11-1759/TS.20120210.1743.006 网络出版时间:2012-02-10 17:43网络出版地址:/kcms/detail/11.1759.TS.20120210.1743.006.html微生物脂肪酶的研究与应用刘虹蕾,缪铭,江波 ,张涛(江南大学食品科学与技术国家重点实验室,江苏无锡214122)摘要:脂肪酶是一类能够催化酯的水解反应以及在非水相体系中催化脂肪酸和醇类发生酯化反应的酶类。
随着酶学技术的快速发展,微生物脂肪酶也受到了越来越多的关注。
作为生物催化剂,脂肪酶一直以来都是生物技术领域中最重要的一类酶。
本文探讨了脂肪酶的来源、理化性质、脂肪酶活力测定,同时对脂肪酶的非水相催化特性以及脂肪酶在食品工业,医药、洗涤剂、皮革、造纸和生物柴油工业领域中的应用进行了讨论。
关键词:脂肪酶;酶活测定;非水相;食品工业应用Research and applications of microbial lipasesLiu Hong-lei, Miao Ming, Jiang Bo, Zhang Tao(State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China) Abstract: lipases are a class of enzymes which catalyse the hydrolysis of esters and esterification of fatty acid andalcohol. Lipases constitute the most important group of biocatalysts for biotechnological applications. This reviewdescribes physicochemical origin and properties of lipases, lipase activity determination, catalytic properties oflipases in nonaqueous phase and various industrial applications of microbial lipases in the food, pharmaceuticals,detergent, leather, papermaking and biodiesel.Key words: lipases; lipase actiity determination; Nonaqueous phase; food industrial applications脂肪酶(三酰甘油酯水解酶,EC 3.1.1.3),是一类广泛存在于多种微生物中的生物催化剂。
第一章绪论重点并提问的内容•1、解释酶工程、酶转换数、酶的改性?答:酶工程:酶的生产、改性与应用的技术过程。
•2、根据起催化作用的主要组分不同,酶的分类如何?•3、酶工程主要研究内容?酶工程的主要内容包括:微生物细胞发酵产酶,动植物细胞培养产酶,酶的提取与分离纯化,酶分子修饰,酶、细胞、原生质体固定化、酶的非水相催化、酶定向进化、酶反应器和酶的应用等。
•4、简述影响酶催化作用的主要因素?•5、酶催化作用的特点?6、酶的专一性包括哪些?1、酶活力、酶比活力、酶转换数是什么量度指标?2、可逆性抑制作用中动力学参数都如何变化?3、蛋白类酶和核酸类酶可继续如何分类?4、酶活力单位如何定义?5、试述酶活力测定的基本过程?6、试述木瓜蛋白酶的生产方法?答:木瓜蛋白酶可以采用提取分离法、基因工程菌发酵法、植物细胞培养法等多种方法进行生产。
(1)提取分离法:从木瓜的果皮中获得木瓜乳汁,通过各种分离纯化技术获得木瓜蛋白酶。
(2)发酵法:通过DNA重组技术将木瓜蛋白酶的基因克隆到大肠杆菌等微生物中,获得基因工程菌,在通过基因工程菌发酵获得木瓜蛋白酶。
(3)植物细胞培养法:通过愈伤组织诱导获得木瓜细胞,在通过植物细胞培养获得木瓜蛋白酶。
•答:1、提取分离法2、生物合成法:(1)微生物发酵产酶(2)植物细胞培养产酶(3)动物细胞培养产酶3、化学合成法第二章微生物发酵产酶1、解释酶的发酵生产、酶的诱导、酶的反馈阻遏(产物阻遏)、分解代谢物阻遏。
诱导物的种类?2、微生物产酶模式几种?特点?最理想的合成模式是什么?(1)同步合成型特点:1、发酵开始,细胞生长,酶也开始合成,说明不受分解代谢物和终产物阻遏。
2、生长至平衡期后,酶浓度不再增长,说明mRNA很不稳定。
(2)延续合成型特点:1、该类酶不受分解代谢产物阻遏和终产物阻遏。
2、该酶对应的mRNA是相当稳定的。
(3)中期合成型特点:1、该类酶的合成受分解代谢物阻遏和终产物阻遏。
摘要非水相中的酶促酯交换反应广泛应用于油脂的改性。
该反应通过酯交换替换甘三酯中的酰基基团来改善油脂性质。
生物柴油作为一般石化燃料的良好替代品,其发展前景被世界发达国家普遍看好。
本论文从降低生产成本和提高生物柴油品质的角度出发,采用无溶剂系统作为反应体系,利用脂肪酶催化菜籽油与甲醇进行酯交换反应制取生物柴油,简单探讨了生物柴油中甘油含量的测定方法和脂肪酶促酯交换制取生物柴油的反应条件。
采用萃取的方法从生物柴油中提取甘油,用高碘酸钠氧化法对甘油含量进行测定,证明了该方法对甘油含量测定的准确性。
进而又尝试了采用分批加入甲醇的方法来制取生物柴油,发现此法比一次性加入全部甲醇有更高的反应转化率,但是在反应历程的实验中,分批加入甲醇的方法还有待完善。
关键词:无溶剂系统;菜籽油;脂肪酶;酯交换反应;生物柴油ABSTRACTEnzymatic interesterification in non-aqueous phase has been widely used for improving the quality of oil and fats. This reaction provides a useful alternative for replacing the acyl group of glycerides to modify oil and fats. Biodiesel is a good substitute for Petrochemical fuel, and developed country realize that it has good Development foreground. To reduce the product cost and improve the quality of Biodiesel, lipase-catalyzed interesterification of Vegetable oil with Methyl alcohol for Biodiesel production in a solvent free system was explored in this dissertation. The analytical method of Glycerin in Biodiesel and the optimization of reaction conditions were investigated systematically.Glycerin could be extracted from Biodiesel by extraction. And it could be analysised by Sodium Periodata oxidimetry. The accuracy of it has been proved. Trying to join Methyl alcohol by several times in Biodiesel production, we found it was more effective than joining Methyl alcohol by one time. But it need to be improved in the experiment of reaction process.Keywords: Solvent free system; Vegetable oil; Lipase; Interesterification; Biodiesel目录摘要 (Ⅰ)ABSTRACT (Ⅱ)第一章绪论 (1)1.1 生物柴油研究进展 (1)1.1.1 生物柴油的化学组成及物理特性 (1)1.1.2 生物柴油生产研究状况 (1)1.1.3 生物柴油的制备方法 (2)1.1.4 生物柴油生产原料 (4)1.2 生物催化与有机合成 (4)1.3 非水相酶学 (5)1.3.1 非水相酶学的兴起 (5)1.3.2 非水相酶催化的优点 (5)1.3.3 无溶剂系统 (6)1.4 脂肪酶的研究与应用 (6)1.4.1 脂肪酶的研究概况 (6)1.4.2 脂肪酶的催化机制 (7)1.4.3 脂肪酶的底物特异性 (7)1.4.4 脂肪酶在油脂工业中的应用 (8)1.5 菜籽油的研究与应用 (9)1.5.1 菜籽油的性质及组成 (9)1.5.2 菜籽油的工业用途 (9)1.5.3 菜籽油甲酯化 (10)1.6 脂肪酶促酯交换反应 (10)1.6.1 脂肪酶促酯交换反应的催化机制 (10)1.6.2 菜籽油酶促酯交换生产生物柴油 (11)1.6.3 反应体系含水量的影响 (11)第二章材料与方法 (13)2.1 实验材料 (13)2.1.1 脂肪酶 (13)2.1.2 主要试剂及原料 (13)2.2 仪器设备 (13)2.3 实验方法 (14)2.3.1 试剂的配制 (14)2.3.2 酸度计的校准 (14)2.3.3 游离甘油含量测定 (15)2.3.4 总甘油含量测定 (15)第三章甘油含量标准曲线的绘制 (17)3.1 水中游离甘油测定方法研究 (17)3.2 菜籽油中游离甘油含量标准曲线的绘制 (18)小结 (19)第四章脂肪酶酯交换制取生物柴油的研究 (20)4.1 菜籽油中总甘油含量测定 (20)4.2 甲醇的添加对酯交换反应的影响 (21)4.3 生物柴油反应历程实验 (21)小结 (23)结论与展望 (24)参考文献 (25)致谢 (30)第一章绪论1.1 生物柴油研究进展1.1.1 生物柴油的化学组成及物理特性柴油分子是由15个左右的碳链组成的,研究发现植物油分子则一般由14~18个碳链组成,与柴油分子中碳数相近。
工程技术在食品工业中的应用及发展趋势摘要:酶工程是现代生物技术的重要组成部分。
酶作为生物催化剂 ,具有高催化效率 ,专一性强 ,反应条件温和及酶活性可以调控。
而食品工业是应用酶工程技术最早和最广泛的行业。
近年来,由于固定化细胞技术应用化、固定化酶反应器的推广应用,促进了食品添加剂新产品的开发,产品品种增加,质量提高,成本下降。
还有些酶本身就是保健食品重要的功效成分,如超氧化歧化酶(sod)、溶菌酶、l一天冬酰胺酶等,为食品工业带来了巨大的社会经济效益。
关键词:酶工程固定化葡萄糖酶一、酶工程技术的原理酶工程是现代生物技术的一个重要组成部分。
酶工程又称酶反应技术, 就是指在一定的生物反应器内, 利用生物酶作为催化剂, 使某些物质定向转化的工艺技术, 包括酶的研制与生产, 酶和细胞或细胞器的固定化技术, 酶分子的修饰改造,以及生物传感器等。
二、酶工程的结构根据酶工程研究和解决问题的手段不同,可将酶工程分为化学酶工程和生物酶工程两大类。
在食品行业中,这两类酶工程的应用都很广泛。
1、化学酶工程化学酶工程亦称初级酶工程,是指自然酶、化学修饰酶、固定化酶及化学人工酶的研究和应用。
它主要是由酶学原理与化工技术相互渗透和结合而形成的一门科学技术。
2、生物酶工程生物酶工程是酶学和以基因重组技术为主的现代分子生物学技术结合的产物,亦称高级酶工程。
主要包括3个方面:一是用基因工程技术大量生产酶(克隆酶);二是修饰酶基因产生遗传修饰酶(突变酶);三是设计新酶基因,合成自然界不曾有的酶(新酶)。
(1)非水相介质中的酶反应近年来,酶在非水相介质中催化反应的研究,成为酶工程的一项新的重要内容。
如蛋白水解酶类,在非水相中能催化肽键的形成,利用这一发现,便可利用蛋白酶在非水介质的催化特性,合成某些肽类物质,用于制药和食品添加剂。
(2)酶反应器和酶传感器1)酶反应器酶反应器是完成酶促反应的装置。
其研究内容包括:酶反应器的类型及特性;酶反应器的设计、制造及选择等。
1.1 酶催化概念酶催化是介于均相与非均相催化反应之间的一种催化反应方式,它既可以看成是反应物与酶形成的一种化合物,也可以看成是酶表面产生的吸附物质,然后再进行反应的。
酶在加速或者减慢化学反应方面发挥着重要的意义,在一个活细胞中同时进行着几百种不同的反应,这都是借助于细胞内部相当数量的酶来完成的,它们的反应与其他催化反应一直,催化率与温度、酸碱值以及敏感性方面都有着一定的关系。
1.2 酶催化特点酶催化技术在应用的过程中存在着自己独特的方面,酶催化剂在通常情况下都具备着反应条件温和,具备着很高的区域选择性和立体选择性,并且反应大多数都可以在水中直接进行着。
随着制药工业对手工业化合物需求量的不断增加、人类环保意识的不断增强,酶催化技术越来越受到人们的重视,已成为化学制药领域研究最多的技术之一。
同时,近年来,随着生物技术和基因工程的应用,酶催化技术的性能也得到了很大的提升,酶催化反应以及生成成本也得到了显著的提升。
在这种社会背景下,人们对酶催化剂的认识越来越深入,极大的改变了传统酶催化反应要求提出了许多的新内容。
1.3 酶催化技术发展传统的酶催化反应主要在水相中进行,但自1987年Kilibanov等用脂肪酶粉或固定化酶在几乎无水的有机溶剂中成功地催化合成了肽以及手性的醇、脂和酞胺以来,对酶在非水相介质的催化反应技术的开发及研究报道迅速增加,特别在手性药物的不对称合成及手性药物拆分的生物技术开发中得到了很多应用。
由于脂肪酶本身是一种界面酶,在非水介质中比较稳定,因此,具有良好的工业化应用前景。
非水相酶催化反应是酶催化反应中的一个重要方面。
非水相溶剂通常具有可增加底物溶解度,改变反应的平衡方向, 提高反应的立体选择性,抑制水参与的副反应,易于消除底物和产物的抑制作用,加快生物催化的速率和效率等优点,在药物及药物中间体和食品等方面具有较大的应用价值。
目前非水相中的酶催化技术已衍生出以下几类体系:无溶剂系统无溶剂系统是指以纯底物作为溶剂,没有其他溶剂的稀释和参与。