弹簧振子的简谐振动实验报告
- 格式:docx
- 大小:108.71 KB
- 文档页数:5
弹簧振子的简谐振动【实验目的】:1.测量弹簧振子的振动周期T2.求弹簧的劲度系数k 和有效质量m【实验器材】:气垫导轨、滑块、附加砝码、弹簧、秒表【实验原理】:1.弹簧振子的简谐运动方程质量为m 1的质点由两个弹簧拉着, 弹簧的劲度系数分别为k 当m 偏离平衡位置的距离为x 时, 它受弹簧作用力并用牛顿第二定律写出方程−kx = mx ¨方程的解为:x = A sin(ω0t + ϕ0) 即物体作简谐振动, 其中ω0 =kmω0是振动系统的固有角频率. m = m 1 + m 0 是振动系统的有效质量, m 0是弹簧的有效质量. A 是振幅, φ0是初相位, ω0有系统本身决定, A 和φ0由初始条件决定. 系统的振动周期: T =2πω0= 2π,mk=2πm 1 + m 0k在实验中改变质量,测出相应的T ,考虑T 与m 的关系,从而求出劲度系数与有效质量【实验过程】:1.将各装置装好并调到工作状态2.将滑块从平衡位置拉到某一合适位置,然后放手让滑块振动与此同时按下秒表,当振子振动10个周期时再按下秒表,记录下时间,重复测量10次得到每次的振动周期如下表所示: 次数 1 2 3 4 5 6 7 8 9 10 T/s 1.7531.7531.7531.7541.7431.7531.7561.7531.7501.7563.称量滑块质量为319.748g ,四个砝码的质量为67.862g ,六个砝码的质量为100.087g ,将四个砝码对称地放到滑块的两边,重复过程2,得到下表一的数据。
将六个砝码对称地放到滑块的两边,同样重复过程2,得到下表二的数据。
表一:次数 1 2 3 4 5 6 7 8 9 10T/s 1.922 1.932 1.934 1.934 1.919 1.925 1.925 1.918 1.928 1.929表二:次数 1 2 3 4 5 6 7 8 9 10T/s 2.004 2.019 1.984 2.000 1.996 1.994 1.997 1.994 1.985 1.9974.用逐差法处理上述数据得弹簧等效劲度系数k=4.39N/m弹簧等效质量m=0.218g丁朝阳2012301020025。
简谐振动研究实验报告简谐振动研究实验报告引言:简谐振动是物理学中一种重要的振动形式,广泛应用于各个领域。
本实验旨在通过实际操作,观察和分析简谐振动的特性,并探讨其在实际应用中的意义。
一、实验目的本实验的主要目的是通过实验操作,探究简谐振动的特性,理解其在物理学中的重要性,并了解其在实际应用中的意义。
二、实验装置与原理本实验所使用的装置主要包括弹簧振子、振动台、计时器等。
弹簧振子由一根弹簧和一块质量较小的物体组成,通过振动台的支撑使其能够自由振动。
当弹簧振子受到外力作用时,会发生简谐振动。
简谐振动的原理是指在没有阻尼和外力干扰的情况下,振动系统的加速度与位移成正比。
根据胡克定律,弹簧的伸长或缩短与所受力成正比,即F = -kx,其中F为弹簧受力,k为弹簧的劲度系数,x为弹簧的伸长或缩短量。
根据牛顿第二定律,F = ma,其中m为物体的质量,a为物体的加速度。
将两个方程联立,可以得到简谐振动的运动方程:m(d^2x/dt^2) + kx = 0。
三、实验步骤与结果1. 将弹簧振子固定在振动台上,并调整振动台的位置,使其水平放置。
2. 给弹簧振子施加一个初位移,然后释放。
3. 使用计时器记录振子的振动周期,并测量振子的振幅。
4. 重复实验多次,取平均值。
通过实验记录,我们得到了不同振幅下振子的振动周期,并绘制了振幅与振动周期的关系曲线。
实验结果表明,振幅与振动周期成正比,即振幅越大,振动周期越长。
四、实验讨论通过本实验,我们深入了解了简谐振动的特性。
简谐振动的周期与振幅之间的关系是非常重要的,它在许多领域都有实际应用。
在物理学中,简谐振动是许多振动系统的基础。
例如,弹簧振子可以模拟许多实际系统,如摆钟、天体运动等。
通过研究简谐振动,我们可以更好地理解这些系统的运动规律。
此外,简谐振动在工程学中也有广泛的应用。
例如,建筑物的地震响应可以用简谐振动模型来描述,通过研究建筑物的简谐振动特性,可以预测其在地震中的表现,从而提高建筑物的抗震能力。
简谐振动实验报告简谐振动实验报告引言简谐振动是物理学中的一个重要概念,广泛应用于各个领域。
本实验旨在通过对简谐振动的研究,探究其特性和相关参数的测量方法。
通过实验数据的分析和处理,我们可以更好地理解简谐振动的本质,并应用于实际问题中。
实验目的本实验的主要目的是通过测量弹簧振子的周期和振幅,确定弹簧的劲度系数和振子的质量,并验证简谐振动的特性。
实验装置和原理实验装置主要由弹簧振子、计时器、测量尺和质量块组成。
弹簧振子由一根弹簧和一块质量块构成,质量块可以通过移动位置来改变振子的质量。
当质量块处于平衡位置时,弹簧处于自然长度,此时振子无振动。
当质量块偏离平衡位置时,弹簧受到拉力或压力,产生回复力使振子回到平衡位置,形成简谐振动。
实验步骤1. 调整振子的质量块位置,使其处于平衡位置。
2. 将质量块稍微偏离平衡位置,释放振子并启动计时器。
3. 记录振子经过一个完整周期所用的时间,并测量振子的振幅。
4. 重复上述步骤多次,取平均值作为最终结果。
实验数据处理与分析根据实验记录的数据,我们可以计算出振子的周期和振幅。
振子的周期可以通过测量振子经过一个完整周期所用的时间来计算,而振幅可以通过测量振子最大偏离平衡位置的距离来确定。
通过对多组实验数据的处理和分析,我们可以得到振子的平均周期和平均振幅。
进一步,我们可以利用振子的周期和振幅来计算弹簧的劲度系数和振子的质量。
根据简谐振动的基本公式,我们可以得到以下计算公式:1. 劲度系数k = (2π/T)^2 * m2. 质量m = k * (T/2π)^2其中,T为振子的周期,m为振子的质量。
实验结果与讨论通过实验数据的处理和计算,我们得到了振子的平均周期和平均振幅。
利用这些数据,我们可以计算出弹簧的劲度系数和振子的质量。
在实验中,我们发现振子的周期与振幅之间存在一定的关联。
当振幅较大时,振子的周期相对较长;而当振幅较小时,振子的周期相对较短。
这与简谐振动的特性相符合。
弹簧振子实验研究简谐振动的特性引言:弹簧振子作为物理学中简谐振动的典型例子,具有重要的研究价值。
本文将通过对弹簧振子的实验研究,探讨简谐振动的特性及其相关原理,以期进一步理解振动现象。
一、实验装置及原理实验中,我们需要准备以下装置:1. 弹簧:具有一定弹性,可以发生伸缩运动;2. 臂架:用于支撑弹簧及附加质量;3. 质量块:用于调节弹簧振子的质量;4. 计时器:用于测量振动的周期。
在弹簧振子实验中,弹簧的一端固定在臂架上,另一端连接质量块。
当质量块发生位移时,弹簧将受到弹性力的作用,从而形成振动。
根据胡克定律,弹簧的弹性力与其伸长或缩短的长度成正比,反方向相反。
因此,弹簧振子的简谐振动可以通过以下公式描述:F = -kx其中,F为弹簧受到的弹性力,k为弹簧的劲度系数,x为质量块的位移。
二、实验步骤及结果在实验过程中,我们按照以下步骤进行操作:1. 调整弹簧振子的初始状态,使其处于平衡位置;2. 加入一定质量的质量块,并轻轻拉伸或压缩弹簧,使其产生振动;3. 使用计时器测量振动的周期,并记录相应数据;4. 重复实验多次,取得一组准确可靠的数据。
根据实验数据的记录,我们可以得出以下结论:1. 振动周期与质量无关:实验中,我们可以通过改变质量块的质量来观察振动的周期变化。
然而,不论质量的大小如何,振动周期都保持不变,即质量对振动周期没有影响。
2. 振动周期与弹簧劲度系数成正比:通过实验数据的分析,我们发现振动周期与弹簧劲度系数k成正比。
当劲度系数增大时,振动周期也随之增大,反之亦然。
3. 振动振幅与劲度系数成反比:实验中,我们还发现振动的振幅与弹簧劲度系数k成反比。
当劲度系数增大时,振动的振幅减小,反之亦然。
三、实验误差分析在实验过程中,由于各种因素的干扰,可能会导致实验误差的产生。
其中一些主要因素包括:1. 摩擦力的影响:实际操作中,弹簧振子可能会受到一定的摩擦力的阻碍,从而导致振动周期的变化。
2. 弹簧非理想性:实际弹簧可能存在伸缩不均匀或弹性系数不准确等问题,也会对实验结果产生一定的影响。
弹簧振子运动规律的实验研究实验报告实验报告:弹簧振子运动规律的实验研究1.引言弹簧振子是物理学中常见的一个物体,它是由一根弹簧和一个质点组成的。
弹簧可视为一个线性回复力系统,具有回复力与位移成正比的特性。
在本实验中,我们将研究弹簧振子的运动规律。
2.实验目的(1)通过实验测量弹簧振子的周期并计算其频率;(2)验证弹簧振子的运动规律。
3.实验器材弹簧振子装置、定时器、质量块、标尺。
4.实验步骤(1)将弹簧振子装置固定至实验台上,并调整至水平位置。
(2)在弹簧振子下方加一个质量块,记录下质量块的重量。
(3)用标尺测量质量块与弹簧静止时的伸长长度,并记录下来。
(4)将质量块拉起并放手,用定时器计时,记录下质量块振动的时间t1(5)重复步骤(4)多次,取得多次实验数据,并求出平均值。
(6)重复以上实验步骤,分别改变质量块的质量和弹簧的伸长长度。
5.数据处理(1)计算弹簧振子的周期T和频率f,公式如下:T=2t1;f=1/T(2)通过改变质量块的质量,绘制弹簧振子的质量块质量与振动周期T的关系曲线。
(3)通过改变弹簧的伸长长度,绘制弹簧的伸长长度与振动周期T的关系曲线。
6.实验结果与分析(1)通过实验数据计算弹簧振子的周期T和频率f,并绘制出质量块质量与周期T的关系曲线。
(2)通过实验数据计算弹簧的伸长长度与周期T的关系,并绘制出其关系曲线。
(3)通过实验数据分析,发现质量块质量增大,振动周期T也增大,符合弹簧振子的运动规律。
而伸长长度增大,周期T也增大,也符合弹簧振子的运动规律。
7.结论(1)通过实验测得弹簧振子的周期T和频率f,并验证了弹簧振子的周期与频率之间的关系T=1/f。
(2)通过实验研究发现,质量块质量增大和弹簧的伸长长度增大,都会使弹簧振子的周期变大,符合弹簧振子的运动规律。
8.实验改进(1)增加实验次数,提高数据的可靠性。
(2)使用更精确的测量器材,提高测量的准确性。
(3)进行更多的条件变化,如改变弹簧的劲度系数等,来进一步研究弹簧振子的运动规律。
X X 大学实验报告课程名称 基础物理实验 实验项目名称 气轨上的弹簧振子的简谐振动指导教师 学生姓名 学号 系 同组姓名实验日期 年 月 日 成绩评定【实验目的】1.观察简谐振动现象,测定简谐振动的周期。
2.求弹簧的劲度系数k 和有效质量m 03.观察简谐振动的运动学特征4.验证机械能守恒定律【实验原理】1.弹簧振子的简谐运动在水平的气垫导轨上,两个相同的弹簧中间系一滑块,滑块做往返振动,如图1所示。
如果不考虑滑块运动的阻力,那么,滑块的振动可以看成是简谐振动。
设质量为m 1的滑块处于平衡位置,每个弹簧的伸长量为x 0,当m 1距平衡点x 时,m 1只受弹性力-k 1(x +x 0)与-k 1(x -x 0)的作用,其中k 1是弹簧的倔强系数。
根据牛顿第二定律,其运动方程为(1) ,01m m m =+ (2)式中:m —振动系统的有效质量;m 0—弹簧的有效质量;m 1—滑块和砝码的质量。
方程(1)的解为00sin()x A t ωϕ=+ (3)说明滑块是做简谐振动。
式中:A —振幅;0ϕ—初相位。
0ω= (4)0ω叫做振动系统的固有频率,由振动系统本身的性质所决定。
振动周期T 与0ω有下列关系:图1简谐运动原理图02/22T πω=== (5)(5)式两边平方即可得到22104()/T m m k π=+ (6)在实验中,我们改变m 1,测出相应的T ,采用作图法获得T 2-m 的曲线,该曲线应该为一条直线,直线的斜率为24/k π,采用最小二乘法可以计算出该斜率值,并得到k 的值。
同时,可以从该条直线的截距获取m 0的值。
也可采用逐差法求解k 和m 0的值。
2.简谐运动的运动学特征描述 对(2)式在时间上进行求导即可得到000cos()dxv A t dtωωϕ==+ (7) 由(7)式可见,速度v 与时间有关,且随时间的变化关系为简谐振动,角频率为0ω,振幅为0A ω,而且速度v 的相位比x 超前π/2。
简谐振动实验报告实验题目:简谐振动实验实验目的:1. 通过实验观察和研究简谐振动的特性;2. 掌握用示波器观察振动现象;3. 学会测量和计算简谐振动的周期、频率和振幅。
实验器材:1. 弹簧振子装置;2. 示波器;3. 电源;4. 滑动准线;5. 移动铅笔;6. 计时器。
实验原理:简谐振动是指一个物体在平衡位置附近以一定频率来回振动。
简谐振动满足以下条件:1. 振动的加速度与它的位移成正比,且方向相反;2. 振动的加速度与质点的位置无关。
实验步骤:1. 将弹簧振子装置固定在实验台上,并调整弹簧振子的自由长度,使其平衡时垂直于地面。
2. 将振子的一端连接到示波器上,将示波器调至合适的垂直和水平灵敏度。
3. 用手轻推振子,使其做简谐振动,并用示波器观察振动的波形。
4. 在示波器屏幕上放置一根滑动准线,使用移动铅笔将振动的一侧轨迹点连接起来,得到一个波形图。
5. 阅读示波器上的标尺,测量振子的振幅、周期和频率,并记录实验数据。
6. 重复实验步骤3~5多次,得到更多的测量数据。
实验数据:1. 振幅:(根据示波器标尺读数获得的数值)2. 周期:(根据示波器标尺读数获得的数值)3. 频率:(根据示波器标尺读数获得的数值)实验结果:绘制出振子的振动波形图,并根据实验数据计算出的振幅、周期和频率。
实验讨论:1. 通过观察波形图,分析振子的振动特点;2. 比较实验数据和理论值,讨论实验误差和可能的原因;3. 探讨简谐振动在不同条件下的变化规律。
实验结论:通过实验我们可以观察到简谐振动的特性,并成功测量出振幅、周期和频率。
实验结果与理论值较为接近,误差较小。
我们可以得出结论:(根据实验结果总结出简谐振动的特性和规律)实验思考:如果将振子的振幅增大,会对周期和频率有什么影响?为什么?。
简谐振动实验实验报告简谐振动实验实验报告引言:简谐振动是物理学中的一个重要概念,它在自然界和工程领域中都有广泛的应用。
本次实验旨在通过实验验证简谐振动的基本特性,并研究其振动的频率与周期之间的关系。
一、实验目的本实验的主要目的有以下几点:1. 验证简谐振动的基本特性,包括振幅、周期、频率等;2. 研究简谐振动的频率与周期之间的关系;3. 探究简谐振动的影响因素,如质量、弹性系数等。
二、实验器材1. 弹簧振子装置2. 弹簧振子支架3. 质量块4. 计时器5. 调整尺6. 实验台三、实验原理简谐振动是指在无外力作用下,系统的振动是以正弦或余弦函数形式变化的振动。
其特点是周期性、等幅性和单一频率。
四、实验步骤1. 将弹簧振子装置固定在支架上,并调整其水平位置。
2. 将质量块挂在弹簧下方,并调整质量块的位置,使其与弹簧垂直。
3. 给质量块一个初速度,使其偏离平衡位置,然后释放。
4. 用计时器记录振子从一个极端位置到另一个极端位置所用的时间,重复多次实验,取平均值。
5. 改变质量块的质量,重复步骤3和4,记录实验数据。
6. 改变弹簧的弹性系数,重复步骤3和4,记录实验数据。
五、实验数据记录与处理1. 质量块质量与振动周期的关系:质量块质量(g)振动周期(s)10 0.520 0.730 0.940 1.150 1.32. 弹簧弹性系数与振动周期的关系:弹簧弹性系数(N/m)振动周期(s)10 0.720 0.630 0.540 0.450 0.3六、实验结果与分析1. 质量块质量与振动周期的关系:根据实验数据可以看出,质量块的质量增加,振动周期也随之增加。
这是因为质量块的质量增加会增加振子的惯性,使得振动周期变长。
2. 弹簧弹性系数与振动周期的关系:实验数据显示,弹簧的弹性系数增加,振动周期减小。
这是因为弹簧的弹性系数增加会增加弹簧的劲度,使得振动周期变短。
七、实验结论通过本次实验,我们验证了简谐振动的基本特性,并研究了质量块质量和弹簧弹性系数对振动周期的影响。
第1篇一、实验背景振动是自然界中最常见的运动形式之一,广泛存在于日常生活中。
为了更好地理解振动的规律和特点,我们设计并完成了一项趣味物理实验,通过观察和测量,揭示了振动的有趣现象。
二、实验目的1. 观察振动现象,了解振动的传播和叠加规律。
2. 通过实验,验证振动系统的固有频率与振幅、周期之间的关系。
3. 探究不同振动系统在共振条件下的特点。
三、实验原理振动是指物体在某个特定值附近作往复变化的现象。
振动系统在受到周期性外力作用时,会产生受迫振动;在没有外力作用时,振动系统会保持原有的振动状态,即自由振动。
共振现象是指振动系统在特定频率下,振动幅度突然增大的现象。
本实验采用简单的振动系统,如弹簧振子、音叉等,通过改变振幅、周期等参数,观察振动系统的变化,并验证振动规律。
四、实验仪器与材料1. 弹簧振子:弹簧、悬挂钩、质量块等。
2. 音叉:钢制音叉、金属棒等。
3. 量角器:用于测量振动角度。
4. 秒表:用于测量振动周期。
5. 砝码:用于改变质量块的质量。
五、实验步骤1. 弹簧振子实验(1)将弹簧振子悬挂在固定钩上,调节质量块的质量,使弹簧振子处于静止状态。
(2)用手推动质量块,使弹簧振子产生振动。
(3)观察并记录振动幅度、周期等数据。
(4)改变质量块的质量,重复实验,观察振动系统的变化。
2. 音叉实验(1)将音叉放置在金属棒上,使音叉产生振动。
(2)用金属棒轻轻敲击音叉,观察并记录振动幅度、周期等数据。
(3)改变音叉的振动频率,重复实验,观察振动系统的变化。
(4)探究音叉在共振条件下的特点。
六、实验结果与分析1. 弹簧振子实验(1)当质量块质量较轻时,振动幅度较小,周期较长。
(2)当质量块质量增加时,振动幅度增大,周期缩短。
(3)当质量块质量达到一定值时,振动幅度突然增大,周期达到最小值,此时为共振现象。
2. 音叉实验(1)当音叉振动频率较低时,振动幅度较小,周期较长。
(2)当音叉振动频率较高时,振动幅度增大,周期缩短。
某位仁兄竟然要我二十几分才让下!!!!哥哥为了大家,传上来了,大家下吧实验5-2 简谐振动的研究自然界中存在着各种各样的振动现象,其中最简单的振动是简谐振动。
一切复杂的振动都可以看作是由多个简谐振动合成的,因此简谐振动是最基本最重要的振动形式。
本实验将对弹簧振子的简谐振动规律和有效质量作初步研究。
【实验目的】1.观察简谐振动现象,测定简谐振动的周期。
2.测定弹簧的劲度系数和有效质量。
3.测量简谐振动的能量,验证机械能守恒。
【实验器材】气轨、滑块、天平、MUJ-5B 型计时计数测速仪、平板档光片1个,“凹”形挡光片1个、完全相同的弹簧2个、等质量骑码10个。
【实验原理】1. 振子的简谐振动本实验中所用的弹簧振子是这样的:两个劲度系数同为1k 的弹簧,系住一个装有平板档光片的质量为m 的滑块,弹簧的另外两端固定。
系统在光滑水平的气轨上作振动,如图5-2-1所示。
当m 处于平衡位置时,每个弹簧的伸长量为0x ,如果忽略阻尼和弹簧的自身质量,当m 距平衡位置x 时,m 只受弹性回复力-k 1(x+x 0)和-k 1(x -x 0)的作用,根据牛顿第二定律得210102()()d xk x x k x x m dt-+--=令 12k k = (5-2-1)则有 22d x kx m dt-=该方程的解为)cos(0ϕω+=t A x (5-2-2)即物体系作简谐振动。
其中图5-2-1 弹簧振子ω=(5-2-3) 是振动系统的固有圆频率。
由于弹簧总是有一定质量的,在深入研究弹簧振子的简谐振动时,必须考虑弹簧自身的质量。
由于弹簧各部分的振动情况不同,因此不能简单地把弹簧自身的质量附加在振子(滑块)的质量上。
可以证明,一个质量为s m 的弹簧与质量为m 的振子组成的振动系统,其振动规律与振子质量为(m+m 0)的理想弹簧振子的振动规律相同。
其振动周期为2T π= (5-2-4) 其中s cm m =0,称为弹簧的有效质量,c 为一常数。
Simple harmonic motion of soring oscillator The purpose:
(1)测量弹簧振子的振动周期T。
(2)
The principles:
x
根据牛顿第二定律,其运动方程为
令
则有
①方程①的解为
说明滑块做简谐振动。
式中,A
固有圆频率。
有
且
式中,m
的质量。
T
②
T,考虑T
与m
The procedure:
(1)按气垫导轨和计时器的使用方法和要求,将仪器调整到正常工作状态。
(2)将滑块从平衡位置拉至光电门左边某一位置,然后放手让滑块振动,记
5位有效数字,共测量10次。
(3)再按步骤(2
复步骤(2)共测量10次。
T,与T相应的振动系统有效质量是
量。
(4)在滑块上对称地加两块砝码,再按步骤(2)和步骤(3)测量相应的周
(5
T。
式中,
“4
块砝码的质量”
“6块砝码的质量”
注意记录每次所加砝码的号码,以便称出各自的质量。
(6)测量完毕,先取下滑块、弹簧等,再关闭气源,切断电源,整理好仪器。
(7)在天平上称出两弹簧的实际质量并与其有效质量进行比较。
Data processing: 1.Data record
(1)= 221.582 g
(2)= 1393.045 ms
= 256.047 g
= 1494.920 ms (3= 288.077 g
T3= 1583.270 ms (4= 320.564 g
= 1667.145 ms
2.result
作T^2‐m1图,如果T 与mi 的关系确如理论所言,则
T^2‐mi 图应为一直线,
其斜率为4*π^2/k,截距为4π^2/km0.
从图中可以得知,直线的斜率为 8.476 ,截距为 0.063 ,代入公式中可得: = 7.433 g.
Error analysis
(1)两个弹簧并不完全一样,质量和倔强系数不一样。
可以检验测量两个弹簧的倔强系数,方法是:将两个弹簧互相挂着,先固定 A 弹簧的一个自由端,将两弹簧竖起,测量 A 的伸长量。
将两弹簧倒过来使B 弹簧在上,固定其自由端,测量其伸长量。
以此判断两弹簧是否一样。
事实上,两弹簧的倔强系数不相同并不影响振子做简谐运动。
(2)由于光电门的计时原理是挡住光时(获得高电压),开始计时,有光时(低电压)停止计时,可以测量了在一个挡光周期中所需时间t以获得普遍误差。
得到其对实验结果的影响。
(3)考虑到阻力作用,滑块的振幅会不断减小。
阻力与速度成正相关且方向周期性改变,会导致实际的运动是两个简谐运动的组合(左边一个,右边一个,平衡位置不重合)。
两个平衡位置间的距离与阻力大小成正相关,所以为了减小误差,应该使振幅不能过大,并且加大气垫导轨气流速度减小摩擦。
(4)无法准确的读到滑块的位置,因为没有明确的标示,另外光电计数器的位置也没法测得很准。
滑块放手的时候容易给它一个初速度,这会影响测量。
(5)对导轨调平。
PS:弹簧振子运动时会导致滑块运动甚至掉落,不仅影响实验进程还会对数据造成干扰,需注意。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注!)。