流函数和势函数公式
- 格式:docx
- 大小:36.84 KB
- 文档页数:2
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
流体力学计算公式流体力学是研究流体的运动规律和性质的一门学科,广泛应用于工程和科学领域中。
在流体力学的研究过程中,有许多重要的计算公式和方程被提出和应用。
下面是一些重要的流体力学计算公式。
1.压力力学方程:压力力学方程是描述流体力学中流体静压力分布和变化的方程。
对于稳定的欧拉流体,方程为:∇P=-ρ∇φ其中,P是压力,ρ是流体的密度,φ是流体的势函数。
2.欧拉方程:欧拉方程用于描述流体的运动,它是流体运动的基本方程之一:∂v/∂t+v·∇v=-1/ρ∇P+g其中,v是流体的速度,P是压力,ρ是流体的密度,g是重力加速度。
3.奇异体流动方程:奇异体流动是流体与孤立涡流动的一种类型,其方程为:D(D/u)/Dt=0其中,D/Dt是对时间的全导数,u是速度向量。
4.麦克斯韦方程:5.纳维-斯托克斯方程:纳维-斯托克斯方程是描述流体的动力学行为的方程,它是流体力学中最重要的方程之一:∂v/∂t+v·∇v=-1/ρ∇P+μ∇²v其中,v是速度矢量,P是压力,ρ是密度,μ是动力黏度。
6.贝努利方程:贝努利方程描述了在不可压缩流体中流体静力学的变化。
贝努利方程给出了伯努利定律,即沿着一条流线上的速度增加,压力将降低,反之亦然。
贝努利方程的公式为:P + 1/2ρv^2 + ρgh = const.其中,P是压力,ρ是密度,v是流体速度,g是重力加速度,h是流体高度。
7.流量方程:流量方程用于描述流体在管道或通道中的流动。
Q=A·v其中,Q是流量,A是截面积,v是流速。
8.弗朗脱方程:弗朗脱方程是描述管道中流体流动的方程,其中考虑了摩擦阻力的影响:hL=f(L/D)(v^2/2g)其中,hL是管道摩擦阻力头损失,f是阻力系数,L是管道长度,D 是管道直径,v是流速,g是重力加速度。
以上是一些重要的流体力学计算公式。
这些公式和方程在流体力学中具有广泛的应用,是工程和科学领域中进行流体流动分析和计算的基础。
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:pp V V d d 1d d 1p ρρβ=-= 流体的体积弹性系数计算式:ρρd d d d pV p VE =-= 流体的体积膨胀系数计算式:TT V V d d 1d d 1T ρρβ-==2.等压条件下气体密度与温度的关系式:t βρρ+=10t , 其中2731=β。
3.牛顿内摩擦定律公式:yu AT d d μ±= 或 y uA T d d μτ±==恩氏粘度与运动粘度的转换式:410)0631.00731.0(-⨯-=EE ν 4.欧拉平衡微分方程式: ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z p f y p f x pf z y x ρρρ 和 ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z pf r p f r p f z r ρθρρθ 欧拉平衡微分方程的全微分式: )d d d (d z f y f x f p z y x ++=ρ )d d d (d z f r f r f p z r ++=θρθ 5.等压面微分方程式: 0d d d =++z f y f x f z y x0d d d =++z f r f r f z r θθ6.流体静力学基本方程式:C z p=+γ或2211z p z p +=+γγ或 2211z g p z g p ρρ+=+相对于大气时: C z g p a m =-+)(ρρ 或 2211)()(z g p z g p a m a m ρρρρ-+=-+ 7.水静力学基本方程式:h p p γ+=0,其中0p 为自由液面上的压力。
8.水平等加速运动液体静压力分布式:)(0gz ax p p +-=ρ;等压面方程式:C z g ax =+;自由液面方程式:0=+z g ax 。
注意:p 0为自由液面上的压力。
9.等角速度旋转液体静压力分布式:)2(220z gr p p -+=ωγ;等压面方程式:C z g r =-222ω;自由液面方程式:0222=-z g r ω。
流函数和势函数公式
流体力学中的流函数可以用来描述流体的速度场。
速度场表示流体在
空间中各点的速度分布情况。
对于无旋的流动,可以引入流函数,流函数
可以唯一地确定流线。
流线是流体在给定时刻通过各点的轨迹线。
在无旋
的流动中,速度场可以通过流函数的梯度得到。
流函数可以按照如下公式
定义:
ψ=ψ(x,y,z)
其中,ψ是流函数,表示速度场在其中一截面上的流函数值,
(x,y,z)是该截面上的坐标。
流函数满足拉普拉斯方程:
∇²ψ=0
其中,∇²是拉普拉斯算子,表示流函数对坐标的二阶混合偏导数的和,等于零表示流函数满足拉普拉斯方程。
流函数的物理意义是流线沿着这个函数的等值线的方向运动。
通过给
定流函数值,可以确定流线的轨迹。
势函数是流体力学中另一个重要的数学工具。
势函数用来描述无旋的
流动场中的速度场。
对于无旋的流动,速度场可以通过势函数的梯度得到。
势函数可以按照如下公式定义:
φ=φ(x,y,z)
其中,φ是势函数,表示速度场在其中一截面上的势函数值,
(x,y,z)是该截面上的坐标。
势函数满足亥姆霍兹方程:
∇²φ=0
势函数的物理意义是速度场是势函数的梯度。
通过给定势函数值,可
以确定速度场的分布情况。
流函数和势函数是流体力学中流动的描述工具。
通过流函数和势函数,可以方便地描述流体的流动和速度场。
流函数适用于无旋流动,通过流函
数的梯度可以得到速度场。
势函数适用于无旋流动,通过势函数的梯度可
以得到速度场。
流函数和势函数是相互对偶的工具,二者之间有一个互逆
的关系。
在实际应用中,流函数和势函数在求解流体问题中起着重要的作用。
通过流函数和势函数,可以方便地计算速度场和流线,从而解决各种涉及
流体流动的问题。
总结起来,流函数和势函数是流体力学中用来描述流动的两个重要的
数学工具。
流函数用来描述无旋流动的速度场,势函数用来描述无旋流动
场中的速度场。
二者分别满足拉普拉斯方程和亥姆霍兹方程。
流函数和势
函数在解决流体流动问题中具有重要的作用。