流函数和势函数公式
- 格式:docx
- 大小:37.42 KB
- 文档页数:3
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:β1dρp=-1dVVdp=ρdp 流体的体积弹性系数计算式:E=-VdpdpdV=ρdρ 流体的体积膨胀系数计算式:βdVT=1VdT=-1dρρdT2.等压条件下气体密度与温度的关系式:ρ0t=ρ1+βt,其中β=1273。
3T=±μAdudy 或τ=TduA=±μdy 恩氏粘度与运动粘度的转换式:ν=(0.0731E-0.0631E)⨯10-4f1∂p⎫x-ρ∂x=0⎪fr-1∂p=0⎫⎪ρ∂r⎪⎪4.欧拉平衡微分方程式: f⎪y-1∂pρ∂y=0⎪⎬和fθ-1∂pρ=0⎬ f1∂p⎪r∂θρ∂z=0⎪⎪⎪⎭f1∂p⎪z-z-ρ∂z=0⎪⎭欧拉平衡微分方程的全微分式:dp=ρ(fxdx+fydy+fzdz) dp=ρ(frdr+fθrdθ+fzdz) 5 fxdx+fydy+fzdz=0frdr+fθrdθ+fzdz=06pγ+z=C 或 p1γ+zp21=γ+z2 或p1+ρgz1=p2+ρgz2相对于大气时:pm+(ρ-ρa)gz=C 或pm1+(ρ-ρa)gz1=pm2+(ρ-ρa)gz27p=p0+γh,其中p0为自由液面上的压力。
8.水平等加速运动液体静压力分布式:p=p0-ρ(ax+gz);等压面方程式:ax+gz=C;自由液面方程式:ax+gz=0。
注意:p0为自由液面上的压力。
1 9.等角速度旋转液体静压力分布式:p=p0+γ(ω2r22g-z);等压面方程式:ω2r22-gz=C;自由液面方程式:ω2r22-gz=0。
注意:p0为自由液面上的压力。
10.静止液体作用在平面上的总压力计算式:P=(p0+γhc)A=pcA,其中p0为自由液面上的相对压力。
压力中心计算式:yD=yc+γsinαIxc (p0+γycsinα)AIxcycA或yD-yc=IxcycA。
当自由液面上的压力为大气压时:yD=yc+矩形截面的惯性矩Ixc计算式:Ixc=圆形截面的惯性矩Ixc计算式:Ixc11bh3;三角形截面的惯性矩Ixc计算式:Ixc=bh3 1236π4=d 6411.静止液体作用在曲面上的总压力的垂直分力计算式:Pz=p0Az+γVP,注意:式中p0应为自由液面上的相对压力。
流函数和势函数公式(一)资深创作者列举流函数和势函数公式的相关公式,并进行例解释。
流函数公式二维空间中的流函数公式在二维空间中,流函数用于描述流体的运动状态。
对于二维流动,在直角坐标系下,流函数的公式可以表示为:ψ = ∫(Vx dy - Vy dx)其中,Vx和Vy分别表示流体在x和y方向的速度分量。
ψ表示流函数。
举例:假设在二维平面内,某个点(x, y)的速度分量分别为Vx = x*y和Vy = x^2。
那么该点处的流函数可以计算如下:ψ = ∫(x*y dy - x^2 dx)三维空间中的流函数公式在三维空间中,流函数的公式稍有不同。
在直角坐标系下,流函数可以表示为:ψ = ∫(Vx dy dz - Vy dx dz + Vz dx dy)其中,Vx、Vy和Vz分别表示流体在x、y和z方向的速度分量。
ψ表示流函数。
Vx = x^2,Vy = y^2和Vz = z^2。
那么该点处的流函数可以计算如下:ψ = ∫(x^2 dy dz - y^2 dx dz + z^2 dx dy)势函数公式二维空间中的势函数公式在二维空间中,势函数用于描述流体的势能分布。
对于二维流动,在直角坐标系下,势函数的公式可以表示为:φ = ∫(Vx dx + Vy dy)其中,Vx和Vy分别表示流体在x和y方向的速度分量。
φ表示势函数。
举例:假设在二维平面内,某个点(x, y)的速度分量分别为Vx = 2x和Vy = 3y。
那么该点处的势函数可以计算如下:φ = ∫(2x dx + 3y dy)三维空间中的势函数公式在三维空间中,势函数的公式稍有不同。
在直角坐标系下,势函数可以表示为:φ = ∫(Vx dx + Vy dy + Vz dz)其中,Vx、Vy和Vz分别表示流体在x、y和z方向的速度分量。
φ表示势函数。
Vx = x^2,Vy = y^2和Vz = z^2。
那么该点处的势函数可以计算如下:φ = ∫(x^2 dx + y^2 dy + z^2 dz)总结:•流函数公式和势函数公式分别用于描述流体的运动状态和势能分布。
一、流函数流函数概念的提出是仅对不可压缩流体的平面流动而言的。
所谓平面流动是指流场中各点的流速都平行于某一固定平面,并且各物理量在此平面的垂直方向上没有变化。
由不可压缩流体的平面流动的连续方程得du dv--- =—―dx dy平面流动的流线微分方程为吗一血" ⑵式(1)是式(2)成为某一函数的全微分的必要且充分的条件,即于是很显然,在流线上(1屮二0或屮二C。
每条流线对应一个常数值, 所以称函数屮为流函数。
对于不可压缩流体的平面流动,用极坐标表示的连续方程、流函数的微分和速度分量分别为:(1)dr dddy/流函数具有明确的物固愿契:平面流动中两条流线间单位厚度通过的体积流量等于两条流线上的流函数常数之差。
在流函数屮的定义中,为保证流函数变化值(1屮与流量增量值dq、同号,规定绕B点逆时针方向穿过曲线AB的流量为正,反之为负,这里的流量4,.是指通过z方向为单位高度的柱面的体积流量。
通过A点的流线的流函数值屮1 ,通过B点的流线的流函数值屮2 ,则通过AB柱面的体积流量为¥ r w 辛q v = \V -dZ = J \u cos(n7 x) +v cos(再y)](SA A["字 + v(-务问二j (T -vdx)AB\(1屮=屮2_屮\A在引出流函数这个概念时,既没有涉及流体是粘性的还是非粘性的,也 没有涉及流体是有旋的还是无旋的。
所以,无论是理想流体还是粘性流 体,无论是有旋流动还是无旋流动,只要是不可压缩流体的平面流动, 就存在流函数,dv du .----- —=0对于xoy 平面内的无旋流动,有CO Z =0,即:去Oy口2 才屮 d 2i// 门VV=—r + —r=0也可得dx创即不可压缩流体的平面无旋流动的流函数满足拉普拉斯方程,也是调和 函数。
对于极坐标系,该满足拉普拉斯方程为d 2u/ 1 du/ 1 d 2u/ c+ -- +——^=0 dr 2 r dr r 2 d02二、速度势函数屮】对于无粘性(理想)流体的无旋流动而言,由斯托克斯定理可知, 沿流场中任意封闭周线的速度线积分,即速度环量均为零。
1738年瑞士数学家:伯努利在名著《流体动力学》中提出了伯努利方程。
1755年欧拉在名著《流体运动的一般原理》中提出理想流体概念,并建立了理想流体基本方程和连续方程,从而提出了流体运动的解析方法,同时提出了速度势的概念。
1781年拉格朗日首先引进了流函数的概念。
1826年法国工程师纳维,1845年英国数学家、物理学家斯托克思提出了著名的N-S方程。
1876年雷诺发现了流体流动的两种流态:层流和紊流。
1858年亥姆霍兹指出了理想流体中旋涡的许多基本性质及旋涡运动理论,并于1887年提出了脱体绕流理论。
19世纪末,相似理论提出,实验和理论分析相结合。
1904年普朗特提出了边界层理论。
20世纪60年代以后,计算流体力学得到了迅速的发展。
流体力学内涵不断地得到了充实与提高。
理想势流伯努利方程(3-14)或(3-15)物理意义:在同一恒定不可压缩流体重力势流中,理想流体各点的总比能相等即在整个势流场中,伯努利常数C 均相等。
(应用条件:“”所示)符号说明二、沿流线的积分1.只有重力作用的不可压缩恒定流,有2.恒定流中流线与迹线重合:沿流线(或元流)的能量方程:(3-16)注意:积分常数C,在非粘性、不可压缩恒定流流动中,沿同一流线保持不变。
一般不同流线各不相同(有旋流)。
(应用条件:“”所示,可以是有旋流)流速势函数(势函数)观看录像>>•存在条件:不可压缩无旋流,即或必要条件存在全微分d直角坐标(3-19)式中:——无旋运动的流速势函数,简称势函数。
•势函数的拉普拉斯方程形式对于不可压缩的平面流体流动中,将(3-19)式代入连续性微分方程(3-18),有:或(3-20)适用条件:不可压缩流体的有势流动。
点击这里练习一下极坐标(3-21)流函数1.流函数存在条件:不可压缩流体平面流动。
直角坐标连续性微分方程:必要条件存在全微分d y(3-22)式中:y——不可压缩流体平面流动的流函数。
适用范围:无旋流、有旋流、实际流体、理想流体的不可压缩流体的平面流动。
流函数和势函数公式流体力学中的流函数可以用来描述流体的速度场。
速度场表示流体在空间中各点的速度分布情况。
对于无旋的流动,可以引入流函数,流函数可以唯一地确定流线。
流线是流体在给定时刻通过各点的轨迹线。
在无旋的流动中,速度场可以通过流函数的梯度得到。
流函数可以按照如下公式定义:ψ=ψ(x,y,z)其中,ψ是流函数,表示速度场在其中一截面上的流函数值,(x,y,z)是该截面上的坐标。
流函数满足拉普拉斯方程:∇²ψ=0其中,∇²是拉普拉斯算子,表示流函数对坐标的二阶混合偏导数的和,等于零表示流函数满足拉普拉斯方程。
流函数的物理意义是流线沿着这个函数的等值线的方向运动。
通过给定流函数值,可以确定流线的轨迹。
势函数是流体力学中另一个重要的数学工具。
势函数用来描述无旋的流动场中的速度场。
对于无旋的流动,速度场可以通过势函数的梯度得到。
势函数可以按照如下公式定义:φ=φ(x,y,z)其中,φ是势函数,表示速度场在其中一截面上的势函数值,(x,y,z)是该截面上的坐标。
势函数满足亥姆霍兹方程:∇²φ=0势函数的物理意义是速度场是势函数的梯度。
通过给定势函数值,可以确定速度场的分布情况。
流函数和势函数是流体力学中流动的描述工具。
通过流函数和势函数,可以方便地描述流体的流动和速度场。
流函数适用于无旋流动,通过流函数的梯度可以得到速度场。
势函数适用于无旋流动,通过势函数的梯度可以得到速度场。
流函数和势函数是相互对偶的工具,二者之间有一个互逆的关系。
在实际应用中,流函数和势函数在求解流体问题中起着重要的作用。
通过流函数和势函数,可以方便地计算速度场和流线,从而解决各种涉及流体流动的问题。
总结起来,流函数和势函数是流体力学中用来描述流动的两个重要的数学工具。
流函数用来描述无旋流动的速度场,势函数用来描述无旋流动场中的速度场。
二者分别满足拉普拉斯方程和亥姆霍兹方程。
流函数和势函数在解决流体流动问题中具有重要的作用。
《流体力学与流体机械》(上)主要公式及方程式1.流体的体积压缩系数计算式:pp V V d d 1d d 1p ρρβ=-= 流体的体积弹性系数计算式:ρρd d d d pV p VE =-= 流体的体积膨胀系数计算式:TT V V d d 1d d 1T ρρβ-==2.等压条件下气体密度与温度的关系式:t βρρ+=10t , 其中2731=β。
3.牛顿内摩擦定律公式:y u AT d d μ±= 或 yuA T d d μτ±== 恩氏粘度与运动粘度的转换式:410)0631.00731.0(-⨯-=EE ν 4.欧拉平衡微分方程式: ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z p f y p f x pf z y x ρρρ 和 ⎪⎪⎪⎭⎪⎪⎪⎬⎫=∂∂-=∂∂-=∂∂-010101z pf r p f r p f z r ρθρρθ 欧拉平衡微分方程的全微分式: )d d d (d z f y f x f p z y x ++=ρ )d d d (d z f r f r f p z r ++=θρθ 5.等压面微分方程式: 0d d d =++z f y f x f z y x0d d d =++z f r f r f z r θθ6.流体静力学基本方程式:C z p=+γ或2211z p z p +=+γγ或2211z g p z g p ρρ+=+相对于大气时:Cz g p a m =-+)(ρρ 或2211)()(z g p z g p a m a m ρρρρ-+=-+7.水静力学基本方程式:h p p γ+=0,其中0p 为自由液面上的压力。
8.水平等加速运动液体静压力分布式:)(0gz ax p p +-=ρ;等压面方程式:C z g ax =+;自由液面方程式:0=+z g ax 。
注意:p 0为自由液面上的压力。
9.等角速度旋转液体静压力分布式:)2(220z gr p p -+=ωγ;等压面方程式:C z g r =-222ω;自由液面方程式:0222=-z g r ω。
流函数和势函数公式
流函数与势函数是描述流体运动的两个重要概念,在流体力学中被广泛应用。
本文将介绍流函数和势函数的基本概念、性质以及求解方法。
1.流函数的概念和性质
流函数是描述在二维定常流动中,各个流线上速度矢量的旋转情况的函数。
对于二维流动,假设流体流动的速度场为V(x,y),则流函数
Ψ(x,y)定义为:
V=∇Ψ=(∂Ψ/∂x,∂Ψ/∂y)
其中,∇Ψ是流函数Ψ的梯度向量。
流函数的性质如下:
1)斜率定理:沿着流线的方向,流函数的局部斜率等于流体的速度分量。
2)流线定理:流线上的流函数值保持不变,即Ψ为常数。
3)流函数的连续性:在空间中的流函数是连续的,除非在相应的流体内有边界。
4)流函数的耗散性:流函数对时间是线性的,即流函数在时间方向上是耗散的。
2.势函数的概念和性质
势函数是描述流体在无旋力场中流动时所具备的性质的函数。
无旋力场是指速度场的旋度等于零。
对于二维流动,假设流体流动的速度场为V(x,y),则势函数φ(x,y)定义为:
V=∇φ=(∂φ/∂x,∂φ/∂y)
其中,∇φ是势函数φ的梯度向量。
势函数的性质如下:
1)势函数的梯度向量是速度向量。
2)势流是不可压缩的,即∇·V=0。
3)势函数满足拉普拉斯方程,即∇²φ=0。
4)由于速度场的旋度等于零,势函数是无旋的。
3.流函数和势函数的关系
在二维流动中,流函数和势函数之间存在一种特殊的关系,称为流函数-势函数耦合关系。
根据流函数和势函数的定义,可以得到流函数和势函数的关系:
Ψ = ∫(∂φ/∂y)dx + f(y)
φ = ∫(∂Ψ/∂x)dy + g(x)
其中,f(y)和g(x)是任意常数函数。
根据流函数-势函数耦合关系可以求解流体的速度场,并且满足连续性方程和运动方程。
4.求解流函数和势函数的方法
求解流函数和势函数的方法有多种,常用的方法有分离变量法、解析
法和数值法。
4.1分离变量法
分离变量法是将流函数和势函数分解为各自的变量函数,并通过解偏
微分方程的边值问题来确定这些变量函数。
常用的方法是使用偏微分方程
的分离变量法进行求解。
4.2解析法
解析法是通过推导流场的基本方程,建立适当的变量分布规律,并通
过求解极值问题来确定流函数和势函数。
解析法适用于简单的流动情况,
如圆柱绕流、理想气体压缩等问题。
4.3数值法
数值法是通过离散化流体运动的方程,将偏微分方程转化为代数方程,然后采用数值方法求解的方法。
常用的数值方法有有限差分法、有限元法、经验公式法等。
综上所述,流函数和势函数是描述流体运动的重要概念。
通过流函数
和势函数的引入,可以简化流动问题的求解,并且满足流体的连续性和运
动方程。
选择适当的方法求解流函数和势函数,并应用于具体实际问题,
将会在流体力学领域有着广泛的应用和研究。