举例说明无穷大无穷小及其关系
- 格式:doc
- 大小:12.00 KB
- 文档页数:1
§1.4 无穷小与无穷大无穷小与无穷大是高等数学中两个重要概念,而无穷小与无穷大又有密切的联系。
一 无穷小定义1如果函数)(x f 当()∞→→x x x 或0时的极限为零,那么称函数)(x f 当()∞→→x x x 或0时为无穷小。
例如,由于0limsin 0x x →=,所以函数sin x 当0x →时为无穷小;又如,由于1lim 0x x →∞=,所以函数1x当x →∞时为无穷小。
我们也可以用极限的""εδ-(或N ε-)来描述:对于0,0()εδ∀>∃>或X>0,使得适合不等式00()x x x X δ<-<>或的一切x 所对应的函数值都满足不等式()f x ε<。
则称当0x x →(或x →∞)时,()f x 是无穷小量。
记为0lim ()0x x f x →=(或lim ()0x f x →∞=)。
关于无穷小,我们做以下注释:1 不要把无穷小与很小的数混为一谈,因为无穷小量不是很小的数,它是极限为零的函数任意非零常数(无论多小)极限都不是零。
2 数零是唯一可作为无穷小的常数。
3 无穷小指相对自变量的某一变化过程,而不是量的大小。
例如 当2x →时,函数()2f x x =-是无穷小;而当1x →时,函数()2f x x =-就不是无穷小。
由于无穷小是极限为零的函数,因此无穷小与函数极限之间有着密切关系,下面的定理给出了这种关系。
定理1 若0lim ()()(),x x f x A f x A x α→=⇔=+其中0lim ()0x x x α→=。
二 无穷大在自变量的变化趋势下,函数)(x f 的极限可能存在,也可能不存在,在极限不存在的情形下,我们着重讨论()f x 无限变大的情形。
如果当()∞→→x x x 或0时,对应的函数的绝对值()f x 的极限无限增大,则称函数)(x f 当()∞→→x x x 或0时为无穷大。
举例说明无穷大无穷小及其关系
在自变量的同一变化过程中,无穷大与无穷小具有倒数关系,即当x→a时,f(x)为无穷大,则1/f(x)为无穷小;反之,f(x)为无穷小,且f(x)在a的某一去心邻域内恒不为0时,1/f(x)才为无穷大。
无穷小量是数学分析中的一个概念,在经典的微积分或数学分析中,无穷小量通常以函数、序列等形式出现。
无穷小量即以数0为极限的变量,无限接近于0。
确切地说,当自变量x无限接近x0(或x的绝对值无限增大)时,函数值f(x)与0无限接近,即f(x)→0(或f(x)=0),则称f(x)为当x→x0(或x→∞)时的无穷小量。
特别要指出的是,切不可把很小的数与无穷小量混为一谈。
无穷大的倒数等于无穷小,无穷小的倒数(当其不等于0时,因为此时倒数才有意义,而无穷小量是可能取0的)是无穷大量。
无穷大就是在自变量的某个变化过程中绝对值无限增大的变量或函数。
无穷大与无穷小具有倒数关系,即当x→a是f(x)为无穷大,则1/f(x)为无穷小。
无穷大为数学符号,是一种变量,记作∞。