交大 离散 期末考卷lisan200701ab答案
- 格式:doc
- 大小:124.00 KB
- 文档页数:4
北京交通大学2005-2006学年第一学期《离散数学》期末考试试卷(B)学院_____________ 专业___________________ 班级____________学号_______________ 姓名_____________姓名:学号:班级:□选修□必修一、填空题(共16分,每空2分)1.命题公式G=(P∧Q)→R,则G共有个不同的解释;把G在其所有解释下所取真值列成一个表,称为G的。
ρ=;2.设A={a,{b}},则A的幂集是()A3.设R 是集合A上的二元关系,如果关系R同时具有性、对称性和性,则称R是等价关系。
4.设R 是集合A上的二元关系,如果R是反自反的,则它的关系矩阵的主对角线元素。
5.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以引入推导过程中,这一推理规则叫做。
6.设R 是集合A上的二元关系,如果关系R同时具有自反性、和传递性,则称R是A上的一个偏序关系。
二、选择一个正确答案的代号,填入括号中。
(共16分,每小题2分)1.命题公式(P→Q) ∧ (P→R)的主析取范式中包含极小项()A.P∧Q∧R;B.P∧Q∧⌝R;C.P∧⌝Q∧R;D.P∧⌝Q∧⌝R2.下列谓词公式中()不是命题。
A.(∀x)P(x);B.(∃x)P(x);C.(∀x)(P(x)∨P(y));D.(∃x)(∃y)(P(x) →R(y))3.下列谓词公式中()不正确。
A.(∃x)(A(x) →B) ⇔ (∃x) A(x) →B;B.(∃x)(B →A(x)) ⇔ B →(∃x) A(x);C.(∀x)(B →A(x)) ⇔ B →(∀x) A(x);D.(∀x)(A(x)∨B) ⇔(∀x)A(x)∨B;4.下列命题中正确的是()。
A.a∈{{a}};B.{a}∈{{a}};C.{a}⊆{{a}};D.φ∈{{a}}。
5.由集合运算定义,下列各式正确的有()。
A.X⊆X⋃Y B.X⊇X⋃Y C.X⊆X⋂Y D.Y⊆X⋂Y6.设A,B,C为任意三个集合,下列各命题中正确的是()。
华东交大离散数学试题一与答案一、填空 20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+x E x x B x N x x A 且且(N :自然数集,E + 正偶数) 则=⋃B A {0,1,2,3,4,6} 。
2.A ,B ,C 表示三个集合,文图中阴影部分的集合表达式为A CB -⊕)( 。
3.设P ,Q 的真值为0,R ,S 的真值为1,则)()))(((S R P R Q P ⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式P R S R P ⌝∨∧∨∧)()(的主合取范式为)()(R S P R S P ∨⌝∨⌝∧∨∨⌝ 。
5.若解释I 的论域D 仅包含一个元素,则 )()(x xP x xP ∀→∃ 在I 下真值为 1 。
6.设A={1,2,3,4},A 上关系图为 则 R 2 = {<1,1>, <1,3>, <2,2>, <2,4> } 。
7.设A={a ,b ,c ,d},其上偏序关系R 的哈斯图为R={<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A 。
8.图的补图为A BC。
9.设A={a ,b ,c ,d} ,A 上二元运算如下:* ab c d a b c da b c d b c d a c d a b d a b c那么代数系统<A ,*> a ,有逆元的元素为 a , b , c ,d ,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择 20% (每小题 2分)1、下列是真命题的有(C 、 D ) A . }}{{}{a a ⊆;B .}}{,{}}{{ΦΦ∈Φ;C . }},{{ΦΦ∈Φ;D . }}{{}{Φ∈Φ。
2、下列集合中相等的有( B 、C )A .{4,3}Φ⋃;B .{Φ,3,4};C .{4,Φ,3,3};D . {3,4}。
北京交通大学2007-2008学年第二学期《离散数学基础(信科专业)》期末考试卷(A)学院:____________ _专业:___________________ 班级____________姓名:学号:□选修□必修一、填空题(共10分,每空1分)1.在推理理论中,推导过程中如果一个或多个公式重言蕴涵某个公式,则这个公式就可以引入推导过程中,这一推理规则叫做(T规则)。
2.设A={a,{b}},则A的幂集是P (A)= {Φ, a,{b}, {a,{b}};3.设R 是集合A上的二元关系,如果关系R同时具有自反性、反对称性和传递性,则称R是A上的一个偏序关系。
4.既是满射,又是单射的映射称为1-1映射(双射)。
5.设S为非空有限集,代数系统<P(S),∪>的单位元和零元分别为S和φ。
6.具有n个顶点的无向完全图共有n(n-1)/2条边。
7.简单图是指无环、无重边的图。
8.k-正则图是指所有顶点的度数均为k的的图。
9.Hamilton通路是指通过图中所有顶点一次且仅一次的通路。
10.设G=(E,V)是图,如果G是连通的,则P(G)= 1 。
11.命题公式(P→Q) ∧ (P→R)的主析取范式中包含极小项( A )A.P∧Q∧R;B.P∧Q∧⌝R;C .P ∧⌝Q ∧R ;D .P ∧⌝Q ∧⌝R12. 下列谓词公式中( A )不正确。
A .(∃x)(A(x) →B) ⇔ (∃x) A(x) →B ; B .(∃x)(B →A(x)) ⇔ B →(∃x) A(x);C .(∀x)(B →A(x)) ⇔ B →(∀x) A(x);D .(∀x)(A(x)∨B) ⇔(∀x)A(x)∨B ;13. 设S = {2,a ,{3},4},R ={{a},3,4,1},指出下面的写法中正确的是( D )(A )R=S ; (B ){a,3}⊆S ; (C ){a}⊆R ;(D )φ⊆R ;14. 下列命题公式不是重言式的是 C 。
学年第二学期期末考试《离散数学》试卷( A )使用班级:命题教师:主任签字:一、单项选择题(本大题共15小题,每小题1分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1.一个连通的无向图G,如果它的所有结点的度数都是偶数,那么它具有一条( )A.汉密尔顿回路B.欧拉回路C.汉密尔顿通路D.初级回路2.设G是连通简单平面图,G中有11个顶点5个面,则G中的边是( )A.10B.12C.16D.143.在布尔代数L中,表达式(a∧b)∨(a∧b∧c)∨(b∧c)的等价式是( )A.b∧(a∨c)B.(a∧b)∨(a’∧b)C.(a∨b)∧(a∨b∨c)∧(b∨c)D.(b∨c)∧(a∨c)4.设i是虚数,·是复数乘法运算,则G=<{1,-1,i,-i},·>是群,下列是G的子群是( )A.<{1},·>B.〈{-1},·〉C.〈{i},·〉D.〈{-i},·〉5.设Z为整数集,A为集合,A的幂集为P(A),+、-、/为数的加、减、除运算,∩为集合的交运算,下列系统中是代数系统的有( )A.〈Z,+,/〉B.〈Z,/〉C.〈Z,-,/〉D.〈P(A),∩〉6.下列各代数系统中不含有零元素的是( )A.〈Q,*〉Q是全体有理数集,*是数的乘法运算B.〈Mn(R),*〉,Mn(R)是全体n阶实矩阵集合,*是矩阵乘法运算C.〈Z,ο〉,Z是整数集,ο定义为xοxy=xy,∀x,y∈ZD.〈Z,+〉,Z是整数集,+是数的加法运算7.设A={1,2,3},A上二元关系R的关系图如下:R具有的性质是A.自反性B.对称性C.传递性D.反自反性8.设A={a,b,c},A上二元关系R={〈a,a〉,〈b,b〉,〈a,c〉},则关系R的对称闭包S(R)是( )A.R∪I AB.RC.R∪{〈c,a〉}D.R∩I A9.设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X上的等价关系,R应取( )A.{〈c,a〉,〈a,c〉}B.{〈c,b〉,〈b,a〉}C.{〈c,a〉,〈b,a〉}D.{〈a,c〉,〈c,b〉}10.下列式子正确的是( )A. ∅∈∅B.∅⊆∅C.{∅}⊆∅D.{∅}∈∅11.设解释R如下:论域D为实数集,a=0,f(x,y)=x-y,A(x,y):x<y.下列公式在R下为真的是( )A.( ∀x)( ∀y)( ∀z)(A(x,y))→A(f(x,z),f(y,z))B.( ∀x)A(f(a,x),a)C.(∀x)(∀y)(A(f(x,y),x))D.(∀x)(∀y)(A(x,y)→A(f(x,a),a))12.设B是不含变元x的公式,谓词公式(∀x)(A(x)→B)等价于( )A.(∃x)A(x)→BB.(∀x)A(x)→BC.A(x)→BD.(∀x)A(x)→(∀x)B13.谓词公式(∀x)(P(x,y))→(∃z)Q(x,z)∧(∀y)R(x,y)中变元x( )A.是自由变元但不是约束变元B.既不是自由变元又不是约束变元C.既是自由变元又是约束变元D.是约束变元但不是自由变元14.若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为( )A.P∨QB.P∧┐QC.P→┐QD.P∨┐Q15.以下命题公式中,为永假式的是( )A.p→(p∨q∨r)B.(p→┐p)→┐pC.┐(q→q)∧pD.┐(q∨┐p)→(p∧┐p)二、填空题(每空1分,共20分)16.在一棵根树中,仅有一个结点的入度为______,称为树根,其余结点的入度均为______。
一.填空题(每小题2分,共10分)1。
谓词公式的前束范式是__∃x∃y¬P(x)∨Q(y)__________。
2。
设全集则A∩B =__{2}__,_{4,5}____,__{1,3,4,5} _____3. 设,则__ {{c},{a,c},{b,c},{a,b,c}} __________,_____Φ_______。
4. 在代数系统(N,+)中,其单位元是0,仅有1有逆元。
5.如果连通平面图G有个顶点,条边,则G有___e+2—n____个面.二.选择题(每小题2分,共10分)1. 与命题公式等价的公式是()(A) (B)(C)(D)2. 设集合,A上的二元关系不具备关系( )性质(A)(A)传递性(B)反对称性(C)对称性(D)自反性3。
在图中,结点总度数与边数的关系是()(A) (B) (C)(D)4。
设D是有n个结点的有向完全图,则图D的边数为()(A) (B)(C)(D)5. 无向图G是欧拉图,当且仅当()(A)G的所有结点的度数都是偶数(B)G的所有结点的度数都是奇数(C)G连通且所有结点的度数都是偶数(D) G连通且G的所有结点度数都是奇数.三.计算题(共43分)1. 求命题公式的主合取范式与主析取范式.(6分)解:主合取方式:p∧q∨r⇔(p∨q∨r)∧(p∨¬q∨r)∧(¬p∨q∨r)= ∏0.2。
4 主析取范式:p∧q∨r⇔(p∧q∧r) ∨(p∧q∧¬r)∨(¬p∧q∧r) ∨(¬p∧¬q∧r)∨(p∧¬q∧r)=∑1。
3。
5。
6.72. 设集合上的二元关系R的关系矩阵为,求的关系矩阵,并画出R,的关系图。
(10分)3 无向图G有12条边,G中有6个3度结点,其余结点的度数均小于3,问G中至少有多少个结点?(10分)解:∵G(V,E),|E |=V,d(Vi)〈3,设至少有x个节点,由握手定理得:2×12=∑d(Vi)〈6×3+(x—6)×32<(x-6) =>x〉8故G中至少有9个节点。
离散数学试题(A卷及答案)一、证明题(10分)1) ( -P A ( —Q A R)) V (Q A R)V (P A R)= R证明:左端 =(-P A-QAR) V ((Q V P)A R£((—P A-Q)AR)) V((Q V P)A R):=(^P V Q) A R)V(( Q V P ) A R匕(一(P V Q )V(Q V P)) A R:=(「P V Q )V( P V Q )) A fcT A R置换):=R2) x(A(x) —.B(x)) := - x A(x) _._x B(x)证明:x ( A(x) > B(x)〉= x ( f(x) V B(x))= x—A(x) V x B(x)=—- x A(x)V x B(x)=- x A(x) -l xB(x)、求命题公式(P V (Q A R)) >(P A QA R)的主析取范式和主合取范式(10分)证明:(P V (Q A R))「(P A Q A R>=— (P V (Q A R)) V (P A QA R))二(—P A ( 一QV -R) )V (P A Q A R)二(一P A — Q)V ( -P A -R)) V (P A Q A R)二(_PA _Q R) V (_P A _QA 一R) V ( _P A QA _R)) V ( _PA _QA _R)) V (P A Q R)二m0V m1V m2V m7u M3V M4V M5V M6三、推理证明题(10分)1)C V D,(C V D)》-E, -E >(A A -B), (A A证明(1) xP(x)—B)r(R V S)「:R V S(2)P(a)(1) (C V D)—;「E(3) -x(P(x) >Q(y) A R(x))证明:(2) -E >(A A -B)(4)P(a) >Q(y) A R(a)(3) (C V D)—.(A A -B)(5)Q(y) A R(a)⑷(A A -B)_. (R V S)(6)Q(y)V D)_ (R V S)(7)R(a)(5) (C⑹C V D(8)P(a)⑺R V S(9)P(a) A R(a)2)-x(P(x) —;Q(y) A R(x)) , xP(x)二Q(y) A(10) x(P(x) A R(x))x(P(x) A R(x))(11)Q(y) A x(P(x) A R(x))四、设m是一个取定的正整数,证明:在任取耐1个整数中,至少有两个整数,它们的差是m的整数倍证明设印,a2,…,a m1为任取的1个整数,用m去除它们所得余数只能是0, 1,…,m- 1,由抽屉原理可知,耳,a2,…,a m d这m+ 1个整数中至少存在两个数a s和a t,它们被m除所得余数相同,因此a s和a的差是m的整数倍。
班级号_______________________ 学号______________ 姓名 课程名称 离散数学 成绩一、选择题(40’, 每题2’,每题只有一个选项正确,请将答案写在题号前的括号里)( )1. 下面不是命题的是___A .火星上有生命存在B .雪是白的C .我正在说谎D .10 + 11= 101( )2. 所有使命题公式⌝P ∧(Q ∨⌝R)的真值为T 的解释是(P,Q,R )=___A .(F, F, F), (F, F, T), (T, F, F);B .(F, T, T), (F, T, F), (F, F, F);C .(T, F, F), (T, F, T), (T, T, F);D .(T, T, F), (T, F, T), (T, T, T). ( )3. 下面关于命题公式的叙述不正确的是___A .不是可满足的公式必永假B .如果P 是重言式,对其使用代入规则得到的公式Q 不一定是重言式C .如果P ↔Q 是重言式,那么P=QD .如果P →Q 是重言式,那么⌝Q →⌝P 是重言式 ( )4. 下面的联结词集合不是完备集的是______A .{↑} (↑表示与非)B .{⌝, →}C .{⌝, ↔}D .{⌝, ∨}( )5. 下面不正确的是______A .P Q P Q ⌝⇒→∧⌝)(B .Q P P ∨⇒C .P Q Q P ⌝→⌝⇒→D .P Q Q P ⌝⇒⌝∨→)(上 海 交 通 大 学 试 卷( A 卷)( 2009 至 2010 学年 第1学期 )我承诺,我将严 格遵守考试纪律。
承诺人:( )6. 下列公式中______是重言式A .P →(P ∧Q)B .(⌝Q ∧(P →Q))→PC .Q →(P →Q)D .(P →Q)→((P →R) →(Q →R))( )7. 设A(x):x 是成功人士,B(x):x 出身名门,命题“成功人士未必都出身名门”符号化为______ A .()(()())x A x B x ∀∧ B .⌝(∃x)(A(x)→B(x)) C .⌝(∀x)(A(x)∧B(x)) D .⌝(∀x)(A(x)→B(x))( )8. 设个体域为{-1,1},并对P(x,y)设定为P(-1,-1)=T, P(-1,1)=F, P(1,-1)=T,P(1,1)=F,其真值为T 的公式为______ A .(∀x)(∃y)P(x,y) B .(∃x)(∀y)P(x,y) C .(∀x)(∀y)P(x,y)D .(∀y)(∃x)P(x,y)( )9. (∃x)(P(a,x)→ (∀y)Q(x,b,y))的前束范式为______A. (∃x)(∀y)(⌝P(a,x)∨Q(x,b,y))B. ⌝(∀x)(∃y)(P(a,x)∧⌝Q(x,b,y))C. (∃x) (∀y)( ⌝P(a,x)∧Q(x,b,y))D. (∃x) (⌝P(a,x)∨(∀y)Q(x,b,y)) ( )10.下列公式普遍有效的是______A .((∃x)P(x) ∧ (∃x)(Q(x)) → (∃x)(P(x) ∧ Q(x))B .((∃x)P(x) ∨ (∃x)(Q(x)) → (∃x)(P(x) ∨ Q(x))C .(∃x)(P(x) ∧ Q(x)) → (∀x)(P(x) ∨ Q(x))D.(∀x)(P(x) ∨ Q(x)) → ((∀x)P(x) ∨ (∀x)Q(x))班级 学号 姓名( )11. 下列公式与(∀x)((∃y)P(y)→Q(x))等值的是______A .(∀x)(∃y)(P(y) → Q(x))B .(∀x)(∀y)(⌝P(y) → Q(x))C .(∀x)(⌝Q(x) → (∀y)⌝P(y))D .(∃y)P(y) → (∀x)Q(x)( )12. 根据归结推理规则,子句P(x) ∨ Q(a,x)与P(y) ∨ ⌝Q(y,b)的归结式是______A .P(a)B .P(b)C .P(a) ∨ P(b)D .P(a) ∧ P(b)( )13. 下列说法错误的是______A .给定G 1的某个子图H ,如果在G 2中找不到与H 同构的子图,则G 1和G 2一定不同构B .任一非空无向图中的道路有无穷条C .任何非平面图中一定存在一个子图是K (1)型图或者K (2)型图 (K (1)型图指K 5的同胚,K (2)型图指K 3,3的同胚)D .给定赋权的叶子结点集合,则相应的Huffman 树是唯一的 ( )14. 下图中______不存在欧拉回路( )15. 下面说法错误的是______A .若简单图每个结点的度大于等于2n,则G 有H 回路 B .n K 的H 回路含有)1(21-n n 条边 C .如果一个图G 的子图是非平面图,则G 一定是非平面图D .简单图G 的任意结点v i ,v j 之间恒有n v d v d j i ≥+)()(,则G 存在H 回路()16. 一个无向图有五个结点,其中4个的度数是1, 2, 3, 4,则第5个结点的度数不可能是______A.0B.2C.4D.5()17. 在平面图G的某个域内增加一个结点及连接该结点与该域的边界上某结点的一条边,得到一个新图G',那么以下正确的是______A.G*⊂G'*(G*为G的对偶图)B.G*⊃G'*C.G*=G'*D.以上都不对()18. 下列说法错误的是______A.K3,3是边数最少的非平面图B.K5是结点数最少的非平面图C.K6中不存在K(1)型子图D.K3,3去掉任意一条边所形成的图是可平面图()19. 下图中存在H回路的图有______个A.0 B.1 C.2 D.3()20. 下列图中,和M图同构的图(不计M图本身)有______个A.1B.2C.3D.4班级学号姓名二、填空题(20’,每空2’)1.设P:天下大雨,Q:小王乘公共汽车上班,命题“只有天下大雨,小王才乘公共汽车上班”的符号化形式为____________________________________________________________。
《离散数学》期末复习第一篇:《离散数学》期末复习《离散数学》期末复习内容:第一章~第七章题型:一、选择题(20%,每题2分)二.填空题(20%,每题2分)三、计算题(20%,每题5分)四、证明题(20%,每题5分)五、判断题(20%,每题2分)第1章数学语言与证明方法1.1 常用的数学符号1.计算常用的数学符号式子 1.2 集合及其表示法1.用列举法和描述法表示集合2.判断元素与集合的关系(属于和不属于)3.判断集合之间的包含与相等关系,空集(E),全集(∅)4.计算集合的幂集5.求集合的运算:并、交、相对补、对称差、绝对补6.用文氏图表示集合的运算7.证明集合包含或相等方法一:根据定义, 通过逻辑等值演算证明方法二:利用已知集合等式或包含式, 通过集合演算证明1.3 证明方法概述1、用如下各式方法对命题进行证明。
π直接证明法:A→B为真π间接证明法:“A→B为真” ⇔“ ¬B→¬A为真” π归谬法(反证法): A∧¬B→0为真π穷举法: A1→B, A2→B,…, Ak→B 均为真π构造证明法:在A为真的条件下, 构造出具有这种性质的客体B π空证明法:“A恒为假” ⇒“A→B为真” π平凡证明法:“B恒为真” ⇒“A→B为真” π数学归纳法:第2章命题逻辑2.1 命题逻辑基本概念1、判断句子是否为命题、将命题符号化、求命题的真值(0或1)。
命题的定义和联结词(¬, ∧, ∨, →, ↔)2、判断命题公式的类型赋值或解释.成真赋值,成假赋值;重言式(永真式)、矛盾式(永假式)、可满足式:。
2.2 命题逻辑等值演算1、用真值表判断两个命题公式是否等值2、用等值演算证明两个命题公式是否等值3、证明联结词集合是否为联结词完备集 2.3 范式1、求命题公式的析取范式与合取范式2、求命题公式的主析取范式与主合取范式(两种主范式的转换)3、应用主析取范式分析和解决实际问题 2.4 命题逻辑推理理论1、用直接法、附加前提、归谬法、归结证明法等推理规则证明推理有效第3章一阶逻辑3.1 一阶逻辑基本概念1、用谓词公式符号命题(正确使用量词)2、求谓词公式的真值、判断谓词公式的类型 3.2 一阶逻辑等值演算1、证明谓词公式的等值式2、求谓词公式的前束范式第4章关系4.1 关系的定义及其表示1、计算有序对、笛卡儿积2、计算给定关系的集合3、用关系图和关系矩阵表示关系 4.2 关系的运算1、计算关系的定义域、关系的值域2、计算关系的逆关系、复合关系和幂关系3、证明关系运算满足的式子 4.3 关系的性质1、判断关系是否为自反、反自反、对称、反对称、传递的2、判断关系运算与性质的关系3、计算关系自反闭包、对称闭包和传递闭包 4.4 等价关系与偏序关系1、判断关系是否为等价关系2、计算等价关系的等价类和商集3、计算集合的划分4、判断关系是否为偏序关系5、画出偏序集的哈期图6、求偏序集的最大元、最小元、极小元、极大元、上界、下界、上确界、下确界7、求偏序集的拓扑排序第5章函数1.判断关系是否为函数2.求函数的像和完全原像3.判断函数是否为满射、单射、双射4.构建集合之间的双射函数5.求复合函数6.判断函数的满射、单射、双射的性质与函数复合运算之间的关系7.判断函数的反函数是否存在,若存在求反函数第6章图1.指出无向图的阶数、边数、各顶点的度数、最大度、最小度2.指出有向图的阶数、边数、各顶点的出度和入度、最大出度、最大入度、最小出度最小入出度3.根据握手定理顶点数、边数等4.指出图的平行边、环、弧立点、悬挂顶点和悬挂边5.判断给定的度数列能否构成无向图6.判断图是否为简单图、完全图、正则图、圈图、轮图、方体图7.求给定图的补图、生成子图、导出子图8.判断两个图是否同构6.2 图的连通性1.求图中给定顶点通路、回路的距离2.计算无向图的连通度、点割集、割点、边割集、割边3.判断有向图的类型:强连通图、单向连通图、弱连通图 6.3 图的矩阵表示1.计算无向图的关联矩阵2.计算有向无环图的关联矩阵3.计算有向图的邻接矩阵4.计算有向图的可达矩阵5.计算图的给定长度的通路数、回路数6.4 几种特殊的图1、判断无向图是否为二部图、欧拉图、哈密顿图第7章树及其应用 7.1 无向树1.判断一个无向图是否为树2.计算无向树的树叶、树枝、顶点数、顶点度数之间的关系3.给定无向树的度数列,画出非同构的无向树4.求生成树对应的基本回路系统和基本割集系统5.求最小生成树 7.2 根树及其应用1.判断一个有向图是否为根树2.求根树的树根、树叶、内点、树高3.求最优树4.判断一个符号串集合是否为前缀码5.求最佳前缀码6.用三种方法遍历根树第二篇:离散数学期末复习试题及答案(二)第二章二元关系1.设A={1,2,3,4},A上二元关系R={(a,b)|a=b+2},S={(x,y)|y=x+1 or y=x2} 求R⋅S,S⋅R,S⋅R⋅S,S2,S3,S⋅Rc。
离散数学期末复习例题讲解一、考核说明考核对象:本课程考核说明适用于国家开放大学开放教育本科电气信息类计算机科学与技术专业的学生.考核依据:本考核说明是以本课程的教学大纲(2015年3月修改)和指定的参考教材为依据制定的.本课程指定的参考教材是由胡俊、顾静相编写,国家开放大学出版社出版的《离散数学(本科)》第2版.考核方式:本课程的考核实行形成性考核和终结性考核相结合的方式.其中终结性考核采用半开卷、笔试方式,试卷满分100分.半开卷考试允许考生携带指定的一张专用A4纸(统一印制),考生可以将自己对全课程学习内容的总结归纳写在这张A4纸上带入考场,作为答卷时参考.考试时间:90分钟.试题类型及结构:单项选择题的分数占15%,填空题的分数占15%,公式翻译题的分数占12%,判断说明题的分数占14%,计算题的分数占36%;证明题的分数占8%.二、例题讲解(一)集合论1.单项选择题(1)若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}∈A B.{ a }⊆AC.{2}∈A D.∅∈A答:B(2)若集合A={a,b,{1,2 }},B={1,2},则().A.B⊂ A,且B∈A B.B⊄ A,且B∉AC.B ⊂ A,但B∉A D.B∈ A,但B⊄A答:D(3)设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}答:C(4)设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.对称的B.自反的C.对称和传递的D.反自反和传递的答:A(5)设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S 是R 的( )闭包.A .自反B .传递C .对称D .以上都不对 答:C(6)设集合A = {1 , 2 , 3 , 4 , 5}上的偏序关系的哈斯图如图1所示,若A 的子集B = {3 , 4 , 5}, 则元素3为B 的( ).A .最小上界B .最大下界C .下界D .以上答案都不对 图1 答:A2.填空题(1)设集合A 有n 个元素,那么A 的幂集合P (A )的元素个数为 . 答:2n(2)设集合A ={0,1,2},B ={0,2,4},R 是A 到B 的二元关系,},,{B A y x B y A x y x R ⋂∈∈∈><=且且则R 的集合表示式为 . 答:{<0,0>, <0,2>, <2,0>, <2,2>}(3)设集合A ={a ,b ,c ,d },A 上的二元关系R ={<a , b >, <b , a >, <b , c >, <c , d >},则R 的自反闭包是 .答:r (R )= {<a , b >, <b , a >, <b , c >, <c , d >}∪I A(4)设A ={1, 2, 3, 4, 5, 6, 7, 8},R 是A 上的整除关系,B ={2, 4, 6},则集合B 的最大元、最小元、上界、下界依次为 . 答:无、2、无、2(5)设集合A ={1, 2},B ={a , b },那么集合A 到B 的不同函数的个数有 . 答:4因为:f :{<1, a >, <2, a >}, {<1, b >, <2, b >}{<1, a >, <2, b >}, {<1, b >, <2, a >}3.如果R 1和R 2是A 上的自反关系,判断结论:“R 1-1、R 1∪R 2、R 1⋂R 2是自反的”是否成立?并说明理由. 答:结论成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2. 由逆关系定义和I A ⊆R 1,得I A ⊆ R 1-1;由I A ⊆R 1,I A ⊆R 2,得I A ⊆ R 1∪R 2,I A ⊆ R 1⋂R 2.所以,R 1-1、R 1∪R 2、R 1⋂R 2是自反的.注: R 1-R 2是自反的吗?4.若偏序集<A ,R >的哈斯图如图2所示,则集合 A 的最大元为a ;最小元不存在.答:错a 是集合A 的极大元,最大元不存在. 图2 5.设集合A ={a ,b , { a , b }},B ={{a }, {b }, b },求a f5(1)B ⋂A ; (2)A -B ; (3)A ⨯B . 解:(1)B ⋂A ={a , b , { a , b }}⋂{{a }, {b }, b }={b } (2)A -B = {a , b , { a , b }}-{{a }, {b }, b }={a , { a , b }} (3)A ⨯B ={a , b , { a , b }}⨯{{a }, {b }, b }={<a , {a }>, <a , {b }>, <a , b >,<b , {a }>, <b , {b }>, <b , b >, <{ a , b }, {a }>, <{ a , b }, {b }>, <{ a , b }, b >}6.设A ={0,1,2,3,4},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R ︒S ,R -1,S -1,r (R ),s (R ),t (R ),r (S ),s(S ),t (S ).解:R =∅,S ={<0,0>,<0,1>,<0,2>,<0,3>,<1,0>,<1,1>,<1,2>,<2,0>,<2,1>,<3,0>} R ︒S =∅,R -1=∅,S -1= S ;r (R )= I A ,s (R )= ∅,t (R )= ∅;r (S )=S ∪{<2,2>,<3,3>,<4,4>},s (S )= S ;t (S )= S ∪{<1,3>,<2,2>,<2,3>,<3,1>,<3,2>,<3,3>} 7.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).证:若x ∈A ⋃ (B ⋂C ),则x ∈A 或x ∈B ⋂C , 即 x ∈A 或x ∈B 且 x ∈A 或x ∈C . 即x ∈A ⋃B 且 x ∈A ⋃C , 即 x ∈T =(A ⋃B ) ⋂ (A ⋃C ),所以A ⋃ (B ⋂C )⊆ (A ⋃B ) ⋂ (A ⋃C ).反之,若x ∈(A ⋃B ) ⋂ (A ⋃C ),则x ∈A ⋃B 且 x ∈A ⋃C , 即x ∈A 或x ∈B 且 x ∈A 或x ∈C ,即x ∈A 或x ∈B ⋂C , 即x ∈A ⋃ (B ⋂C ),所以(A ⋃B ) ⋂ (A ⋃C )⊆ A ⋃ (B ⋂C ). 因此.A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ). 8.设R 是集合A 上的对称关系和传递关系,试证明:若对∀a ∈A ,∃b ∈A ,使得<a , b >∈R ,则R 是等价关系.证明:已知R 是对称关系和传递关系,只需证明R 是自反关系. ∀a ∈A ,∃b ∈A ,使得<a , b >∈R ,因为R 是对称的,故<b , a >∈R ; 又R 是传递的,即当<a , b >∈R ,<b , a >∈R ⇒<a , a >∈R ;由元素a 的任意性,知R 是自反的. 所以,R 是等价关系.(二)图论1.单项选择题(1)设图G 的邻接矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0101010010000011100000100则G 的边数为( ).A .5B .6C .3D .4 答:D(2)设图G =<V , E >,则下列结论成立的是 ( ).A .deg(V )=2∣E ∣B .deg(V )=∣E ∣C .E v Vv 2)deg(=∑∈ D .E v Vv =∑∈)deg(答:C(3)设有向图(a )、(b )、(c )与(d )如图3所示,则下列结论成立的是 ( ).图3A .(a )是强连通的B .(b )是强连通的C .(c )是强连通的D .(d )是强连通的答:A(4)给定无向图G 如图4所示,下面给出的结点集子集中,不是点割集的为( ). A .{b , d } B .{d }C .{a , c }D .{g , e } 答:A 图4(5)图G 如图5所示,以下说法正确的是( ). A .{(a , d )}是割边B .{(a , d )}是边割集C .{(d , e )}是边割集D .{(a, d ) ,(a, c )}是边割集答:C 图5 (6)设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ).A .e -v +2B .v +e -2C .e -v -2D .e +v +2 答:A2.填空题(1)已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结点,则G 的边数是 .答:15 (1⨯1+2⨯2+3⨯3+4⨯4)/2(2)设无向图G =<V ,E >是汉密尔顿图,则V 的任意非空子集V 1,都有 ≤∣V 1∣. 答:W (G - V 1)(3)设无向图G 为欧拉图,则图G 连通且 . 答:每个结点的度数为偶数(4)设图G =<V ,E >,其中|V |=n ,|E |=m .则图G 是树当且仅当G 是连通的,且m = . 答:n -1(5)连通无向图G 有6个顶点9条边,从G 中删去 条边才有可能得到G 的一棵生成树T . 答:4οο οο (a )οο οο (b ) οοοο (c )οοοο(d )a gb d fc e οο ο οο οο ο a ο οο ο ο b c f d e(6)给定一个序列集合{1,01,10,11,001,000},若去掉其中的元素 ,则该序列集合构成前缀码.答:1 3.给定图G (如图6所示): (1)试判断它们是否为欧拉图?并说明理由. (2)若是欧拉图,请写出一条欧拉回路.答:(1)图G 是欧拉图,因为图G 是连通图且每个结点的度数是偶数.(2)欧拉回路为: v 1 e 1 v 2 e 2 v 3 e 3 v 4 e 5v 5 e 7 v 2 e 8v 6 e 6 v 4 e 4v 1 注意:回路是不惟一4.试判断“设G 是一个有5个结点、10条边的连通图,则G 为平面图”是否正确,为什么?答:错误.因为它不满足定理4.3.3,即“设G 是一个有v 个结点e 条边的连通简单平面图,若v ≥3,则e ≤3v -6.”5.设图G =<V ,E >,其中V ={a 1, a 2, a 3, a 4, a 5},E ={(a 1, a 2),(a 2, a 4),(a 3, a 1),(a 4, a 5),(a 5, a 2)}(1)试给出G 的图形表示; (2)求G 的邻接矩阵; (3)求出每个结点的度数; (4)画出其补图的图形. 解:(1)图G 是无向图,图形如图7所示:图7 (2)图G 的邻接矩阵如下:⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0101010010000011100100110)(G A(3)结点a 1, a 2, a 3, a 4, a 5的度数分别为:2,3,1,2,2. (4)图G 的补图的如图8所示:图86.图G =<V , E >,其中V ={a , b , c , d , e , f },E ={ (a , b ), (a , c ), (a , e ), (b , d ), (b , e ), (c , e ), (d , e ),ο οο ο οa 1a 2 a 3a 4a 5v 1 v 2 v 3v 4 v 5v 6 e 1 e 2e 3 e 4 e 5 e 6e 7 e 8 οο ο ο ο ο图6 ο ο ο ο οa 1a 2 a 3a 4 a 5οο ο ο οa 1 a 2 a 3a 4a 5(d , f ), (e , f ) },对应边的权值依次为5,2,1,2,6,1,9,3及8.(1)画出G 的图形; (2)写出G 的邻接矩阵;(3)求出G 权最小的生成树及其权值. 解:(1)G 的图形如图9所示:(2)邻接矩阵:⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡011000101111110010010001011001010110 图9(3)粗线表示最小的生成树(见图10):最小的生成树的权为:1+1+5+2+3=12. 图107.设有一组权为2,3,6,9,13,15,试 (1)画出相应的最优二叉树; (2)计算它们的权值.解:最优二叉树如图11所示:图11 权值: 2⨯4+3⨯4+6⨯3+9⨯2+13⨯2+15⨯2 =8+12+18+18+26+30 =1128.设G 是一个n 阶无向简单图,n 是大于等于2的奇数.证明图G 与它的补图G 中的奇数度顶点个数相等.证明:设,G V E =<>,,G V E '=<>.则E '是由n 阶无向完全图n K 的边删去E 所得到的.所以对于任意结点u V ∈,u 在G 和G 中的度数之和等于u 在n K 中的度数.由于n 是大于等于2的奇数,从而n K 的每个结点都是偶数度的( 1 (2)n -≥度),于是若u V ∈在G 中是奇数度结点,则它在G 中也是奇数度结点.故图G 与它的补图G 中的奇数度结点个数相等.οο ο ο οc a b e dοf1 5 22 61 9 38 ο ο ο ο οc a b ed οf 15 22 61 938 οοο οο ο ο ο ο32 9 135 6 1115 20 ο ο 48289.设连通图G 有k 个奇数度的结点,证明在图G 中至少要添加2k条边才能使其成为欧拉图.证明:由定理3.1.2,任何图中度数为奇数的结点必是偶数,可知k 是偶数. 又根据定理4.1.1的推论,图G 是欧拉图的充分必要条件是图G 不含奇数度结点.因此只要在每对奇数度结点之间各加一条边,使图G 的所有结点的度数变为偶数,成为欧拉图.故最少要加2k条边到图G 才能使其成为欧拉图.(三)数理逻辑1.单项选择题(1) 下列命题公式是等价公式的为( ).A .⌝P ∧⌝Q ⇔P ∨QB .A →(⌝B →A ) ⇔⌝A →(A →B )C .Q →(P ∨Q ⇔⌝Q ∧(P ∨Q )D .⌝A ∨(A ∧B ) ⇔B 答:B 因为A →(⌝B →A ) ⇔ A →(B ∨A ) ⇔⌝A ∨(B ∨A ) ⇔ A ∨ (⌝A ∨B ) ⇔ A ∨ (A →B )⇔⌝A →(A →B )(2)下列公式 ( )为重言式.A .⌝(⌝P ∨(P ∧Q )) ↔QB .(B →(A ∨B )) ↔(⌝A ∧(A ∨B ))C .A ∧⌝B ↔A ∨BD .(P →(⌝Q →P ))↔(⌝P →(P →Q )) 答:D 因为(P →(⌝Q →P ))⇔⌝P ∨(Q ∨P )) ⇔1 (⌝P →(P →Q )) ⇔P ∨(⌝P ∨Q )) ⇔1 (3)命题公式⌝ (P →Q )的主析取范式是( ). A .Q P ⌝∧ B Q P ∧⌝ C .Q P ∨⌝ D .Q P ⌝∨答:A 因为⌝ (P →Q ) ⇔⌝ (⌝P ∨Q ) ⇔P ∧⌝Q(4)设C (x ): x 是国家级运动员,G (x ): x 是健壮的,则命题“没有一个国家级运动员不是健壮的”可符号化为 ( )A .))()((x G x C x ⌝∧⌝∀B .))()((x G xC x ⌝→⌝∀C .))()((x G x C x ⌝→⌝∃D .))()((x G x C x ⌝∧⌝∃答:D(5)表达式))(),(())(),((z zQ y x R y z Q y x P x ∀→∃∧∨∀中x ∀的辖域是( ). A .P (x , y ) B .P (x , y )∨Q (z ) C .R (x , y ) D .P (x , y )∧R (x , y ) 答:B2.填空题(1)命题公式()P Q P →∨的真值是 . 答:1 因为()P Q P →∨⇔⌝P ∨(Q ∨ P ) ⇔1(2)含有三个命题变项P ,Q ,R 的命题公式P ∧Q 的主析取范式是 . 答:(P ∧Q ∧⌝R )∨( P ∧Q ∧R )因为P ∧Q ⇔ P ∧Q ∧(⌝R ∨R ) ⇔(P ∧Q ∧⌝R )∨( P ∧Q ∧R )(3)设个体域D ={1,2},那么谓词公式)()(y yB x xA ∀∨∃消去量词后的等值式为 . 答:(A (1) ∨A (2))∨(B (1) ∧B (2))(5)谓词命题公式(∀x )(P (x )→Q (x )∨R (x ,y ))中的约束变元为 . 答:x3.请将语句翻译成命题公式: (1)今天不是天晴.(2)你去听课,他也去听课.(3)如果天下雪,则我明天就不去市里. (4)尽管他参加了考试,但他没有通过考试.解:(1)设P :今天是天晴; 命题公式为: ⌝ P .(2)设P :你去听课,Q :他去听课:命题公式为:P ∧Q .(3)设P :天下雪,Q :我明天去市里; 命题公式为:P →⌝Q .(4)设P :他参加了考试,Q :他没有通过考试; 命题公式为:P ∧⌝ Q .4.请将语句翻译成谓词公式: (1)所有人都不去上课. (2)有人不去工作. 解:(1)设P (x ):x 是人,Q (x ):x 去上课.谓词公式为: (∀x )(P (x )→ ┐Q (x )).(2)设P (x ):x 是人,Q (x ):x 去工作,谓词公式为: (∃x )(P (x) ∧┐Q (x )). 5.判断下列各题正误,并说明理由.(1)公式((Q ∧⌝R )→P )∧(⌝P →Q ∨R )↔P ∨R 为永真式.(2)求命题公式(P ∧Q )∧(⌝P ∨⌝R )的真值表,并判断它的类型. 解:(1)该公式是永真式.因为 R P R Q P P R Q ∨↔∨→⌝∧→⌝∧)())((R P R Q P P R Q ∨↔∨∨∧∨∨⌝⇔)()( R P Q Q R P ∨↔∧⌝∨∨⇔)( 1⇔(2)6.判断下列各题正误,并说明理由.(1)公式))(),(()(x xP y x yG x xP ∀→∃→∀是逻辑有效式(永真式).(2)下面的推理是否正确,请给予说明. ① P (a ) P ② (∀x )P (x ) US ① 解:(1)该公式是永真式.因为 ))(),(()(x xP y x yG x xP ∀→∃→∀⇔))(),(()(x xP y x yG x xP ∀∨⌝∃∨⌝∀1)(),()(⇔∀∨⌝∃∨⌝∀⇔x xP y x yG x xP(2)错误.② 应为(∀x )P (x ) UG ① 全称指定规则与全称推广规则不能混淆.7.求公式R Q P →∧)(的析取、合取、主合取\主合取范式. 解:R Q P R Q P ∨∧⌝⇔→∧)()(R Q P ∨⌝∨⌝⇔)(R Q P ∨⌝∨⌝⇔ (析取、合取、主合取范式)⇔(┐P ∧(┐Q ∨Q )∧(┐R ∨R ))∨((┐P ∨P )∧┐Q ∧(┐R ∨R )) ∨((┐P ∨P )∧(┐Q ∨Q )∧R )⇔(┐P ∧┐Q ∧┐R )∨(┐P ∧┐Q ∧R )∨(┐P ∧Q ∧┐R )∨(┐P ∧Q ∧R )∨(P ∧┐Q ∧┐R )∨(P ∧┐Q ∧R )∨(P ∧Q ∧R )(主析取范式)8.用列真值表的方法求命题公式R Q P →→)(的主析取范式.解:列真值表取真值为1的项,所求主析取范式为:(┐P ∧┐Q ∧R )∨(┐P ∧Q ∧R )∨(P ∧┐Q ∧┐R )∨(P ∧┐Q ∧R ) ∨(P ∧Q ∧R )9.试求谓词公式),()),(),()((y x B y x yG y x xH x S x ∨∃→∃∧∀中,∀x ,∃x ,∃y 的辖域,试问G (x , y )和B (x , y )中x ,y 是自由变元,还是约束变元?解:∀x 的辖域:)),(),()((y x yG y x xH x S ∃→∃∧ ∃x 的辖域:H (x ,y )∃y 的辖域:G (x ,y ) G (x , y )中的x ,y 是约束变量,B (x , y )中的x , y 是自由变量. 10.证明命题公式(P →(Q ∨⌝R ))∧⌝P ∧Q 与⌝(P ∨⌝Q )等价. 证:(P →(Q ∨⌝R ))∧⌝P ∧Q ⇔(⌝P ∨(Q ∨⌝R ))∧⌝P ∧Q ⇔(⌝P ∨Q ∨⌝R )∧⌝P ∧Q⇔(⌝P ∧⌝P ∧Q )∨(Q ∧⌝P ∧Q )∨(⌝R ∧⌝P ∧Q ) ⇔(⌝P ∧Q )∨(⌝P ∧Q )∨(⌝P ∧Q ∧⌝R ) ⇔⌝P ∧Q (吸收律) ⇔⌝(P ∨⌝Q ) (摩根律)9.构造推理证明))()(()()(x Q x P x x xQ x xP →∀⇒∀→∃. 分析:前提:)()(x xQ x xP ∀→∃.结论:))()((x Q x P x →∀证:(1) )()(x xQ x xP ∀→∃ P(2) )()(x xQ x xP ∀∨⌝∃ T (1)E(3) )()(x xQ x P x ∀∨⌝∀ T (2) E (量词与否定的关系) (4) ))()((x Q x P x ∨⌝∀(5) ))()((x Q x P x →∀ T (4) E上面这些例题供大家复习参考.。
离散数学A卷答案
一、选择题
C B B C B A A D A C A C C D C D B D A D
二、
填空题
1. ||2||2BA
2. 22n
3. 15
4. 0
5. 0
6. 022 / 2 / 12 三. (8') 证明:)))(((APPPAA。 四. (8') 设R是A中的对称关系,且RR2,证明:RISA是A上的等价关系。 则有RRca2,,所以Rca, 0001001101111011 1110110100110011 0000 自反闭包 对称闭包 传递闭包 六.(8') 判断下图是否为欧拉图、哈密尔顿图,如果是,则给出欧拉回路、哈密尔顿回路, 非欧拉图,(2') 因为奇度数结点 (2') 七.(8') 若G是平面图,它的点、边、域数分别是:n、m、d,有k个连通支, 二. (8') 设R是A中的对称关系,且RR2,证明:RISA是A上的等价关系。 证:自反性(2'),SIA 则有RRca2,,所以Rca, 三.(8') 给定4,3,2,1A和A上的关系4,3,4,2,3,2,4,1,3,1R, 0001001101111011 1110110100110011 0000 自反闭包 对称闭包 传递闭包 非欧拉图,(2') 因为奇度数结点 (2') 1. ||2||2BA 5. 0 6. 022 / 2 / 12
7. V1V2V4V5V3V2V5V1 (答案多种)
8. 无
9. 5
10.≤4 / <5 / 1≤n≤4 / 0
设x,yA
(2') {x}P(A), {x,y}P(A)
{{x},{x,y}} P(A)
(2') {{x},{x,y}}P(P(A))
(2')
{
(2') )))(((APPPAA
证:自反性(2'),SIA
对称性(已知)
传递性(6') 若Rcbba,,,,
五.(8') 给定4,3,2,1A和A上的关系4,3,4,2,3,2,4,1,3,1R,
求:R的自反闭包、对称闭包及传递闭包的关系矩阵。
0001
0011
0011
(2') (3') (3')
否则证明它不是。
非哈密尔顿图(2') 同构于Perterson图,Perterson图非哈密尔顿图(2')
G*为G的对偶图,它的点、边、域数分别是:n*、m*、d*,
证明:1) n-m+d=k+1
2) d* = n-k+1
证明:1) 对G的每个连通支有 ni-mi+(di-1)=1 (1')
故对G有 n-m+(d-1)=k (2')
即 n-m+d=k+1
2)G*为G的对偶图,故G*为连通图, (1')
n*-m*+d*=2 (1')
n-m+d=k+1
m=m* (1')
d=n* (1')
故d* = n-k+1 (1')
离散数学B卷答案
一. (8') 证明:)))(((APPPAA。
设x,yA
(2') {x}P(A), {x,y}P(A)
{{x},{x,y}} P(A)
(2') {{x},{x,y}}P(P(A))
(2')
{
(2') )))(((APPPAA
对称性(已知)
传递性(6') 若Rcbba,,,,
求:R的自反闭包、对称闭包及传递闭包的关系矩阵。
0001
0011
0011
(2') (3') (3')
四.(8') 判断下图是否为欧拉图、哈密尔顿图,如果是,则给出欧拉回路、哈密尔顿回路,
否则证明它不是。
非哈密尔顿图(2') 同构于Perterson图,Perterson图非哈密尔顿图(2')
五.(8') 若G是平面图,它的点、边、域数分别是:n、m、d,有k个连通支,
G*为G的对偶图,它的点、边、域数分别是:n*、m*、d*,
证明:1) n-m+d=k+1
2) d* = n-k+1
证明:1) 对G的每个连通支有 ni-mi+(di-1)=1 (1')
故对G有 n-m+(d-1)=k (2')
即 n-m+d=k+1
2)G*为G的对偶图,故G*为连通图, (1')
n*-m*+d*=2 (1')
n-m+d=k+1
m=m* (1')
d=n* (1')
故d* = n-k+1 (1')
六、
填空题
2. 22n
3. 15
4. 0
7. V1V2V4V5V3V2V5V1 (答案多种)
8. 无
9. 5
10. ≤4 / <5 / 1≤n≤4 / 0
C B B C B A A D A C A C C D C D B D A D