粉体工程期末重点总结
- 格式:doc
- 大小:499.50 KB
- 文档页数:12
1. 筛分法测量粉体粒径的基本原理是什么?P19利用筛孔尺寸由大到小组合的一套筛,借助振动把粉末分成若干等级,称量各级粉末的质量,即可计算用质量的百分比表示的粒径组成。
2. 粉体的松装密度是如何测定的?P37① 粉末从漏斗中自由落下,充满圆柱杯,漏斗孔径有2.5m 和5.0m 两种,圆柱杯容积为(25±0.05)m ³。
称量刮平后圆柱杯中粉末质量与容积相比即可得出松装密度。
② 将粉末放入漏斗中的筛网上,自然或靠外力流入布料箱,交替经过布料箱中的四块倾角为25°的玻璃板和方形漏斗,最后流入已知体积的圆柱杯中,呈松散状态,然后称取杯中粉末质量,计算松装密度。
3. 推导出粉体真密度的测定公式P38 ()()[]()()()液体密度体的质量比重瓶加待测粉末加液量比重瓶加待测粉末的质比重瓶含液体的质量空比重瓶质量表观体积颗粒质量--m -m -m -m m m m m m m /m m -m m m m sl s 0s sl 00s s sl 00s p l l l l l p ρρρρ----=---==4. 库尔特计数器法测定粉体粒度的基本原理是什么?电传感器是将被测颗粒分散在导电的电解质溶液中,在该导电溶液中放置一个开有小孔的隔板,并将两个电极分别插入小孔两侧的导电溶液中,在电压差作用下,颗粒随导电溶液逐个通过小孔,每个颗粒通过小孔时产生的电阻变化表现为一个与颗粒体积或粒径成正比的电压脉冲。
5. 激光粒度仪测定粉体粒度的原理是什么?颗粒能使激光产生散射这一物理现象测试粒度分布。
当光束遇到颗粒阻挡时,部分发生散射现象。
散射光的传播方向与入射光的传播方向形成一个夹角θ,θ的大小与颗粒的大小有关,即小角度θ的散射光是大颗粒引起的,大角度θ的散射光是小颗粒引起的。
散射光的强度代表该粒径颗粒的数量。
测量不同角度上的散射光强度,就可测得样品的粒度分布。
6.粉体表面改性的目的是什么?①增强与基体的相容性和润湿性。
第一章1、粉体工程的定义。
答:它是以粉状和颗粒状物质为对象,研究其性质及加工、处理技术的一门学科。
2、粉体的制备方法及分类。
答:(1)分类:按成因分:人工合成、天然形成。
按颗粒构成:原级颗粒、聚集体颗粒、凝聚体颗粒、絮凝体颗粒。
按成分分:碳酸钙粉体、硅灰石粉体等。
按粒度分:粗粉、细粉、超细粉等。
粉体种类按成因分:人工合成、天然形成。
按颗粒大小、形状分:单分散、多分散。
(2)制备方法:3、粉体工程在材料领域的作用。
答:粉体工程是一门新兴的跨行业、跨学科综合性技术学科。
粉体工程应用领域广如:矿产领域、电子领域、军事领域等。
粉体工程学的新理论、新技术将使许多工业发生根本性的变化 。
第二章1、举例说明粉体的基本性质对其在材料中应用性能的影响。
答:基本性质:粒径、粒度分布、颗粒形状、颗粒群的堆积性质、粉体的摩擦性质。
2、粉体的粒度组成特征的表征方法主要有哪些?试述它们的基本内容。
答:(1)粒度表格:是表示粒度分布的最简单形式,也是其它形式的原始形成。
(2)粒度分布曲线:能更直观地反映比较颗粒组成特征。
(频率直方图、频率分布曲线累积分布曲线)(3)粒度分布特征参数(偏差系数和分布宽度)(4)粒度分布方程.3、空隙率与填充率的定义;颗粒填充与堆积方式;密度的分类及定义.答:(1)空隙率:填充层中未被颗粒占据的空间体积与包含空间在内的整个填充层表观体积之比称为空隙率.(2)填充率: 颗粒体积占表观体积的比率。
(3)粉体颗粒的填充与堆积等径球形颗粒的排列:正方体排列、正斜方体排列、菱面体排列、楔形四面体排列,立方体为最松填充,属不稳定排列;菱面体为最密填充,属最稳定排列。
异径球形颗粒的填充:一次填充、 Horsfield 填充、非球形颗粒的随机填充。
(4)容积密度ρv,又称松密度,指在一定填充状态下,包括颗粒间全部空隙在内的整个填充层单位体积中的颗粒质量。
真密度ρs:指颗粒的质量除以不包括内外孔在内的颗粒真体积。
《粉体工程》课程笔记第一章颗粒物性1.1 颗粒粒径和颗粒分布颗粒粒径是指颗粒的线性尺寸,通常用直径表示。
颗粒的形状、大小和分布对其物理和化学性质有重要影响。
颗粒分布是指颗粒大小的分布情况,可以通过粒度分布曲线来表示。
粒度分布曲线通常以颗粒直径的对数为横坐标,以对应直径的颗粒体积或质量分数为纵坐标。
颗粒的粒径分布可以分为单峰分布和双峰分布。
单峰分布是指颗粒大小集中在某个范围内,而双峰分布则是指颗粒大小分布在两个不同的范围内。
颗粒的粒径分布对其堆积、流动性等物理性质有重要影响。
1.2 颗粒形状和表面现象颗粒形状是指颗粒的外形特征,可以分为规则形状和不规则形状。
规则形状的颗粒如球形、立方体等,而不规则形状的颗粒则呈现出各种复杂的几何形状。
颗粒的形状对其堆积、流动性等物理性质有重要影响。
表面现象是指颗粒表面的吸附、反应、润湿等性质。
颗粒的表面现象对其在流体中的沉降、分散等行为有重要影响。
例如,表面活性剂可以改变颗粒的润湿性,从而影响其在流体中的分散性。
1.3 颗粒间的作用力颗粒间的作用力主要包括范德华力、静电力、氢键等。
这些作用力对颗粒的团聚、分散、堆积等行为有重要影响。
范德华力是由于颗粒表面分子的瞬时偶极矩引起的吸引力,静电力是由于颗粒表面带电而产生的相互作用力,氢键则是一种特殊的相互作用力,常见于含有氢键供体和受体的颗粒之间。
颗粒间作用力的强度和性质决定了颗粒体系的稳定性。
当颗粒间作用力较弱时,颗粒容易发生分散;而当颗粒间作用力较强时,颗粒容易发生团聚。
1.4 颗粒的团聚与分散颗粒在空气中或其他介质中容易发生团聚现象。
颗粒的团聚会导致其堆积密度降低,流动性变差。
颗粒的分散是指颗粒在介质中均匀分布,颗粒的分散性对其在流体中的沉降、输送等行为有重要影响。
颗粒的团聚与分散可以通过调节介质性质、添加分散剂等方法来控制。
介质性质包括介质的pH值、离子强度等,这些参数可以影响颗粒表面的电荷和润湿性,从而影响颗粒的分散性。
|PART1选填&名词解释粉体:①原级颗粒:②聚集体颗粒:③凝聚体颗粒:④絮凝体颗粒:粒度:粉体颗粒所占空间的线性尺寸。
粒径:用某种规定的线性尺寸来表示颗粒粒度,也称颗粒的直径。
(1)取颗粒三维尺寸(重心最低时的长宽高)的平均值:(2)用当量直径表示:(3)统计平均径:(4)粉体的平均粒径:(5)等沉降速度径:与颗粒具有相同密度且在同样介质中有相同自由沉降速度的球的直径。
(6)等阻力直径:与颗粒在同样介质中以相同速度运动时呈现相同阻力的球的直径。
(7)筛分径:颗粒可以通过的最小方筛孔的宽度。
(8)Heywood径:与颗粒投影面积相等的圆的直径形状:以Q表示颗粒或面或立体的参数,Dp为粒径,Q=kDpα,其中k为形状系数,α为形状指数。
粗糙度系数R=粒子的微观实际表面积/表观视为光滑的宏观表面积R>1粒度分布:指将颗粒群用一定的粒度范围按大小顺序分为若干粒级,各级别粒子占颗粒群总量的百分数。
频率分布:某一粒度(Dp)或某一粒度范围内(ΔDp)的颗粒在样品中出现的频率。
累积分布:大于或小于某粒径的颗粒占全部颗粒的百分含量与该粒径的关系。
筛下累积:按粒径从小到大进行累积,D(Dp)=筛上累积:按粒径从大到小进行累积,R(Dp)=最频径:在频率分布坐标图上,纵坐标最大值时对应的粒径为最频径中位粒径d50:累积分布图上,纵坐标最大值的一半对应的粒径为中位粒径,大/小于d50的颗粒各占一半填充率:粉体颗粒体积(颗粒实体体积和颗粒内部孔隙体积之和,不含颗粒间空隙体积)占填充层体积分数空隙率:颗粒之间的空隙体积占粉体填充层体积的分数壁效应:粉体填入容器中,填充结构受容器壁面影响,在容器壁面附近形成特殊的填充结构,称之为容器的壁效应。
里奇韦和塔巴克发现,紧靠壁面处空隙率较大,此后距离增大,空隙率周期性变化。
而麦吉里则研究了圆筒容器直径和球径执笔超过50时,空隙率几乎成为常数。
摩擦特性:粒子间以及粒子与固体边界表面因摩擦产生的特殊的物理现象和力学性质。
2021年粉体工程总结模板1、等面积球当量径—与颗粒同表面积的球的直径;有助于描述粉末的成型过程及烧结过程,较适用于无气孔和轻微粗糙度表面的颗粒体系2、由不同大小的颗粒组成的集合体由不同大小的颗粒组成的集合体——多分散系统3、体是研究微小颗粒的集合体。
当集合体颗粒大小相等或粉体是研究微小颗粒的集合体。
当集合体颗粒大小相等或近似相等——单分散系统4、目。
系指在筛面的25.4mm(1英寸)长度上开有的孔数。
20-120目(900-125um)[目数/___]=孔数/cm25、tem观察粉体的特点。
能给出不同等效原理(如等面积圆、等效短径等)的粒度分布。
能观察颗粒形貌。
能直接观察颗粒分散状况、分体样品的大致粒度范围、是否存在低含量的大颗粒或小颗粒情况等等。
6、频率分布曲线上的最高点是频率的极大值,表示最多数量的颗粒,其对应尺寸称为最多数径dm(或众数直径,(或众数直径,modaldiamater),其数量的多少可计算其面积。
若曲线是关于dm对称,即符合正态分布(normaldistribution),此时,dm=平均粒径=dmed(中位径)mediandiameter7、累积分布曲线与频率分布曲线互为积分与___的关系,若取同一横坐标,则累积分布曲线上各点斜率实际上,累积分布曲线与频率分布曲线互为积分与___的关系,若取同一横坐标,则累积分布曲线上各点斜率dr/dd,即为频率分布曲线纵坐标上相应各点之值。
,即为频率分布曲线纵坐标相应各点之值。
频率分布曲线上任一点的纵坐标表示某粒径频率分布曲线上任一点的纵坐标表示某粒径d为中心的颗粒在dd范围内占物料百分数为范围内占物料百分数为dr,在频率分布曲线之下,粒径为,在频率分布曲线之下,粒径为d以左所包含的面积占曲线以下所包含面积百分比即为累积百分数以左所包含的面积占曲线以下所包含面积百分比即为累积百分数r%。
8、累积分布——反映粒度变化不敏感,要求出斜率→粒度变化,斜率大,粒度变化大;但数量上反映较为明显,从纵坐标可以看出,计算方便,工业生产常用。
粉体工程学科的研究意义1.提高产品质量2. 改善产品性能,开发新产品3. 促进粉体处理机械设备的研制革新4. 研制新材料 5超细粉体1. 粉体的特点: 粒度不连续 比表面积大 颗粒形状不规则 磨损性物料粉体化的意义:加速反应速度 提高均化混合效率 提高流动性能 剔除分离某些无用成分 超细粉体化可以改变材料的结构及性质粉体颗粒的种类:原级颗粒 聚集体颗粒 凝聚体颗粒 絮凝体颗粒单颗粒的粒度 三轴径 当量直径 定向径频率分布的表示方法 列表法 图示法 数学法两边取两次对数[Example] 某粉体粒度符合R —R 分布,粒径小于μm 的颗粒含量为15%,试求:(1)粒径为40~50μm 的颗粒含量;(2)该粉体的特征粒径;(3)该粉体与另一均匀性系数为1.2的粉体相比较,何者粒度更集中?[解]R (20μm )= 100% ―30% = 70%, R (80μm )= 15% 有 (1)将Dp=40μm 和Dp=50μm 分别代入 R (40μm )=44.36%;R (50μm )= 34.64%∴ R (40μm )― R (50μm )= 9.72%(2)将R (De )= 36.8%代入R —R 式并解之,得De = 47.60μm(3)∵ n = 1.189<1.2 ∴ 该粉体粒度分布更集中。
2.4.1 粒度测量方法筛分法 比表面积法 沉降法 光透过法 光散射和衍射法 图象法 粉体层中静态液体的四种存在型式:摆动状态 索链状态 毛细管状态 浸渍状态液桥的作用:改变颗粒间的作用力;改变粉体的成型性能(即可塑性);改变粉体的流动性;改变粉体的电性能。
摩擦角 由于颗粒间的摩擦力和内聚力而形成的角统称为摩擦角整体流优点 1避免不稳定流动、沟流和溢流。
2消除筒仓内的不流动区。
3形成先进先出的流动,最大限度地减少存贮期间的结块、变质或偏析问题。
4卸料时颗粒料密度为常数,不受料位差影响。
可用容量式供料装置控制颗粒料,并改善计量式喂料装置的性能。
第一章绪论1.粉体学的重要意义(对应“粉体及其技术的重要性”)1)粉体是许多材料构成、组分或原料;2)粉体技术是制备材料的基础技术之一;3)超细粉体材料,尤其是纳米粉体材料在新型材料的开发研究中越来越重要;4)粉体容易大批量生产处理,产品质量均匀,成本低,控制精确,成为许多人工合成材料必然选择的合成方法。
2.颗粒的定义:是在一特定范围内具有特定形状的几何体。
大小一般在毫米到纳米之间,颗粒不仅指固体颗粒,还有雾滴、油珠等液体颗粒。
3.粉体的定义:大量颗粒的集合体,即颗粒群,又称粉末(狭义的粉末是指粒度较小的部分)。
颗粒与粉体的关系:颗粒是粉体的组成单元,是粉体中的个体,是研究粉体的出发点。
颗粒又总是以粉体这种集合体的形式出现,集合体产生了个体所所不具有的性质。
4.粉体学的特点:以粉体为研究对象,研究其性质及加工利用技术。
5.粉体技术包括:制备、加工、测试。
制备有各种物理、化学、机械方法;加工作业有粉碎、分级、分散、混合、制粒、表面处理、流态化、干燥、成形、烧结、除尘、粉尘爆炸、输运、储存、包装等;测试对粉体各种几何、力学、物理、化学性能表征。
6.粉体的存在状态:通常所指的粉体是小尺寸的固体,但气体中的液滴、液体中的气泡也属于颗粒;固态的物质中又分为分散态和聚集态,多数粉体为分散态。
7.粉体的分类:1)按照成因分类:天然粉体与人工粉体2)按制备方法分类:机械粉碎法和化学法粉体3)按分散状态分类:原级颗粒(一次颗粒)、聚集体颗粒(二次颗粒)、凝聚体颗粒(三次颗粒)、絮凝体颗粒4)按颗粒大小(粒径)分类:粗粉体(>0.5mm)、中细粉体(0.074~0.5mm)、细粉体(10~74μm)、微粉体(0.1~10 μm )、纳米粉体(<100nm)第二章粉体的几何性质1.粒度定义:粒度是指粉体颗粒所占空间的线性尺寸。
2.颗粒尺寸常用的表征方法:三轴径、定向径、当量径、3.粉体平均粒径计算公式:4.粒度分布及其表示方法:粒度分布依据的统计基准:①个数基准分布(又称频度分布) 以每一粒径间隔内的颗粒数占颗粒总数∑n的比例。
名词解释1. 粉体:粉体是由大量的不同尺寸的颗粒组成的颗粒群。
2. 三轴平均径:以颗粒的长度、宽度、高度定义的粒度平均值称为三轴平均径3. 球体积当量径:与颗粒体积相同的球的直径为球体积当量径。
4. 液体桥:粉体颗粒间隙之间存在的液体,称为液体桥。
(常见的是水。
)5.毛细管力:是指液体表面张力的收缩作用将引起对两颗粒间的牵引力。
6安息角:安息角是粉体粒度较粗的状态下由自重运动所形成的角。
7.偏析:粉体流动时,由于粒径、密度、形状等差异,组成呈现出不均质的现象。
8. 筛分法:筛分法是使物料通过一组有序的不同筛孔尺寸的(标准)筛子来测试粒度并进行大小分级的方法。
9.粉碎过程:固体物料在外加作用下,克服了内聚力,使之破碎的过程。
10.等降颗粒:在流体内以同一速度沉降的颗粒.11粗糙度系数::表示颗粒表面的粗糙程度R=粒子微观的表面积/表面视为光滑粒子的宏观表面积 12颗粒形状:是指一个颗粒的轮廓边界或表面上各点所构成的图象 13空隙率填充层中粒度与占据的空间体积与包含空间在内的整个填充层表面体积之比 14松装密度:指在一个填充状态下,包括颗粒间全部空隙在内的整个填充单位体积中的颗粒质量 15重力流动性:松装物料由于自身重力克服料层内力所具有的流动性质 16动态拱:不阻碍仓内粉料正常卸出的粉体拱 17 料斗流动因素:料斗内粉体固结主应力与作用于料拱脚的最大主应力的比值 18形状指数:表示单一颗粒外形的几何量的各种无因次组合。
19形状系数:在表示颗粒群性质和具体物理现象、单元过程等函数关系时,把与颗粒形状有关的诸因素概括为一个修正系数加以考虑,该修正系数即为形状系数。
20极限应力状态:粉体处于运动初始瞬间,粉体层内每一点都是剪切的临界状态 21整体流:在卸料过程中仓内物料全部处于均匀下降的运动状态 22漏斗流;若只有存仓的中心产生料流,其他区域的物料停滞不动,流动的区域呈漏斗状,流动沟道呈圆形截面,其底部截面大致相当于卸料口面积 23应力平衡:粉体层内部摩擦力对外力的抵抗而保持的一种力的平衡状态 24粉体的休止角:粉体自然堆积时的自由表面在静止平衡状态下与水平面形成的角度 25沉降速度:等速阶段颗粒相对于流体的运动速度 26颗粒的松密度:单位输送容积的颗粒质量 26破坏包络线:对同一种粉体层的所有极限摩尔圆可以作一条公切线,这条公切线称破坏包络线27粒度分布:是指将颗粒群以一定的粒度分布范围按大小顺序分为若干级别,各级别粒子占颗粒群总量的百分数。
粉体⼯程复习提纲(10级学⽣⽤)1粉体2粒度3粉碎速度4分级5混合6极限应⼒状态7间歇沉降曲线8等降颗粒9库仑粉体10渗流11混合粉碎12分离(分选)13偏析14筛⽐15浮选16粉体填充层孔隙⽔利半径17破坏包络线18中位经19易碎性20分离效率(收尘效率)21活化位或活化中⼼22附壁效应23闭塞粉碎24离⼼分离25壁摩擦⾓26流动函数27压缩28易磨性29扩散混合31机械⼒化学反应32⽓⼒输送33滑动摩擦⾓34孔隙率35主动状态36 D 7537剪切混合38固体流态化40基筛41粉体压⼒饱和现象42空隙率分布43被动状态44整体流或质量流45粒度分布46分级粒径47粉碎⽐48⾃由沉降49分离精度50沉降浓缩51内摩擦⾓52配位数分布53漏⽃流54合格率55(⾃由)沉降速度56平衡分离点57等降⽐58过滤59团结主应⼒60粉体侧压⼒系数61重⼒流动性62粉碎平衡63悬浮速度64振动强度65循环负荷率66料⽃流动因数。
67开放屈服强度68碎裂函数69重量分散度和粒度分散度70颗粒流体⼒学71粉体填充率72(静)休⽌⾓73选择函数74粉碎机械⼒化学75过粉碎76粉体容积密度77粉碎效率79残留平衡饱和度。
80变动系数81⽜顿分级效率82 单粒度体系83多粒度体系或多分散体系84液体桥85摩擦⾓86表⾯能87⽐表⾯能88⽐表⾯积89随机混合90搅拌91捏合或混练92对流混合93 标准偏差94 混合指数95造粒96喷浆造粒97流化造粒98⽐电阻99电晕100动态拱101形状指数102形状系数103易碎性系数K M简答题:1 储库内的粉体相对于漏⽃流⽽⾔,整体流具有那些优点?2 标出下列颗粒球形度⼤⼩的顺序。
1)三⾓形椭圆形2)⽴⽅体圆板3 可采⽤哪些措施达到“迅速分级”?4 ⼲式与湿式的重⼒分级中何者颗粒的沉降速度为⼤?为什么?5 ⽤分级机⽣产⼀定粒度要求的粉体时,根据产品的⽤途可以⼤体分为哪⼏类?6 ⽔平运动和垂直运动的筛⾯何者筛分效率⾼?为什么?7 材料理论强度与实际强度何者为⼤?为什么?8 球体和⽴⽅体的体积形状系数和表⾯形状系数分别是多少?9 简述旋风收尘器的⼯作原理?(根据下图说明旋风除尘器的⼯作原理。
第二章 粉体粒度分析及测量 1. 粉体:由无数相对较小的颗粒状物质构成的一个集合体。 2. 三轴径:以颗粒的长度,宽度和高度定义的粒度平均值称为三轴径。 3. 投影径:Feret diameter (a) : 在特定方向与投影轮廓相切的两条平行线间距. 4. Martin diameter (b): 在特定方向将投影面积等分的割线长. 5. Krumbein diameter (c):(定方向最大直径)最大割线长 6. Heywood diameter (d):(投影面积相当径): 与投影面积相等的圆的直径. 7. 形状指数:将表示颗粒外形的几何量的各种无因次组合称为形状指数, 它是对单一颗粒本身几何形状的指数化.(扁平度,伸长度,表面积,体积形状因数,球形度) 8. 形状系数:在表征粉末体性质,具体物理现象和单元过程等函数关系时,把颗粒形状的有关因素概括为一个修正系数加以考虑,该系数即为形状系数。用来衡量实际颗粒与球形(立方体等)颗粒形状的差异程度,比较的基准是具有与表征颗粒群粒径相同的球的体积,表面积,比表面积与实际情况的差异。 9. 颗粒粒度的测量:(1)沉降法:当光透过悬浮液的测量容器时,一部分光被放射或吸收,另一部分光到达光传感器,将光强转化为电信号。透过光强与颗粒投影面积有关,颗粒在力场中沉降,可用托克斯定律计算其粒径大小,从而得到累积粒度分布。重力场光透过沉降法:测量范围为0.1~1000微米,悬浮液密度差大时,颗粒沉降速度快。中科院马兴华发明了图像沉降法。将沉降过程可视化。离心力场透过沉降法:该法适合测纳米级颗粒可测量0.007~30微米的颗粒,与重力场相结合,上限可提高到1000微米。(2)激光法:常见的有激光衍射法和光子相干法,重复性好,测量速度快,但对几纳米的式样测量误差大,范围为0.5~1000微米。 7.颗粒形状的测量与表征:图像分析法和能谱法。傅里叶级数表征法和分数维表征法 第三章 粉体的填充与堆积特性 1. 粉体的填充指标:(1)容积密度:在一定填充状态下,单位填充体积的粉体质量,也称表观密度(pB=填充粉体的质量/粉体填充体积)(2)填充率:在一定填充状态下,颗粒体积占粉体的比率( =粉体填充体的颗粒体积/粉体填充体积1
V
Vp
)(3)空隙率:空隙体积占粉体填充体积的比率
VVcVVpV
2. 等径球体的规则填充:(1)两种约束方式(正方形,特征是90度角;等边三角形,特征是60度角)(2)三种稳定构成方式(a.下层球的正上面排列着上层球b.下层球和球的切点上排列着上层球c.下层球间隙的中心排列着上层球) 3. 六种填充模型:(正方系)立方最密填充(最疏),正斜方体填充,面心立方体填充,(六方系)正斜方体填充,楔形四面体填充,六方最密填充(最密)。 4. 单元体:取相邻接的八个球并连接其球心得一块平行六面体成为单元体。 5. 不等径球的填充:a. Horsfield填充:最小空隙率为0.039作为排列征的排列为Horsfield最紧密填充 b. Hudson填充:当三角形空隙中球的尺寸比为0.1716时,最小空隙率为0.1130,这样的排列成为Hudson填充。 6. 不同尺寸颗粒的最紧密堆积:孔隙率最小时粗颗粒的质量分数为0.67。孔隙率随大小颗粒混合比变化而变化,小颗粒粒度越小,孔隙率越小。 第四章 粉体的湿润 1. 液桥:粉体与固体或粉体颗粒之间的间隙部分存在液体时,称为液桥。 2. 粉体层中静态液体的四种存在型式: (1)摆动状态:颗粒接触点上存在透镜状或环状液相,但液相互不连接; (2)索链状态:随液体量增多,液环长大,颗粒空隙中的液相相互连接成网状结构,空气分布于其间;(3)毛细管状态:颗粒间所有空隙全被液体充满,粉体层表面存在气液界面;(4)浸渍状态:颗粒全浸在液体中,存在自由液面。 3. 颗粒间的五种附着力:(1)分子间引力(2)颗粒所带异号静电荷引力(3)附着水分的毛细管力(4)磁性力(5)颗粒表面不平滑引起的机械咬合力 第五章 粉体的流变学 1. 摩尔圆画法
2. 破坏包络线 三个圆为破坏极限圆,圆的共切线为破坏包络
线,破坏包络线与横轴的夹角称为内摩擦角。 破坏包络线方程:cciitan
呈直线的粉体为库伦粉体,c=0为无附着性粉体,反之为附着性粉体iatan naac
非库伦粉体
0
d
d
i3. 几种摩擦角的概念 a.摩擦角:粉体从运动状态变为静止状态,由于颗粒间的摩擦力和内聚力而形成的角統称为摩擦角。 b.安息角:粉体粒度较粗状态下由自重运动所形成的角 c.壁面摩擦角:指粉体与壁面之间的摩擦角,反应了粉体层与固体壁面的摩擦性质。 d.滑动摩擦角:指单个颗粒与壁面之间的摩擦性质。 4. 粉体压力饱和现象:当粉体层填充高度达一定值后,p(铅垂应力)值趋于常数值,这一现象称为粉体压力饱和现象。 5. 动态超压现象:卸料时,离筒仓下部约1/3高度处,壁面收到冲击,反复载荷的作用其做大压力可达静压的3~4倍,这一现象为动态超压现象。 6. 料斗铅垂方向的压力分布(有一定的卸料宽度,形成卸料压力) 7. 粉体重力流动状态作图: 8. 粉体在料仓中的流动模式 漏斗流:发生在平底的料仓中或带料斗的料仓中,由于料斗的斜度太小或料斗壁太粗糙以致颗粒料难以沿着料斗壁滑动,颗粒料是通过不流动料堆中的通道到出口的,通道通常是圆锥形的。特点:先入后出。 整体流:发生在带有相当陡峭而光滑的料斗筒仓内,物料从出口的全面积上卸出,流动通道与料斗壁是一致的。特点:先进先出。 9. 有效屈服轨迹:通过坐标原点作一条直线与密实应力圆相切,则该条直线就称为有效屈服轨迹EYL。 10. 有效内摩擦角:有效屈服轨迹与横坐标之间的夹角即为有效内摩擦角δ。 11. 颗粒存储和流动时的偏析: 偏析:是指粉体颗粒在运动、成堆或从料仓中排料时,由于料径、颗粒密度、颗粒形状、表面特性等差异而引起的粉体组成呈现不均质的现象。常发生在粒度分布较宽的自由流动颗粒粉体中。
A:为颗粒擦过B区向出口区中心方向迅速滚落区 B:团块运动区 C:颗粒垂直运动区 D:颗粒自由降落区 E:颗粒不流动区 (除了E区以外,凡处于大于安息角位置的颗粒均产生流向中心的运动)流出孔径Db与颗粒直径Dp
的比值Db /Dp 约在5以下时粉体不流出。大
于10,流量也是不均匀的,为不连续流。 粉体偏析的机理:细颗粒的渗漏作用,振动,颗粒的下落轨迹,料堆上的冲撞,安息角的影响。 防止偏析的方法:在加料时采取某些可以使输入物质重新分布和能改变内部模式的方法,现有活动加料管和多头加料管。(2)在卸料时,通过改变流动模式以减小偏析,在料斗卸料口的上方装一个改流体可以拓宽流动通道,有助于重新混合,也可使用多通道卸料管。 12. 粉体结拱:结拱现象:粉体物料在料仓内存储一定时间后,由于受粉体附着力,摩擦力的作用,在某一料层可能产生向上的支持力。该支持力与料层上方物料的压力达到平衡时,此料层的下方便处于静止状态,产生结拱现象。 结拱产生的原因:(1)粉体的内摩擦力和内聚力使之产生剪应力并形成一定的整体强度,阻碍颗粒位移,使流动性变差。(2)粉体的外摩擦力和筒仓内璧间的摩擦力,(3)外界空气的湿度,温度的作用使粉体的内聚力增大,流动性变差,固结性增强,导致出现拱塞额可能性增大。(4)筒仓卸料口的水力半径减小,使筒仓内粉体的芯流截面变小。 防止结拱的措施:(1)正确设计料仓的几何结构(2)提高料仓内壁的平滑度(3)气动破拱(4)振动破拱(5)机械破拱 第六章 粉碎过程及设备 1. 粉碎:固体物料在外力作用下克服其内聚力使之破碎的过程政委粉碎。 2. 五种粉碎方式:(a)挤压破碎:物料在两个工作面之间受到缓慢增大的压力作用而破碎。(b)劈裂破碎:用一个尖棱和一个带有尖棱的工作表面挤压矿石时,矿石将沿压力作用线的方向劈裂而破碎。(c)折断破碎:夹在工作面之间的物料如受集中力作用的简支梁或多支梁.物料主要受弯曲应力而折断,但在物料与工作面接触处受到劈力作用。 (d)研磨破碎:物料块处于两个相对移动的破碎板之间,物料因表面经受研磨作用而产生剪切变形,当剪切应力达到抗剪强度极限,物料被破碎。(e)冲击破碎:物料受到足够大的瞬时冲击力而破碎。其破碎效率高,破碎比大、能量消耗少。 3. 三种破碎机理:(1)面积假说:(适合细碎)雷廷格认为:破碎过程是以减小物料颗粒尺寸为目的的,破碎过程将使物料的表面积不断增加。为此,物料破碎时,外力所做的功用于产生新表面,即破碎功耗与破碎过程中物料新生成表面的面积成正比,或破碎过程所消耗的功dA1与物料的新生表面积增量dS成正比。即: dA1=K1 dS (K1 — 比例系数)只能近似地用在磨矿机的磨矿中,只考虑了生成新表面所需的功(2)体积假说:(适合粗碎)几何形状相似的同类物料破碎成几何形状也相似的产品时,其破碎功耗与被破碎物料块的体积或质量成正比,或破碎过程所消耗的功dA2与破碎物料块的变形体积的微量dV成正比。即:dA2=K2dV=K2dD3=3K2D2dD (K2— 比例系数),能近似地计算粗碎和中碎的破碎总功耗,只考虑了变形(3)裂缝假说:(粗碎和细碎之间)破碎矿石时,外力首先使物料块产生变形,外力超过强度极限以后,物料块就产生裂缝而破碎成许多小块,破碎功耗 1110()iWWPF
Wi ——邦德粉碎功指数。
4.粉碎的三种破碎模型:a.体积粉碎模型:整个颗粒都受到破坏(粉碎),粉碎生成物大多为粒度大的中间颗粒,随着粉碎的进行,这些中间粒径的颗粒依次被粉碎成具有一定粒度分布的中间粒径颗粒,最后逐渐积蓄成微粉成分(即稳定成分)。b.表面粉碎模型:仅在颗粒的表面产生破坏,从颗粒表面不断剥下微粉成分,这一破坏不涉及颗粒内部。c.均一粉碎模型:加于颗粒的力,使颗粒产生分散性的破坏,直接碎成微粉成分。 5. 破碎机械:挤压式破碎机(鄂式破碎机,圆锥破碎机,辊式破碎机)冲击式破碎机