电磁场与电磁波试题及答案
- 格式:doc
- 大小:1.28 MB
- 文档页数:51
《电磁场与电磁波》期末复习题及答案一,单项选择题1.电磁波的极化特性由__B ___决定。
A.磁场强度B.电场强度C.电场强度和磁场强度D. 矢量磁位2.下述关于介质中静电场的基本方程不正确的是__D ___A. ρ??=DB. 0??=EC. 0C d ?=? E lD.0S q d ε?=? E S 3. 一半径为a 的圆环(环面法向矢量z = n e )通过电流I ,则圆环中心处的磁感应强度B 为__D ___A. 02r Ia μe B.02I a φμe C. 02z Ia μe D. 02z I a μπe4. 下列关于电力线的描述正确的是__D ___A.是表示电子在电场中运动的轨迹B. 只能表示E 的方向,不能表示E 的大小C. 曲线上各点E 的量值是恒定的D. 既能表示E 的方向,又能表示E 的大小5. 0??=B 说明__A ___A. 磁场是无旋场B. 磁场是无散场C. 空间不存在电流D. 以上都不是6. 下列关于交变电磁场描述正确的是__C ___A. 电场和磁场振幅相同,方向不同B. 电场和磁场振幅不同,方向相同C. 电场和磁场处处正交D. 电场和磁场振幅相同,方向也相同7.关于时变电磁场的叙述中,不正确的是:(D )A. 电场是有旋场B. 电场和磁场相互激发C.电荷可以激发电场D. 磁场是有源场8. 以下关于在导电媒质中传播的电磁波的叙述中,正确的是__B ___A. 不再是平面波B. 电场和磁场不同相C.振幅不变D. 以TE波形式传播9. 两个载流线圈之间存在互感,对互感没有影响的是_C ____A. 线圈的尺寸B. 两个线圈的相对位置C. 线圈上的电流D. 空间介质10. 用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据__C ___A. 镜像电荷是否对称B.电位?所满足的方程是否改变C. 边界条件是否保持不变D. 同时选择B和C11. 区域V全部全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是_A ___A. 能量流出了区域B.能量在区域中被损耗C.电磁场做了功D. 同时选择A和C12. 磁感应强度为(32)x y z B axe y z e ze =+-+ , 试确定常数a 的值。
自测题八一、填空题(每题2分,共10分)1、已知真空中有恒定电流J(r),则空间任意点磁感应强度B的旋度为。
2、极化方向既不平行也不垂直于入射面的线极化波斜入射在一个无限大介质平面上,__________________时反射波只有平行极化分量。
3、自由空间中原点处的源(ρ或J)在t时刻发生变化,此变化将在时刻影响到r处的位函数(ψ或A)。
4、在球坐标系中,电偶极子辐射场(远场)的空间分布与坐标的关系是_______。
5、已知体积为V的介质的介电常数为ε,其中的静电荷(体密度为ρ)在空间形成电位分布ψ和电场分布E和D,则空间的静电能量密度为。
空间的总静电能量为________________。
二、选择填空题(每题2分,共10分,每题只能选择一个答案,否则判为错)1、以下关于时变电磁场的叙述中,不正确的是()。
A.电场是有旋场B.电场和磁场相互激发C.电荷可以激发电场D.磁场是有源场2、以下关于在导电媒质中传播的电磁波的叙述中,正确的是()。
A.不再是平面波B.电场和磁场不同相C.振幅不变D.以TE波形式传播3、两个载流线圈之间存在互感,对互感没有影响的是()。
A.线圈的尺寸B.两个线圈的相对位置C.线圈上的电流D.空间介质4、用镜像法求解静电场边值问题时,判断镜像电荷的选取是否正确的根据是()。
A.镜像电荷是否对称B.电位ψ所满足的方程是否改变C.边界条件是否改变D.同时选择B和C5、区域V全部用非导电媒质填充,当此区域中的电磁场能量减少时,一定是()。
A.能量流出了区域B.能量在区域中被损耗C.电磁场做了功D.同时选择A和C自测题八答案J(r)一、1. μ2. θ=θB3. t+r/c4. ∝sinθ/r二、1.D 2.B 3.C 4.D 5.A自测题七一、填空题(每题2分,共20分;选择填空题每题只能选择一个答案,否则判为错)1、已知真空中的电荷分布为ρ(r),则空间任意点电场强度E的散度为_______。
电磁场与电磁波练习题一、单项选择题(每小题1分,共15分)1、电位不相等的两个等位面()A. 可以相交B. 可以重合C. 可以相切D. 不能相交或相切2、从宏观效应看,物质对电磁场的响应包括三种现象,下列选项中错误的是()A.磁化B.极化C.色散D.传导3、电荷Q 均匀分布在半径为a 的导体球面上,当导体球以角速度ω绕通过球心的Z 轴旋转时,导体球面上的面电流密度为()A.sin 4q e a ?ωθπB.cos 4q e a ?ωθπC.2sin 4q e a ?ωθπD.33sin 4q e r aωθπ 4、下面说法错误的是()A.梯度是矢量, 其大小为最大方向导数,方向为最大方向导数所在的方向。
B.矢量场的散度是标量,若有一个矢量场的散度恒为零,则总可以把该矢量场表示为另一个矢量场的旋度。
C.梯度的散度恒为零。
D.一个标量场的性质可由其梯度来描述。
5、已知一均匀平面波以相位系数30rad/m 在空气中沿x 轴方向传播,则该平面波的频率为()A.81510π?HzB.8910?HzC.84510π?Hz D.9910?Hz6、坡印廷矢量表示()A.穿过与能量流动方向相垂直的单位面积的能量B.能流密度矢量C.时变电磁场中空间各点的电磁场能量密度D.时变电磁场中单位体积内的功率损耗7、在给定尺寸的矩形波导中,传输模式的阶数越高,相应的截止波长()A.越小B.越大C.与阶数无关D.与波的频率有关8、已知电磁波的电场强度为(,)cos()sin()x y E z t e t z e t z ωβωβ=---,则该电磁波为()A. 左旋圆极化波B. 右旋圆极化波C. 椭圆极化波D.直线极化波9、以下矢量函数中,可能表示磁感应强度的是()A. 3x y B e xy e y =+B.x y B e x e y =+C.22x y B e x e y =+D. x y B e y e x =+10、对于自由空间,其本征阻抗为()A. 0η=B.0η=C. 0η=D. 0η=11、自感和互感与回路的()无关。
电磁场与电磁波波试卷3套含答案电磁场与电磁波》试卷1一、填空题(每空2分,共40分)1.矢量场的环流量有两种特性:一是环流量为0,表明这个矢量场无漩涡流动。
另一个是环流量不为0,表明矢量场的流体沿着闭合回路做漩涡流动。
2.带电导体内静电场值为常数,从电势的角度来说,导体是一个等电位体,电荷分布在导体的表面。
3.分离变量法是一种重要的求解微分方程的方法,这种方法要求待求的偏微分方程的解可以表示为三个函数的乘积,而且每个函数仅是一个坐标的函数,这样可以把偏微分方程化为常微分方程来求解。
4.求解边值问题时的边界条件分为三类,第一类为整个边界上的电位函数为已知,这种条件称为XXX条件。
第二类为已知整个边界上的电位法向导数,称为诺伊曼条件。
第三类条件为部分边界上的电位为已知,另一部分边界上电位法向导数已知,称为混合边界条件。
在每种边界条件下,方程的解是唯一的。
5.无界的介质空间中场的基本变量B和H是连续可导的,当遇到不同介质的分界面时,B和H经过分界面时要发生突变,用公式表示就是n·(B1-B2)=0,n×(H1-H2)=Js。
6.亥姆霍兹定理可以对Maxwell方程做一个简单的解释:矢量场的旋度和散度都表示矢量场的源,Maxwell方程表明了电磁场和它们的源之间的关系。
二、简述和计算题(60分)1.简述均匀导波系统上传播的电磁波的模式。
(10分)答:均匀导波系统上传播的电磁波有三种模式:横电磁波(TEM波)、横磁波(TM波)和横电波(TE波)。
其中,横电磁波在电磁波传播方向上没有电场和磁场分量,即电场和磁场完全在横平面内;横磁波在电磁波传播方向上有电场但没有磁场分量,即磁场在横平面内;横电波在电磁波传播方向上有磁场但没有电场分量,即电场在横平面内。
从Maxwell方程和边界条件求解得到的场型分布都可以用一个或几个上述模式的适当幅相组合来表征。
2.写出时变电磁场的几种场参量的边界条件。
关于电磁场和电磁波,下列说法正确的是()
A. 任何电场都会产生磁场
B. 任何磁场都会产生电场
C. 麦克斯韦预言了电磁波的存在
D. 电磁波是纵波,可以在真空中传播
答案:
C
分析:
解:AB、变化的磁场产生电场,变化的电场产生磁场,而变化有均匀变化与非均匀变化,当均匀变化的则会产生稳定的,故AB错误;
C、电磁波是由麦克斯韦预言,而赫兹通过实验证实了电磁波的存在,故C 正确;
D、电磁波是横波,变化的电场与变化磁场相互垂直,能在真空中传播的。
故D错误;
故选:C。
电磁波是由变化电磁场产生的,变化的磁场产生电场,变化的电场产生磁场,逐渐向外传播,形成电磁波。
电磁波是由麦克斯韦预言,而赫兹通过实验证实了电磁波的存在。
电磁波本身就是一种物质,且是横波。
解决本题的关键知道电磁波的产生原理,以及知道电磁波的类型。
对于这些基本知识要熟练掌握并能正确应用。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D B H J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
电磁场和电磁波练习一、选择题(每题4分,共60分)1.A关于电磁场和电磁波.下列说法正确的是A.电场和磁场总是相互联系,电场和磁场统称为电磁场B.电磁场从发生区域由近及远的传播称为电磁波C.电磁波是一种物质,可在真空中传播.所以平日说真空是没有实物粒子,但不等于什么都没有,可以有“场”这种特殊物质D.电磁波传播速度总是3×108m/s答案:BC2.A建立完整电磁场理论并首先预言电磁波存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:D3.A第一个用实验验证电磁波客观存在的科学家是A.法拉第B.奥斯特C.赫兹D.麦克斯韦答案:C4.A任何电磁波在真空中都具有相同的A.频率B.波长C.波速D.能量答案:C5.A在磁场周围欲产生一个不随时间变化的电场区域,则该磁场应按图中的何种规律变化答案:BC6.A甲、乙两个LC振荡电路中,两电容器电容之比C1:C2=1:9,两线圈自感系数之比L1:L2=4:1,则这两个振荡电路发射电磁波的频率之比和波长之比分别为A.f1:f2=4:9,λ1:λ2=9:4B.f1:f2=9:4,λ1:λ2=4:9C.f1:f2=3:2,λ1:λ2=2:3D.f1:f2=2:3,λ1:λ2=3:2答案:C7.A关于麦克斯韦电磁场理论,下列说法正确的是A.在电场周围空间一定存在着磁场B.任何变化的电场周围一定存在着变化的磁场C.均匀变化的磁场周围一定存在着变化的电场D.振荡电场在它的周围空间一定产生同频率的振荡磁场答案:D8.A电磁波在不同介质中传播时,不变的物理量是A.频率B.波长C.振幅D.波速答案:A9.B 下列哪些现象是由于所产生的电磁波而引起的A.用室内天线接收微弱电视信号时,人走过时电视机画面发生变化B.用天线接收电视信号时,汽车开过时电视机画面发生变化C.把半导体收音机放到开着的日光灯旁听到噪声D.在边远地区用无线电话机通活,有时会发生信号中断的现象答案:BC10.B 如图所示,直线MN 周围产生了一组闭合电场线,则A.有方向从M→N迅速增强的电流B.有方向从M→N迅速减弱的电流C.有方向从M→N迅速增强的磁场D.有方向从M→N迅速减弱的磁场答案:D二、填空题(每空3分,共18分)11.A 有一振荡电路,线圈的自感系数L=8μH ,电容器的电容C=200pF ,此电路能在真空中产生电磁波的波长是________m 答案:75.412.A 电磁波在传播过程中,其电场分量和磁场分量总是相互________(填“垂直”、“平行”下同),而且与波的传播方向________,电磁波也可以发生反射、折射、干涉和衍射.其中长波衍射要比短波衍射________(填“易”、“难”).答案:垂直、垂直、易13.B 如图中,正离子在垂直于匀强磁场的固定光滑轨道内做匀速圆周运动,当磁场均匀增大时,离子动能将________,周期将________.答案:减小、增大三、计算题(每题11分,共22分)14.B 一个LC 振荡电路,电感L 的变化范围是0.1~0.4mH ,电容C 的变化范围是4~90pF ,求此振荡电路的频率范围和产生电磁波的波长范围.答案: 2.65×105Hz~7.65×106Hz, 1130(m)~ 37.7(m)15.C 某卫星地面站向地球同步通信卫星发送无线电波,经它立即转发到另一卫星地面站,测得从发送开始到地面站接收到电磁波的时间为0.24s ,取地球半径6400km.据此条件估算地球的质量为多少千克?(结果取1位有效数字,G=6.67×1011N·m 2/kg 2) 答案:解:由s=ct 可知同步卫星距地面的高度:h=3.6×107(m)由牛顿运动定律可知()()h R T m h R Mm G +⎪⎭⎫ ⎝⎛=+222π故地球质量:M=()=+3224h R GT π()()21137623600241067.6106.3104.614.34⨯⨯⨯⨯+⨯⨯⨯-=6×1024kg。
电磁场与电磁波考试试题一、选择题(每题 3 分,共 30 分)1、真空中的介电常数为()。
A 885×10^(-12) F/mB 4π×10^(-7) H/mC 0D 无穷大2、静电场中,电场强度的环流恒等于()。
A 电荷的代数和B 零C 电场强度的大小D 不确定3、磁场强度的单位是()。
A 安培/米B 伏特/米C 牛顿/库仑D 特斯拉4、对于时变电磁场,以下说法正确的是()。
A 电场和磁场相互独立B 电场是无旋场C 磁场是无散场D 电场和磁场没有关系5、电磁波在真空中的传播速度为()。
A 光速B 声速C 无限大D 不确定6、以下哪种波不是电磁波()。
A 可见光B 超声波C 无线电波D X 射线7、均匀平面波在理想介质中传播时,电场和磁场的相位()。
A 相同B 相反C 相差 90 度D 不确定8、电位移矢量 D 与电场强度 E 的关系为()。
A D =εEB D =ε0ECD =μH D D =μ0H9、坡印廷矢量的方向表示()。
A 电场的方向B 磁场的方向C 能量的传播方向D 电荷的运动方向10、电磁波的极化方式不包括()。
A 线极化B 圆极化C 椭圆极化D 方极化二、填空题(每题 3 分,共 30 分)1、库仑定律的表达式为________。
2、静电场的高斯定理表明,通过任意闭合曲面的电通量等于该闭合曲面所包围的________。
3、安培环路定理表明,磁场强度沿任意闭合回路的线积分等于穿过该回路所包围面积的________。
4、位移电流的定义式为________。
5、麦克斯韦方程组的四个方程分别是________、________、________、________。
6、电磁波的波长、频率和波速之间的关系为________。
7、理想导体表面的电场强度________,磁场强度________。
8、均匀平面波的电场强度和磁场强度的比值称为________。
9、线极化波可以分解为两个________极化波的合成。
电磁场与电磁波期末考试题库一、选择题1.静电场是指:– A. 电荷在电场中不断运动的状态– B. 电荷在电场中静止的状态– C. 电场中没有电荷存在的状态– D. 电场中电势为零的状态2.电场强度的定义式是:– A. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r^2}$– B. $E = \\varepsilon_0\\frac{q}{r^2}$– C. $E =\\frac{1}{4\\pi\\varepsilon_0}\\frac{q}{r}$– D. $E = \\varepsilon_0\\frac{q}{r}$3.电场线的特点是:– A. 线的密度表示电场强度的大小– B. 线的颜色表示电场强度的大小– C. 线的方向表示电场强度的方向– D. 线上的点表示电场强度的大小4.关于电场线的说法正确的是:– A. 电场线一定是直线– B. 电场线一定是曲线– C. 电场线既可以是直线也可以是曲线– D. 电场线没有特定的形状5.电场中的带电粒子受到的力是由以下哪些因素决定的?– A. 粒子的电荷大小– B. 粒子所处位置的电场强度– C. 粒子的质量– D. 粒子的电荷大小和所处位置的电场强度二、填空题1.电场强度的单位是\\\\。
2.静电势能的单位是\\\\。
3.感应电场的方向与引起它的磁场的变化方式\\\\。
4.麦克斯韦方程组包括\\\_\_个方程。
三、计算题1.一根长为10cm的直导线通有1A的电流,求导线周围某点的磁场强度。
2.一个带电粒子在电场中受到的力为5N,电荷大小为2C,求电场强度的大小。
3.两个带电粒子相距1m,电荷分别为1C和-2C,求它们之间的电势能。
四、问答题1.什么是电磁场?2.什么是电磁波?3.静电场和感应电场有什么区别?4.麦克斯韦方程组描述了什么?五、实验题设计一个实验,验证库仑定律。
以上是《电磁场与电磁波期末考试题库》的题目内容,包括选择题、填空题、计算题、问答题和实验题。
1. 写出非限定情况下麦克斯韦方程组的微分形式,并简要说明其物理意义。
2.答非限定情况下麦克斯韦方程组的微分形式为,,0,D BH J E B D t tρ∂∂∇⨯=+∇⨯=-∇⋅=∇⋅=∂∂,(3分)(表明了电磁场和它们的源之间的全部关系除了真实电流外,变化的电场(位移电流)也是磁场的源;除电荷外,变化的磁场也是电场的源。
1. 写出时变电磁场在1为理想导体与2为理想介质分界面时的边界条件。
2. 时变场的一般边界条件 2n D σ=、20t E =、2t s H J =、20n B =。
(或矢量式2n D σ=、20n E ⨯=、2s n H J ⨯=、20n B =)1. 写出矢量位、动态矢量位与动态标量位的表达式,并简要说明库仑规范与洛仑兹规范的意义。
2. 答矢量位,0B A A =∇⨯∇⋅=;动态矢量位A E t ϕ∂=-∇-∂或AE tϕ∂+=-∇∂。
库仑规范与洛仑兹规范的作用都是限制A 的散度,从而使A 的取值具有唯一性;库仑规范用在静态场,洛仑兹规范用在时变场。
1. 简述穿过闭合曲面的通量及其物理定义 2.sA ds φ=⋅⎰⎰ 是矢量A 穿过闭合曲面S 的通量或发散量。
若Ф> 0,流出S 面的通量大于流入的通量,即通量由S 面内向外扩散,说明S 面内有正源若Ф< 0,则流入S 面的通量大于流出的通量,即通量向S 面内汇集,说明S 面内有负源。
若Ф=0,则流入S 面的通量等于流出的通量,说明S 面内无源。
1. 证明位置矢量x y z r e x e y e z =++ 的散度,并由此说明矢量场的散度与坐标的选择无关。
2. 证明在直角坐标系里计算 ,则有()()xy z x y z r r e e e e x e y e z x y z ⎛⎫∂∂∂∇⋅=++⋅++ ⎪∂∂∂⎝⎭3x y z x y z∂∂∂=++=∂∂∂ 若在球坐标系里计算,则 232211()()()3r r r r r r r r r∂∂∇⋅===∂∂由此说明了矢量场的散度与坐标的选择无关。
1. 在直角坐标系证明0A ∇⋅∇⨯=2.()[()()()]()()()0y x x x z z xy z x y z y y x x z z AA A A A A A e e e e e e x y z y z z x x y A A A AA A x y z y z x z x y ∇⋅∇⨯∂∂∂∂∂∂∂∂∂=++⋅-+-+-∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=-+-+-=∂∂∂∂∂∂∂∂∂ 1. 简述亥姆霍兹定理并举例说明。
2. 亥姆霍兹定理研究一个矢量场,必须研究它的散度和旋度,才能确定该矢量场的性质。
例静电场sD ds q⋅=∑⎰⎰ 0D ρ∇⋅=有源0lE dl⋅=⎰ 0E ∇⋅= 无旋1. 已知 R r r '=-,证明RR R R e R''∇=-∇==。
2. 证明x y z x y zR R R x x y y z z R e e e e e e x y z R R R'''∂∂∂---∇=++=++∂∂∂ R '∇= …… R =-∇1. 试写出一般电流连续性方程的积分与微分形式 ,恒定电流的呢?2. 一般电流/0,/J dS dq dt J t ρ⋅=-∇⋅=-∂∂⎰;恒定电流0,0J dS J ⋅=∇⋅=⎰1. 电偶极子在匀强电场中会受作怎样的运动?在非匀强电场中呢?2. 电偶极子在匀强电场中受一个力矩作用,发生转动;非匀强电场中,不仅受一个 力矩作用,发生转动,还要受力的作用,使 电偶极子中心 发生平动,移向电场强的方向。
1. 试写出静电场基本方程的积分与微分形式 。
2. 答静电场基本方程的 积分形式1sE ds q ε⋅=∑⎰⎰ ,0lE dl ⋅=⎰微分形式 ,0D Eρ∇⋅=∇⨯=1. 试写出静电场基本方程的微分形式,并说明其物理意义。
2. 静电场基本方程微分形式,0D E ρ∇⋅=∇⨯= ,说明激发静电场的源是空间电荷的分布(或是激发静电场的源是是电荷的分布)。
1. 试说明导体处于静电平衡时特性。
2. 答导体处于静电平衡时特性有 ①导体内 0E=;②导体是等位体(导体表面是等位面);③导体内无电荷,电荷分布在导体的表面(孤立导体,曲率); ④导体表面附近电场强度垂直于表面,且0/E n σε=。
1. 试写出两种介质分界面静电场的边界条件。
2. 答在界面上D 的法向量连续12n n D D =或(1212n D n D ⋅=⋅);E 的切向分量连续12t t E E =或(1112n E n E ⨯=⨯)1. 试写出1为理想导体,二为理想介质分界面静电场的边界条件。
2. 在界面上D 的法向量2n D σ=或(12n D σ⋅=);E 的切向分量20t E =或(120n E ⨯=) 1. 试写出电位函数表示的两种介质分界面静电场的边界条件。
2. 答电位函数表示的两种介质分界面静电场的边界条件为12φφ=,1212n nφφεε∂∂=∂∂ 1. 试推导静电场的泊松方程。
2. 解由 D ρ∇⋅=,其中 ,D E Eεφ==-∇,D E ε∴∇⋅=∇⋅ ε为常数2ρφε∴∇=-泊松方程1. 简述唯一性定理,并说明其物理意义2. 对于某一空间区域V ,边界面为s ,φ满足,给定(对导体给定q )则解是唯一的。
只要满足唯一性定理中的条件,解是唯一的,可以用能想到的最简便的方法求解(直接求解法、镜像法、分离变量法……),还可以由经验先写出试探解,只要满足给定的边界条件,也是唯一解。
不满足唯一性定理中的条件无解或有多解。
1. 试写出恒定电场的边界条件。
2. 答恒定电场的边界条件为,,1. 分离变量法的基本步骤有哪些?2. 答具体步骤是1、先假定待求的位函数由两个或三个各自仅含有一个坐标变量的乘积所组成。
2、把假定的函数代入拉氏方程,使原来的偏微分方程转换为两个或三个常微分方程。
解这些方程,并利用给定的边界条件决定其中待定常数和函数后,最终即可解得待求的位函数。
1. 叙述什么是镜像法?其关键和理论依据各是什么?2. 答镜像法是用等效的镜像电荷代替原来场问题的边界,其关键是确定镜像电荷的大小和位置,理论依据是唯一性定理。
7、 试题关键字恒定磁场的基本方程1. 试写出真空中恒定磁场的基本方程的积分与微分形式,并说明其物理意义。
2. 答真空中恒定磁场的基本方程的积分与微分形式分别为0s lB ds H dl I ⋅=⋅=⎰∑⎰’ 0B H J∇⋅=∇⨯= 说明恒定磁场是一个无散有旋场,电流是激发恒定磁场的源。
1. 试写出恒定磁场的边界条件,并说明其物理意义。
2. 答:恒定磁场的边界条件为:12()s n H H J ⨯-=,12()0n B B ⨯-=,说明磁场在不同的边界条件下磁场强度的切向分量是不连续的,但是磁感应强强度的法向分量是连续。
1. 一个很薄的无限大导电带电面,电荷面密度为σ。
证明垂直于平面的z 轴上0z z =处的电场强度E 中,有一半是有平面上半径为03z 的圆内的电荷产生的。
2. 证明半径为r 、电荷线密度为d l rρσ=的带电细圆环在z 轴上z z =处的电场强度为0223200d d 2()zr z rr z σε=+E e故整个导电带电面在z 轴上z z =处的电场强度为002232221200000d 12()2()2z z zr z r z r z r z σσσεεε∞∞==-=++⎰E e e e而半径为03z 的圆内的电荷产生在z 轴上0z z =处的电场强度为2232000d12()42z z zr z rr zσσεε'==-==+⎰E e e e E1. 由矢量位的表示式()()d4Rτμτπ''=⎰J rA r证明磁感应强度的积分公式3()()d4Rτμτπ'⨯'=⎰J r RB r并证明0B∇⋅=2. 答()()()d4Rτμτπ''=∇⨯=∇⨯⎰J rB r A r00()1d()()d44R Rττμμττππ''''=∇⨯=-⨯∇⎰⎰J rJ r0033()()()d d44R Rττμμττππ'⨯'''=-⨯-=⎰⎰R J r RJ r[()]0∇⋅=∇⋅∇⨯=B A r1. 由麦克斯韦方程组出发,导出点电荷的电场强度公式和泊松方程。
2. 解点电荷q产生的电场满足麦克斯韦方程∇⨯=E和ρ∇⋅=D由ρ∇⋅=D得d dτττρτ∇⋅=⎰⎰D据散度定理,上式即为dsq⋅=⎰D S利用球对称性,得24rqrπ=D e故得点电荷的电场表示式24rq r πε=E e由于0∇⨯=E ,可取ϕ=-∇E ,则得2εεϕεϕρ∇⨯=∇⋅=-∇⋅∇=-∇=D E即得泊松方程2ρϕε∇=-1. 写出在空气和μ=∞的理想磁介质之间分界面上的边界条件。
2. 解 空气和理想导体分界面的边界条件为0s ⨯=⨯=n E n H J根据电磁对偶原理,采用以下对偶形式s ms →,→-,→E H H E J J即可得到空气和理想磁介质分界面上的边界条件0ms ⨯=⨯=-n H n E J式中,J ms 为表面磁流密度。
1. 写出麦克斯韦方程组(在静止媒质中)的积分形式与微分形式。
2.()lsD H dl J dS t ∂⋅=+⋅∂⎰⎰⎰ D H J t∂∇⨯=+∂ ls B E dl dS t ∂⋅=-⋅∂⎰⎰⎰B E t∂∇⨯=-∂ 0sB dS ⋅=⎰⎰0B ∇⋅=sD dS q ⋅=⎰⎰D ρ∇⋅=1. 试写媒质1为理想介质2为理想导体分界面时变场的边界条件。
2. 答边界条件为120t t E E == 或10n E ⨯=1t s H J = 或 1s n H J ⨯=120n n B B == 或 10n B ⋅=1n s D ρ= 或 1s n D ρ⋅=1. 试写出理想介质在无源区的麦克斯韦方程组的复数形式。
2. 答H j E ωε∇⨯= E j H ωμ∇⨯=-0B ∇⋅=0D ∇⋅=1. 试写出波的极化方式的分类,并说明它们各自有什么样的特点。
2. 答波的极化方式的分为圆极化,直线极化,椭圆极化三种。
圆极化的特点x m y m E E =,且,x m y m E E 的相位差为2π±, 直线极化的特点,x m y m E E 的相位差为相位相差0,π,椭圆极化的特点x m y m E E ≠,且,xm ym E E 的相位差为2π±或0,π,1. 能流密度矢量(坡印廷矢量)S 是怎样定义的?坡印廷定理是怎样描述的?2. 答能流密度矢量(坡印廷矢量)S 定义为单位时间内穿过与能量流动方向垂直的单位截面的能量。