f2005年安徽数学中考试题及答案
- 格式:doc
- 大小:166.50 KB
- 文档页数:7
2006年安徽省中考数学试题考生注意:本卷共八大题,计 23 小题,满分 150 分,时间 120 分钟.一、选择题(本题共 10 小题,每小题 4 分,满分 40 分)每一个小题都给出代号为 A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)均不得分. 1.计算 2 一的结果是( )A 。
1B —1C .一 7D . 52 。
近几年安徽省教育事业加快发展,据 2005 年末统计的数据显示,仅普通初中在校生就约有334 万人,334 人用科学记数法表示为( ) A . 3 。
34 106 B . 33 。
4 10 5 C 、334 104 D 、 0 。
334 107 3 。
计算(—21ab)的结果正确的是( ) A 。
2441b a B 。
3816b a C 。
—3681b a D 。
—3581b a4 。
把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图.其中对过期药品处理不正确的家庭达到( )A 。
79 %B . 80 %C 。
18 %D . 82 %5 .如图,直线a //b,点B 在直线b 上,且AB ⊥BC ,∠1 二 55º ,则∠2 的度数为( )A 。
35ºB 。
45 ºC 。
55 ºD . 125º6。
方程01221=---x x 的根是( ) A .—3 B 。
0 C.2 D 。
37 。
如图, △ ABC 中,∠B = 90 º ,∠C 二 30º , AB = 1 ,将 △ ABC 绕顶点 A 旋转 1800 ,点 C 落在 C ′处,则 CC ′的长为( ) A . 4 B 。
4 C 。
2 D . 28。
2006年安徽省中考数学试题考 生 注 意:本卷共八大题,计 23 小题,满分 150 分,时间 120 分钟.一、选择题(本题共 10 小题,每小题 4 分,满分 40 分)每一个小题都给出代号为 A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的(不论是否写在括号内)均不得分. 1.计算 2 一9的结果是( )A . 1B -1C .一 7D . 52 .近几年安徽省教育事业加快发展,据 2005 年末统计的数据显示,仅普通初中在校生就约有334 万人,334 人用科学记数法表示为( ) A . 3 . 34 ⨯ 106 B . 33 .4 ⨯ 10 5 C 、334 ⨯ 104 D 、 0 . 334 ⨯107 3 .计算(-21a 2b )3的结果正确的是( ) A. 2441b a B.3816b a C.-3681b a D.-3581b a4 .把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对若干家庭进行调查,调查结果如图.其中对过期药品处理不正确的家庭达到( )A . 79 %B . 80 %C . 18 %D . 82 %5 .如图,直线a //b ,点B 在直线b 上,且AB ⊥BC ,∠1 二 55 º ,则∠2 的度数为( )A . 35 ºB . 45 ºC . 55 ºD . 125º6.方程01221=---x x 的根是( ) A .-3 B .0 C.2 D.37 .如图, △ ABC 中,∠B = 90 º ,∠C 二 30 º , AB = 1 ,将 △ ABC 绕顶点 A 旋转 1800 ,点 C 落在 C ′处,则 CC ′的长为( ) A . 42 B.4 C . 23 D . 2 58.如果反比例函数Y=XK的图象经过点(1,-2),那么K 的值是( ) A 、-21 B 、21C 、-2D 、2 9.如图, △ABC 内接于 ⊙O , ∠C = 45º, AB =4 ,则⊙O 的半径为( ) A . 22 B . 4 C . 23 D . 5第9题10 .下图是由10 把相同的折扇组成的“蝶恋花”(图 l )和梅花图案(图 2 )(图中的折扇无重叠), 则梅花图案中的五角星的五个锐角均为A . 36ºB . 42ºC . 45ºD . 48º第10题二、填空题(本题共 4 小题,每小题 5 分,满分 20 分)11.因式分解: ab2-2ab + a =12 .一次函数的图象过点(-l , 0 ),且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式: 13 .如图,直线 L过正方形 ABCD 的顶点 B , 点A、C 到直线 L 的距离分别是 1 和 2 , 则正方形的边长是L第13题14.某水果公司以 2 元/千克的单价新进了 10000千克柑橘,为了合理定出销售价格,水果公司需将运输中损失的水果成本折算到没有损坏的水果售价中.销售人员从柑橘中随机抽取若干柑橘统计柑橘损坏情况,结果如下表。
2012安徽中考数学试题及答案2012年安徽中考数学试题及答案一、选择题(每题3分,共24分)1. 下列哪个数是正数?A. -3B. 0C. 3D. -2答案:C2. 如果一个角的度数是90°,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角答案:B3. 一个圆的半径是5厘米,那么它的周长是:A. 10π cmB. 20π cmC. 30π cmD. 40π cm答案:B4. 下列哪个是二次根式?A. √3B. √(-1)C. √(2x)D. √x²答案:C5. 如果一个多项式的次数是3,那么它至少有几个项?A. 1B. 2C. 3D. 4答案:C6. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 0答案:C7. 一个三角形的内角和是:A. 90°B. 180°C. 270°D. 360°答案:B8. 下列哪个是不等式?A. 2x + 3 > 5B. 3x - 2 = 4C. 4x² + 1 = 0D. 5y - 2 = 3y答案:A二、填空题(每题3分,共24分)9. 一个数的平方根是4,这个数是______。
答案:1610. 一个数的立方根是2,这个数是______。
答案:811. 一个直角三角形的两直角边分别是3和4,那么它的斜边长是______。
答案:512. 如果一个数的相反数是-5,那么这个数是______。
答案:513. 一个数的绝对值是7,这个数可以是______。
答案:7或-714. 一个圆的直径是10厘米,那么它的半径是______。
答案:5厘米15. 一个数的平方是25,这个数是______。
答案:5或-516. 如果一个三角形的三个内角分别是40°、50°和90°,那么它是______三角形。
答案:直角三角形三、解答题(共52分)17. 解一元一次方程:2x + 5 = 11答案:首先移项得2x = 11 - 5,即2x = 6,然后除以2得x = 3。
2004安徽数学试题及答案一.选择题(本大题共10个小题,每小题4分,共40分)在每小题给出的四个选项中,只有一个选项符合题意,把所选项前的标号填在题后的括号内1.-2的相反数是()A、12B、-12C、-2D、22.x-(2x-y)的运算结果是()A、-x+yB、-x-yC、x-yD、3x-y3.“神舟”五号载人飞船,绕地球飞行了14圈,共飞行约590200km,这个飞行距离用科学计数法表示为()A、59.02×104kmB、0.5902×106kmC、5.902×105kmD、5.902×104km 4.下列多项式中,能用提公因式法分解因式的是()A、x2-yB、X2+2xC、X2+y2D、x2-xy+y25.方程x2-3x+1=0的根的情况是()A、有两个不相等的实数根B、有两个相等的实数根C、没有实数根D、只有一个实数根6.如图,扇子的圆心角为xº,余下扇形的圆心角是yº,x与y的比通常按黄金比来设计,这样的扇子外形较美观。
若取黄金比为0.6,则x为()A、216B、135C、120D、1087.购某种三年期国债x元,到期后可得本息和y元,已知y=kx,A、kB、k/3C、k-1D、(k-1)/38.如图,某种牙膏上部圆的直径为3cm,下部底边的长度为4.8cm。
现要制作长方体的牙膏盒,牙膏盒的上面是正方形。
以下列数据作为正方形边长制作牙膏盒,既节省材料又方便取放的是(2取1.4)()A、2.4cmB、3cmC、3.6cmD、4.8cm8.如图,O 是正六边形ABCDE 的中心,下列图形中可由△OBC 平移得到的是(华东版教材实验区试题) ( ) A 、△OCD B 、△OAB C 、△OAF D 、OEF9.圆心都在x 轴上的两圆有一个公共点(1,2),那么这两圆的公切线有 ( ) A 、1条 B 、2条 C 、3条 D 、4条10.“龟兔赛跑”讲述了这样的故事:领先的兔子看着缓缓爬行的乌龟,骄傲起来,睡了一觉。
2005年中考数学
2005年的中考数学,是湖南省学生迈出中考数学之路的起点。
这门课程标志着学生开始他们的中学生活,也是学生们打开数学之门的第一步。
2005年的中考数学考试内容虽然只有九个单元,但是其考察范围非常广泛,包括几何、代数、数论、概率论等课程。
这就要求考生具备较强的知识结构和较高的数学素养。
在考前准备时,复习时要认真复习最近学习的相关知识,并将其联系到考试中容易出现的问题中,熟练掌握各类知识点,提高整体解题能力。
考试前,考生还要把重点突出的知识点在考试前多加练习,多加记忆,特别是在解决数学问题的方法上,要多注意实践。
此外,在准备中考数学考试时,考生还要注意多积累数学知识点,以及新的算法知识。
要熟悉计算机的操作方法,将计算机的知识灵活运用于中考数学习题中。
在参加2005年的中考数学考试时,考生需要注意时间安排,每一题都要仔细审题,争取更多的时间进行完整地思考,阅读和解题。
同时,要结合具体情况调整解题策略,设计有效的解题方案,更好地把握考试的大局。
2005年的中考数学,开启了许多学生数学之路,让他们开始步入一番更加精彩的数学世界。
经过这场考试,学生们对数学有了更深层次的认识,也更加努力地学习数学,走上了一条成功的路。
- 1 -。
安徽省示范高中2005-2006第二学期期末考试数学试卷一、选择题:本大题共12小题,每小题5分,共60分.1、设34sin ,cos 55α=-α=,那么下列的点在角α的终边上的是( )(A ) (4,-3) (B ) (-4,3) (C) (3,-4) (D) (-3,4) 2、若0a 1<<,则不等式1(x a)(x )0a--<的解集为( ) (A )1x |x a a ⎧⎫<<⎨⎬⎩⎭(B )1x |a x a ⎧⎫<<⎨⎬⎩⎭(C )1x |x x a a ⎧⎫><⎨⎬⎩⎭或(D )1x x a a ⎧⎫<>⎨⎬⎩⎭或3、已知函数1x f (x)lg 1x -=+,若1f (a)2=,则f (a)-=( )(A )12 (B ) 2 (C )12- (D ) -2 4、把函数y sin 2x =的图像按向量(,1)6a π=-平移后得到的图象的解析式为( )(A )y sin(2x )16π=-+ (B )y sin(2x )16π=++ (C )y sin(2x )13π=-+ (D )y sin(2x )13π=++5、等差数列{}n a 的通项公式为23n a n =-,那么{}n a 的前n 项和为( )(A ) 2322n n -+ (B ) 2322n n -- (C ) 2322n n + (D )2322nn -6、已知D 、E 、F 分别是△ABC 三边,AB 、BC 、CA 的中点,则()BF DE FD BF AB⋅+⋅的值为( )(A ) 2 (B ) 1 (C )12 (D) 137、已知12sin 13x =-,3(,)2x ππ∈,则x 等于( )(A ) 12arcsin()13-(B ) 12arcsin()13π- (C ) 12arcsin()13π+ (D) 312arcsin()213π- 8、下列函数中以π为周期,图象关于直线3x π=对称的函数是( )(A )2sin()23x y π=+(B )2cos()26x y π=- (C )sin(2)6y x π=+ (D )cos(2)3y x π=+ 9、若A (3,-6)、B (-5,2)、C (6,-9)则A 分BC 的比λ为( )(A ) 38 (B ) 83 (C )38- (D )83-10、若sin cos αβ=,22ππα-<<,0βπ<<,则αβ+值为( )(A )32π (B ) π (C ) 2π(D ) 0 11、已知ABC ∆中,角,,A B C 的对应的边分别为,,a b c ,45,4,C C a x ∠===,若该三角形的边b 有两个不同的值,则x 的取值范围是( )(A )2x << (B ) 42x << (C ) 242x << (D) 8x <<12、设向量,a b 不共线,则关于x 的方程 20ax bx c ++=的解的情况是( )(A )至多只有一个实数解 (B )至少有一个实数解 (C )至多有两个实数解 (D )可能有无数个实数解13、若将向量(2,1)a =绕原点按逆时针方向旋转4π得到向量b ,则向量b 的坐标为__________. 14、已知,αβ均为锐角,41cos ,tan()53ααβ=-=-,则cos _________β=.15、函数sin(2)3y x π=-的单调递减区间为_________________________.16、下面给出的四个命题: ①若a b ⊥,则2()a b a b ⋅=⋅ ②若//,//a b b c ,则//a c③若,a b 的夹角为θ,那么sin 0θ>④对一切向量,a b ,都有22||()a b a b +=+成立,正确的命题的序号为_______(将所有正确命题都填上). 三、解答题(本大题共6小题,共74分,解签应写出文字过程,证明过程或演算步骤) 17、(12分)ABC ∆中,已知9,sin cos sin AB AC B A C ⋅==⋅,面积6ABCS =,求ABC ∆的三边长.18、(12分)已知向量2(cos ,sin ),2(cos ,sin ),(3,1)a b a b ααββ==-=,求cos 2()αβ-的值.19、(12分)已知函数2()2tan 1,[1,3]f x x x x θ=+⋅-∈-,其中(,)22ππθ∈-。
2005年北京市高级中等学校招生考试卷第I 卷(机读卷 共44分)一. 选择题(共11个小题,每小题4分,共44分)下列各题均有四个选项,其中只有一个是符合题意的。
1. −2的相反数是( ) A. −12B.12C. 2D. −22. 下列运算中,正确的是( ) A. 42=B. 263−=−C. ()ab ab 22=D. 3252a a a +=3. 下列根式中,与3是同类二次根式的是( ) A. 24B. 12C.32D. 184. 下列图形中,不是中心对称图形的是( )A. 圆B. 菱形C. 矩形D. 等边三角形5. 据国家环保总局通报,北京市是“十五”水污染防治计划完成最好的城市。
预计今年年底,北京市污水处理能力可以达到每日1684000吨。
将1684000吨用科学记数法表示为( )A. 1684106.⨯吨B. 1684105.⨯吨 C. 01684107.⨯吨D. 1684105.⨯吨6. 如图,在半径为5的⊙O 中,如果弦AB 的长为8,那么它的弦心距OC 等于( )A. 2B. 3C. 4D. 67. 用换元法解方程x x x x 222216110−−−⎛⎝ ⎫⎭⎪+=时,如果设x x y 221−=,那么原方程可化为( ) A. y y++=610B. y y 2610−+=C. y y−+=610D. y y−+=6102 8. 如图,PA 、PB 是⊙O 的两条切线,切点是A 、B 。
如果OP =4,PA =23,那么∠AOB 等于( )A. 90°B. 100°C. 110°D. 120°9. 如图,在平行四边形ABCD 中,E 是AD 上一点,连结CE 并延长交BA 的延长线于点F ,则下列结论中错误的是( )A. ∠AEF =∠DECB. FA:CD =AE:BCC. FA:AB =FE:ECD. AB =DC10. 李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期。
2017年安徽省初中学业水平考试数 学(试题卷)注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分,“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)1.12的相反数是A .21B .12- C .2 D .2-【答案】B【考查目的】考查实数概念——相反数.简单题.2.计算32()a -的结果是A .6aB .6a -C .5a -D .5a【答案】A【考查目的】考查指数运算,简单题.3.如图,一个放置在水平实验台的锥形瓶,它的俯视图是【答案】B .【考查目的】考查三视图,简单题.4.截至2016年底,国家开发银行对“一带一路”沿线国家累计发放贷款超过1600亿美元.其中1600亿用科学记数法表示为A .101610⨯B .101.610⨯C .111.610⨯D .120.1610⨯【答案】C【考查目的】考查科学记数法,简单题.5.不等式420x ->的解集在数轴上表示为 ( )【答案】C .【考查目的】考查在数轴上表示不等式的解集,简单题.6.直角三角板和直尺如图放置,若120=︒∠,则2∠的度数为A .60︒B .50︒C .40︒D .30︒【答案】C【考查目的】考查三角形内角和,平行线性质,简单题.A .B .C .D . 第3题图 A . B . C . D . 第6题图7.为了解某校学生今年五一期间参加社团活动情况,随机抽查了其中100名学生进行统计,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校五一期间参加社团活动时间在8~10小时之间的学生数大约是A .280B .240C .300D .260 【答案】A .【考查目的】考查统计知识,频数分布直方图识别和应用,简单题.8.一种药品原价每盒25元,经过两次降价后每盒16元.设两次降价的百分率都为x ,则x 满足A .16(12)25x +=B .25(12)16x -=C .216(1)25x +=D .225(1)16x -=【答案】D .【考查目的】考查增长率,二次函数的应用,简单题.9.已知抛物线2y ax bx c =++与反比例函数b y x=的图象在第一象限有一个公共点,其横坐标为1.则一次函数y bx ac =+的图象可能是【答案】B .公共点在第一象限,横坐标为1,则0b y =>,排除C ,D ,又y a b c =++得0a c +=,故0ac <,从而选B .【考查目的】考查初等函数性质及图象,中等题.10.如图,矩形ABCD 中,53AB AD ==,.动点P 满足13PAB ABCD S S ∆=矩形.则点P 到A B ,两点距离之和PA PB + 的最小值为( )ABC. D【答案】D ,P 在与AB 平行且到AB 距离为2直线上,即在此线上找一点到A B ,两点距离之和的最小值.【考查目的】考查对称性质,转化思想,中等题.二、填空题(本大题共4小题,每小题5分,满分20分)11.27的立方根是____________ .【答案】3【考查目的】考查立方根运算,简单题.12.因式分解:244a b ab b -+=____________ .第7题图 A . B . C . D . 第10题图 第14题图第13题图【答案】2(2)b a -【考查目的】考查因式分解,简单题.13.如图,已知等边ABC △的边长为6,以AB 为直径的⊙O 与边AC BC ,分别交于D E ,两点,则劣弧的»DE的长为____________ . 【答案】2π【考查目的】考查圆的性质,三角形中位线,弧长计算,中等题.14.在三角形纸片ABC 中,903030cm A C AC ∠=︒∠=︒=,,,将该纸片沿过点E 的直线折叠,使点A 落在斜边BC 上的一点E 处,折痕记为BD (如图1),剪去CDE △后得到双层BDE △(如图2),再沿着过某顶点的直线将双层三角形剪开,使得展开后的平面图形中有一个是平行四边形,则所得平行四边形的周长为____________cm .【答案】40cm或.(沿如图的虚线剪.)【考查目的】考查对称,解直角三角形,空间想象,较难题.三、(本大题共2小题,每小题8分,共16分)15.计算:11|2|cos60()3--⨯︒-. 【考查目的】考查幂运算、立方根、特殊角的三角函数值,简单题.【解答】原式=12322⨯-=-16.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四。
2006年安徽省中考数学试题考 生 注 意:本卷共八大题,计 23 小题,总分值 150 分,时间 120 分钟.一、选择题〔此题共 10 小题,每题 4 分,总分值 40 分〕每一个小题都给出代号为 A 、B 、C 、D 的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的括号.每一小题:选对得 4 分,不选、选错或选出的代号超过一个的〔不管是否写在括号内〕均不得分. 1.计算 2 一9的结果是〔 〕A . 1B -1C .一 7D . 52 .近几年安徽省教育事业加快开展,据 2005 年末统计的数据显示,仅普通初中在校生就约有334 万人,334 人用科学记数法表示为〔 〕 A . 3 . 34 ⨯ 106 B . 33 .4 ⨯ 10 5 C 、334 ⨯ 104 D 、 0 . 334 ⨯107 3 .计算〔-21a 2b 〕3的结果正确的选项是〔 〕 A. 2441b a B.3816b a C.-3681b a D.-3581b a4 .把过期的药品随意丢弃,会造成对土壤和水体的污染,危害人们的健康.如何处理过期药品,有关机构随机对假设干家庭进行调查,调查结果如图.其中对过期药品处理不正确的家庭到达( )A . 79 %B . 80 %C . 18 %D . 82 %5 .如图,直线a //b ,点B 在直线b 上,且AB ⊥BC ,∠1 二 55 º ,那么∠2 的度数为( )A . 35 ºB . 45 ºC . 55 ºD . 125º6.方程01221=---x x 的根是( ) A .-3 B .0 C.2 D.37 .如图, △ ABC 中,∠B = 90 º ,∠C 二 30 º , AB = 1 ,将 △ ABC 绕顶点 A 旋转 1800 ,点 C 落在 C ′处,那么 CC ′的长为( ) A . 42 B.4 C . 23 D . 2 58.如果反比例函数Y=XK的图象经过点〔1,-2〕,那么K 的值是( ) A 、-21 B 、21C 、-2D 、2 9.如图, △ABC 内接于 ⊙O , ∠C = 45º, AB =4 ,那么⊙O 的半径为( ) A . 22 B . 4 C . 23 D . 5第9题10 .以下图是由10 把相同的折扇组成的“蝶恋花〞〔图 l 〕和梅花图案〔图 2 〕〔图中的折扇无重叠〕, 那么梅花图案中的五角星的五个锐角均为A . 36ºB . 42ºC . 45ºD . 48º第10题二、填空题〔此题共 4 小题,每题 5 分,总分值 20 分〕11.因式分解: ab2-2ab + a =12 .一次函数的图象过点〔-l , 0 〕,且函数值随着自变量的增大而减小,写出一个符合这个条件的一次函数解析式: 13 .如图,直线 L过正方形 ABCD 的顶点 B , 点A、C 到直线 L 的距离分别是 1 和 2 , 那么正方形的边长是L第13题14.某水果公司以 2 元/千克的单价新进了 10000千克柑橘,为了合理定出销售价格,水果公司需将运输中损失的水果本钱折算到没有损坏的水果售价中.销售人员从柑橘中随机抽取假设干柑橘统计柑橘损坏情况,结果如下表。
2024年安徽省初中学业水平考试数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15- D. 152. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410⨯B. 69.4410⨯C. 79.4410⨯D. 694.410⨯3. 某几何体的三视图如图所示,则该几何体为( )A B.C. D.4. 下列计算正确的是( )A. 356a a a +=B. 632a a a ÷=.C. ()22a a -=D. a=5. 若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π 6. 已知反比例函数()0k y k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为( )A. 3-B. 1-C. 1D. 37. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 的延长线上,且CD AB =,则BD 的长是( )AB. -C. 2-D. 8. 已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A. 102a -<< B. 112b <<C. 2241a b -<+< D. 1420a b -<+<9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A. ABC AED∠=∠ B. BAF EAF ∠=∠C. BCF EDF ∠=∠ D. ABD AEC∠=∠10. 如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为().A. B.C D.二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14-x 有意义,则实数x 的取值范围是_____.12.,祖冲之给出圆周率的一种分数形式的近似值为227______227(填“>”或“<”).13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.三、(本大题共2小题,每小题8分,满分16分).的15. 解方程:223x x -=16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-表示结果LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=( )2-( )2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 长.六、(本题满分12分)21. 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,的班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘品质更优,并说明理由.根据所给信息,请完成以上所有任务.七、(本题满分12分)22. 如图1,ABCD Y 的对角线AC 与BD 交于点O ,点M ,N 分别在边AD ,BC 上,且AM CN =.点E ,F 分别是BD 与AN ,CM 的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.八、(本题满分14分)23. 已知抛物线2y x bx =-+(b 为常数)的顶点横坐标比抛物线22yx x =-+的顶点横坐标大1.(1)求b 的值;(2)点()11,A x y 在抛物线22yx x =-+上,点()11,B x t y h ++在抛物线2y x bx=-+上.(ⅰ)若3h t =,且10x ≥,0t >,求h 的值;(ⅱ)若11x t =-,求h 的最大值.数学试题注意事项:1.你拿到的试卷满分为150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4、考试结束后,请将“试题卷”和“答题卷”一并交回.审核:魏敬德老师一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1. ﹣5的绝对值是( )A. 5B. ﹣5C. 15-D. 15【答案】A【解析】【分析】根据负数的绝对值等于它的相反数可得答案.【详解】解:|﹣5|=5.故选A .2. 据统计,2023年我国新能源汽车产量超过944万辆,其中944万用科学记数法表示为( )A. 70.94410⨯B. 69.4410⨯C. 79.4410⨯D. 694.410⨯【答案】B【解析】【分析】本题考查了科学记数法,先把944万转化为9440000,再根据科学记数法:10n a ⨯(110a ≤<,n 为整数),先确定a 的值,然后根据小数点移动的数位确定n 的值即可,根据科学记数法确定a 和n 的值是解题的关键.【详解】解:944万694400009.4410==⨯,故选:B .3. 某几何体的三视图如图所示,则该几何体为( )A. B.C. D.【答案】D【解析】【分析】本题主要考查由三视图判断几何体,关键是熟悉三视图的定义.【详解】解:根据三视图的形状,结合三视图的定义以及几何体的形状特征可得该几何体为D 选项.故选:D .4. 下列计算正确的是( )A. 356a a a += B. 632a a a ÷=C. ()22a a -= D. a =【答案】C【解析】【分析】题目主要考查合并同类项、同底数幂的除法、积的乘方运算、二次根式的化简,根据这些运算法则依次判断即可【详解】解:A 、3a 与5a 不是同类项,不能合并,选项错误,不符合题意;B 、633a a a ÷=,选项错误,不符合题意;C 、()22a a -=,选项正确,符合题意;D a =,当0a ≥a =,当0a <a =-,选项错误,不符合题意;故选:C5. 若扇形AOB 的半径为6,120AOB ∠=︒,则 AB 的长为( )A. 2πB. 3πC. 4πD. 6π 【答案】C【解析】【分析】此题考查了弧长公式,根据弧长公式计算即可.【详解】解:由题意可得, AB 的长为12064180ππ⨯=,故选:C .6. 已知反比例函数()0k y k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,则k 的值为( )A. 3- B. 1- C. 1 D. 3【答案】A【解析】【分析】题目主要考查一次函数与反比例函数的交点问题,根据题意得出231y =-=-,代入反比例函数求解即可【详解】解:∵反比例函数()0k y k x =≠与一次函数2y x =-的图象的一个交点的横坐标为3,∴231y =-=-,∴13k -=,∴3k =-,故选:A7. 如图,在Rt ABC △中,2AC BC ==,点D 在AB 延长线上,且CD AB =,则BD 的长是( )A. -B. -C. 2-D.的【答案】B【解析】【分析】本题考查了等腰直角三角形的判定和性质,对顶角的性质,勾股定理,过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=︒,由90ACB ∠=︒,2AC BC ==,可得AB =45A ABC ∠=∠=︒,进而得到CD =,45DBE ∠=︒,即得BDE △为等腰直角三角形,得到DE BE =,设DE BE x ==,由勾股定理得()(2222x x ++=,求出x 即可求解,正确作出辅助线是解题的关键.【详解】解:过点D 作DE CB ⊥的延长线于点E ,则90BED ∠=︒,∵90ACB ∠=︒,2AC BC ==,∴AB ==,45A ABC ∠=∠=︒,∴CD =,45DBE ∠=︒,∴BDE △为等腰直角三角形,∴DE BE =,设DE BE x ==,则2CE x =+,在Rt CDE △中,222CE DE CD +=,∴()(2222x x ++=,解得11x =-,21x =-(舍去),∴1DE BE ==-,∴BD ==,故选:B .8. 已知实数a ,b 满足10a b -+=,011a b <++<,则下列判断正确的是( )A. 102a -<<B. 112b <<C. 2241a b -<+< D. 1420a b -<+<【答案】C【解析】【分析】题目主要考查不等式的性质,根据等量代换及不等式的性质依次判断即可得出结果,熟练掌握不等式的性质是解题关键【详解】解:∵10a b -+=,∴1a b =-,∵011a b <++<,∴0111b b <-++<,∴102b <<,选项B 错误,不符合题意;∵10a b -+=,∴1b a =+,∵011a b <++<,∴0111a a <+++<,∴112a -<<-,选项A 错误,不符合题意;∵112a -<<-,102b <<,∴221a -<<-,042b <<,∴2241a b -<+<,选项C 正确,符合题意;∵112a -<<-,102b <<,∴442a -<<-,021b <<,∴4421a b -<+<-,选项D 错误,不符合题意;故选:C9. 在凸五边形ABCDE 中,AB AE =,BC DE =,F 是CD 的中点.下列条件中,不能推出AF 与CD 一定垂直的是()A. ABC AED∠=∠ B. BAF EAF ∠=∠C. BCF EDF ∠=∠ D. ABD AEC∠=∠【解析】【分析】本题考查了全等三角形的判定和性质,等腰三角形“三线合一”性质的应用,熟练掌握全等三角形的判定的方法是解题的关键.利用全等三角形的判定及性质对各选项进行判定,然后根据等腰三角形“三线合一”的性质即可证得结论.【详解】解:A 、连结AC AD 、,∵ABC AED ∠=∠,AB AE =,BC DE =,∴()SAS ACB ADE ≌,∴AC AD =又∵点F 为CD 的中点∴AF CD ⊥,故不符合题意;B 、连结BF EF 、,∵AB AE =,BAF EAF ∠=∠,AF AF =,∴()SAS ABF AEF ≌,∴BF EF =, AFB AFE∠=∠又∵点F 为CD 的中点,∴CF DF =,∴()SSS CBF DEF ≌,∴CFB DFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;C 、连结BF EF 、,∵点F 为CD 的中点,∴CF DF =,∵BCF EDF ∠=∠,BC DE =,∴()SAS CBF DEF ≌,∴BF EF =, CFB DFE ∠=∠,∵AB AE =,AF AF =,∴()SAS ABF AEF ≌,∴AFB AFE ∠=∠,∴90CFB AFB DFE AFE ∠+∠=∠+∠=︒,∴AF CD ⊥,故不符合题意;D 、ABD AEC ∠=∠,无法得出相应结论,符合题意;故选:D .10. 如图,在Rt ABC △中,90ABC ∠=︒,4AB =,2BC =,BD 是边AC 上的高.点E ,F 分别在边AB ,BC 上(不与端点重合),且DE DF ⊥.设AE x =,四边形DEBF 的面积为y ,则y 关于x 的函数图象为( )A. B.C. D.【答案】A【解析】【分析】本题主要考查了函数图象的识别,相似三角形的判定以及性质,勾股定了的应用,过点E 作EH AC ⊥与点H ,由勾股定理求出AC ,根据等面积法求出BD ,先证明ABC ADB ∽,由相似三角形的性质可得出AB AC AD AB=,即可求出AD ,再证明AED BFD ∽,由相似三角形的性质可得出2AED BFD S AD S BD ⎛⎫= ⎪⎝⎭,即可得出4AED BFD S S = ,根据()ABC AED BDC BDF DEBF S S S S S =--- 四边形,代入可得出一次函数的解析式,最后根据自变量的大小求出对应的函数值.【详解】解:过点E 作EH AC ⊥与点H ,如下图:∵90ABC ∠=︒,4AB =,2BC =,∴AC ==,∵BD 是边AC 上的高.∴1122AB BC AC BD ⋅=⋅,∴BD =∵BAC CAB ∠=∠,90ABC ADB ∠=∠=︒,∴ABC ADB ∽△△,∴AB ACAD AB =,解得:AD =,∴DC AC AD =-==,∵90BDF BDE BDE EDA ∠+∠=∠+∠=︒,90CBD DBA DBA A ∠+∠=∠+∠=︒,∴DBC A ∠=∠,BDF EDA ∠=∠,∴AED BFD ∽,∴224AED BFD S AD S BD ⎛⎫⎪⎛⎫=== ⎪⎝⎭ ,∴4AED BFD S S = ,∴()ABC AED BDC BDF DEBF S S S S S =--- 四边形1111sin 2224BFDAB BC AE AD A DC DB S =⋅-⋅∠-⋅+1311422425255x =⨯⨯-⨯⋅⨯⨯16355x=-∵04x <<,∴当0x =时,165DEBF S =四边形 ,当4x =时,45DEBF S =四边形.故选:A .二、填空题(本大题共4小题,每小题5分,满分20分)11. 若代数式14-x 有意义,则实数x 的取值范围是_____.【答案】4x ≠【解析】【分析】根据分式有意义的条件,分母不能等于0,列不等式求解即可.【详解】解: 分式有意义的条件是分母不能等于0,∴40x -≠∴4x ≠.故答案为:4x ≠.【点睛】本题主要考查分式有意义的条件,解决本题的关键是要熟练掌握分式有意义的条件.12. ,祖冲之给出圆周率的一种分数形式的近似值为227______227(填“>”或“<”).【答案】>【解析】【分析】本题考查的是实数的大小比较,先比较两个正数的平方,从而可得答案.【详解】解:∵222484749⎛⎫= ⎪⎝⎭,24901049==,而4844904949<,∴22227⎛⎫< ⎪⎝⎭,227>;故答案为:>13. 不透明的袋中装有大小质地完全相同的4个球,其中1个黄球、1个白球和2个红球.从袋中任取2个球,恰为2个红球的概率是______.【答案】16【解析】【分析】本题考查了用树状图或列表法求概率,画出树状图即可求解,掌握树状图或列表法是解题的关键.【详解】解:画树状图如下:由树状图可得,共有12种等结果,其中恰为2个红球的结果有2种,∴恰为2个红球的概率为21126=,故答案为:16.14. 如图,现有正方形纸片ABCD ,点E ,F 分别在边,AB BC 上,沿垂直于EF 的直线折叠得到折痕MN ,点B ,C 分别落在正方形所在平面内的点B ',C '处,然后还原.(1)若点N 在边CD 上,且BEF α∠=,则C NM '∠=______(用含α的式子表示);(2)再沿垂直于MN 的直线折叠得到折痕GH ,点G ,H 分别在边,CD AD 上,点D 落在正方形所在平面内的点D ¢处,然后还原.若点D ¢在线段B C ''上,且四边形EFGH 是正方形,4AE =,8EB =,MN 与GH 的交点为P ,则PH 的长为______.【答案】①. 90α︒- ②. 【解析】【分析】①连接CC ',根据正方形的性质每个内角为直角以及折叠带来的折痕与对称点连线段垂直的性质,再结合平行线的性质即可求解;②记H G 与NC '交于点K , 可证:AEH BFE DHG CGF △≌△≌△≌△,则4AE CG DH ===,8DG BE ==,由勾股定理可求HG =,由折叠的性质得到:90NC B NCB '∠=∠=︒,89∠=∠,90D GD H '∠=∠=︒,NC NC '=,8GD GD '==,则NG NK =,4KC GC '==,由NC GD ''∥,得HC K HD G ''△∽,继而可证明HK KG =,由等腰三角形的性质得到PK PG =,故34PH HG ==【详解】解:①连接CC ',由题意得4C NM '∠=∠,MN CC '⊥,∵MN EF ⊥,∴CC FE '∥,∴12∠=∠,∵四边形ABCD 是正方形,∴90B BCD ∠=∠=︒,∴343290∠+∠=∠+∠=︒,190BEF ∠+∠=︒,∴24∠∠=,190α∠=︒-,∴490α∠=︒-<∴90C NM α'∠=︒-,故答案为:90α︒-;②记H G 与NC '交于点K ,如图:∵四边形ABCD 是正方形,四边形EFGH 是正方形,∴90A B C D ∠=∠=∠=∠=︒,HE FE =,90HEF ∠=︒,∴567690∠+∠=∠+∠=︒,∴57∠=∠,∴AEH BFE △≌△,同理可证:AEH BFE DHG CGF △≌△≌△≌△,∴4AE CG DH ===,8DG BE ==,在Rt HDG △中,由勾股定理得HG ==,由题意得:90NC B NCB '∠=∠=︒,89∠=∠,90D GD H '∠=∠=︒,NC NC '=,8GD GD '==,∴NC GD ''∥,∴9NKG ∠=∠,∴8NKG ∠=∠,∴NG NK =,∴NC NG NC NK '-=-,即4KC GC '==,∵NC GD ''∥,∴HC K HD G ''△∽,∴12HK C K HG D G '==',∴12HK HG =,∴HK KG =,由题意得MN HG ⊥,而NG NK =,∴PK PG =,∴34PH HG ==故答案为:.【点睛】本题考查了正方形的性质,折叠的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握知识点,正确添加辅助线是解决本题的关键.三、(本大题共2小题,每小题8分,满分16分)15. 解方程:223x x -=【答案】13x =,21x =-【解析】【分析】先移项,然后利用因式分解法解一元二次方程,即可求出答案.【详解】解:∵223x x -=,∴223=0x x --,∴(3)(1)0x x -+=,∴13x =,21x =-.【点睛】本题考查了解一元二次方程,解题的关键是掌握解一元二次方程的方法进行解题.16. 如图,在由边长为1个单位长度的小正方形组成的网格中建立平面直角坐标系xOy ,格点(网格线的交点)A 、B ,C 、D 的坐标分别为()7,8,()2,8,()10,4,()5,4.(1)以点D 为旋转中心,将ABC 旋转180︒得到111A B C △,画出111A B C △;(2)直接写出以B ,1C ,1B ,C 为顶点的四边形的面积;(3)在所给的网格图中确定一个格点E ,使得射线AE 平分BAC ∠,写出点E 的坐标.【答案】(1)见详解 (2)40(3)()6,6E (答案不唯一)【解析】【分析】本题主要考查了画旋转图形,平行四边形的判定以及性质,等腰三角形的判定以及性质等知识,结合网格解题是解题的关键.(1)将点A ,B ,C 分别绕点D 旋转180︒得到对应点,即可得出111A B C △.(2)连接1BB ,1CC ,证明四边形11BC B C 是平行四边形,利用平行四边形的性质以及网格求出面积即可.(3)根据网格信息可得出5AB =,5AC ==,即可得出ABC 是等腰三角形,根据三线合一的性质即可求出点E 的坐标.【小问1详解】解:111A B C △如下图所示:【小问2详解】连接1BB ,1CC ,∵点B 与1B ,点C 与1C 分别关于点D 成中心对称,∴1DB DB =,1DC DC =,∴四边形11BC B C 平行四边形,∴1111122104402BC B C S CC B ==⨯⨯⨯= .【小问3详解】∵根据网格信息可得出5AB =,5AC ==,∴ABC 是等腰三角形,∴AE 也是线段BC的垂直平分线,是∵B ,C 的坐标分别为,()2,8,()10,4∴点21084,22E ++⎛⎫ ⎪⎝⎭,即()6,6E .(答案不唯一)四、(本大题共2小题,每小题8分,满分16分)17. 乡村振兴战略实施以来,很多外出人员返乡创业.某村有部分返乡青年承包了一些田地.采用新技术种植A B ,两种农作物.种植这两种农作物每公顷所需人数和投入资金如表:农作物品种每公顷所需人数每公顷所需投入资金(万元)A48B 39已知农作物种植人员共24位,且每人只参与一种农作物种植,投入资金共60万元.问A B ,这两种农作物的种植面积各多少公顷?【答案】A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.【解析】【分析】本题考查了二元一次方程组的应用,设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,根据题意列出二元一次方程组即可求解,根据题意,找到等量关系,正确列出二元一次方程组是解题的关键.【详解】解:设A 农作物的种植面积为x 公顷,B 农作物的种植面积为y 公顷,由题意可得,43248960x y x y +=⎧⎨+=⎩,解得34x y =⎧⎨=⎩,答:设A 农作物的种植面积为3公顷,B 农作物的种植面积为4公顷.18. 数学兴趣小组开展探究活动,研究了“正整数N 能否表示为22x y -(x y ,均为自然数)”的问题.(1)指导教师将学生的发现进行整理,部分信息如下(n 为正整数):N 奇数4的倍数22110=-22420=-22321=-22831=-22532=-221242=-22743=-221653=-22954=-222064=-表示结果LL 一般结论()22211n n n -=--4n =______按上表规律,完成下列问题:(ⅰ)24=( )2-( )2;(ⅱ)4n =______;(2)兴趣小组还猜测:像261014 ,,,,这些形如42n -(n 为正整数)的正整数N 不能表示为22x y -(x y ,均为自然数).师生一起研讨,分析过程如下:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()22222121x y k m -=+-+=______为4倍数.的而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.阅读以上内容,请在情形②的横线上填写所缺内容.【答案】(1)(ⅰ)7,5;(ⅱ)()()2211n n +--; (2)()224k m k m-+-【解析】【分析】(1)(ⅰ)根据规律即可求解;(ⅱ)根据规律即可求解;(2)利用完全平方公式展开,再合并同类项,最后提取公因式即可;本题考查了平方差公式,完全平方公式,掌握平方差公式和完全平方公式的运算是解题的关键.【小问1详解】(ⅰ)由规律可得,222475=-,故答案为:7,5;(ⅱ)由规律可得,()()22411n n n =+--,故答案为:()()2211n n +--;【小问2详解】解:假设2242n x y -=-,其中x y ,均为自然数.分下列三种情形分析:①若x y ,均为偶数,设2x k =,2y m =,其中k m ,均为自然数,则()()()222222224x y k m k m -=-=-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为偶数.②若x y ,均为奇数,设21x k =+,21=+y m ,其中k m ,均为自然数,则()()()22222221214x y k m k m k m -=+-+=-+-为4的倍数.而42n -不是4的倍数,矛盾.故x y ,不可能均为奇数.③若x y ,一个是奇数一个是偶数,则22x y -为奇数.而42n -是偶数,矛盾.故x y ,不可能一个是奇数一个是偶数.由①②③可知,猜测正确.故答案为:()224k m k m -+-.五、(本大题共2小题,每小题10分,满分20分)19. 科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).【答案】43【解析】【分析】本题考查了解直角三角形,勾股定理,三角函数,过点EF AD ⊥于F ,则90AFE ∠=︒,DF CE =,由题意可得,36.9BEC α∠=∠=︒,CBE β∠=∠,1.2m =EF ,解Rt BCE 求出CE 、BE ,可求出sin β,再由勾股定理可得AE ,进而得到sin γ,即可求解,正确作出辅助线是解题的关键.【详解】解:过点EF AD ⊥于F ,则90AFE ∠=︒,DF CE =,由题意可得,36.9BEC α∠=∠=︒,CBE β∠=∠, 1.2m =EF ,在Rt BCE 中, 1.2 1.6m tan 0.75BC CE α=≈=, 1.22m sin 0.6BC BE α=≈=,∴ 1.64sin 25CE BE β===, 1.6m DF =,∴ 2.5 1.60.9m AF AD DF =-=-=,∴在Rt AFE, 1.5m AE ===,∴0.93sin 1.55AF AE γ===,∴4sin 453sin 35βγ==.20. 如图,O 是ABC 的外接圆,D 是直径AB 上一点,ACD ∠的平分线交AB 于点E ,交O 于另一点F ,FA FE =.(1)求证:CD AB ⊥;(2)设FM AB ⊥,垂足为M ,若1OM OE ==,求AC 的长.【答案】(1)见详解(2)【解析】【分析】本题主要考查了等腰三角形的性质,圆周角定理,勾股定理等知识,掌握这些性质以及定理是解题的关键.(1)由等边对等角得出FAE AEF ∠=∠,由同弧所对的圆周角相等得出FAE BCE ∠=∠,由对顶角相等得出AEF CEB ∠=∠,等量代换得出CEB BCE ∠=∠,由角角平分线的定义可得出ACE DCE ∠=∠,由直径所对的圆周角等于90︒可得出90ACB ∠=︒,即可得出90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=︒,即90CDE ∠=︒.(2)由(1)知,CEB BCE ∠=∠,根据等边对等角得出BE BC =,根据等腰三角形三线合一的性质可得出MA ,AE 的值,进一步求出OA ,BE ,在利用勾股定理即可求出AC .【小问1详解】证明:∵FA FE =,∴FAE AEF ∠=∠,又FAE ∠与BCE ∠都是 BF 所对的圆周角,∴FAE BCE ∠=∠,∵AEF CEB ∠=∠,∴CEB BCE ∠=∠,∵CE 平分ACD ∠,∴ACE DCE ∠=∠,∵AB 是直径,∴90ACB ∠=︒,∴90CEB DCE BCE ACE ACB ∠+∠=∠+∠=∠=︒,故90CDE ∠=︒,即CD AB ⊥.【小问2详解】由(1)知,CEB BCE ∠=∠,∴BE BC =,又FA FE =,FM AB ⊥,∴2MA ME MO OE ==+=,4AE =,∴圆的半径3OA OB AE OE ==-=,∴2BE BC OB OE ==-=,在ABC 中.26AB OA ==,2BC =∴AC ===即AC 的长为六、(本题满分12分)21 综合与实践【项目背景】无核柑橘是我省西南山区特产,该地区某村有甲、乙两块成龄无核柑橘园.在柑橘收获季节,班级同学前往该村开展综合实践活动,其中一个项目是:在日照、土质、空气湿度等外部环境基本一致的条件下,对两块柑橘园的优质柑橘情况进行调查统计,为柑橘园的发展规划提供一些参考.【数据收集与整理】从两块柑橘园采摘的柑橘中各随机选取200个.在技术人员指导下,测量每个柑橘的直径,作为样本数据.柑橘直径用x (单位:cm )表示.将所收集的样本数据进行如下分组:组别A B C D E x 3.5 4.5x ≤< 4.5 5.5x ≤< 5.5 6.5x ≤< 6.57.5x ≤<7.58.5x ≤≤整理样本数据,并绘制甲、乙两园样本数据的频数直方图,部分信息如下:任务1 求图1中a 的值.【数据分析与运用】任务2 A ,B ,C ,D ,E 五组数据的平均数分别取为4,5,6,7,8,计算乙园样本数据的平均数.任务3 下列结论一定正确的是______(填正确结论的序号).①两园样本数据的中位数均在C 组;②两园样本数据的众数均在C 组;③两园样本数据的最大数与最小数的差相等.任务4 结合市场情况,将C ,D 两组的柑橘认定为一级,B 组的柑橘认定为二级,其它组的柑橘认定为三级,其中一级柑橘的品质最优,二级次之,三级最次.试估计哪个园的柑橘.品质更优,并说明理由.根据所给信息,请完成以上所有任务.【答案】任务1:40;任务2:6;任务3:①;任务4:乙园的柑橘品质更优,理由见解析【解析】【分析】题目主要考查统计表及频数分布直方图,平均数、中位数及众数的求法,根据图标获取相关信息是解题关键.任务1:直接根据总数减去各部分的数据即可;任务2:根据加权平均数的计算方法求解即可;任务3:根据中位数、众数及极差的计算方法求解即可;任务4:分别计算甲和乙的一级率,比较即可.【详解】解:任务1:2001570502540a=----=;任务2:1545057065071586200⨯+⨯+⨯+⨯+⨯=,乙园样本数据的平均数为6;任务3:①∵1570100,157050101+++,∴甲园样本数据的中位数在C组,∵1550100,155070101+++,∴乙园样本数据的中位数在C组,故①正确;②由样本数据频数直方图得,甲园样本数据的众数均在B组,乙园样本数据的众数均在C 组,故②错误;③无法判断两园样本数据的最大数与最小数的差是否相等,故③错误;故答案为:①;任务4:甲园样本数据的一级率为:5040100%45% 200+⨯=,乙园样本数据的一级率为:7050100%60% 200+⨯=,∵乙园样本数据的一级率高于甲园样本数据的一级率,∴乙园的柑橘品质更优.七、(本题满分12分)22. 如图1,ABCDY的对角线AC与BD交于点O,点M,N分别在边AD,BC上,且AM CN=.点E,F分别是BD与AN,CM的交点.(1)求证:OE OF =;(2)连接BM 交AC 于点H ,连接HE ,HF .(ⅰ)如图2,若HE AB ∥,求证:HF AD ∥;(ⅱ)如图3,若ABCD Y 为菱形,且2MD AM =,60EHF ∠=︒,求AC BD的值.【答案】(1)见详解(2)(ⅰ)见详解,(ⅱ【解析】【分析】(1)利用平行四边形的性质得出AM CN ∥,再证明AMCN 是平行四边形,再根据平行四边形的性质可得出OAE OCF ∠=∠,再利用ASA 证明AOE COF △≌△,利用全等三角形的性质可得出OE OF =.(2)(ⅰ)由平行线截直线成比例可得出OH OE OA OB=,结合已知条件等量代换OH OF OA OD =,进一步证明HOF AOD ∽ ,由相似三角形的性质可得出OHF OAD ∠=∠,即可得出HF AD ∥.(ⅱ)由菱形的性质得出AC BD ⊥,进一步得出30EHO FHO ∠=∠=︒,OH =,由平行线截直线成比例可得出13AH AM HC BC ==,进一步得出2OA OH =,同理可求出5OB OE =,再根据25AC OA OH BD OB OE==即可得出答案.【小问1详解】证明:∵四边形ABCD 是平行四边形,∴AD BC ∥,OA OC =,∴AM CN ∥,又∵AM CN =,∴四边形AMCN 是平行四边形,∴∥AN CM ,∵OAE OCF ∠=∠.在AOE △与COF 中,OAE OCFOA OCAOE COF∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌.∴OE OF =.【小问2详解】(ⅰ)∵HE AB∥∴OHOEOA OB =,又OB OD =.OE OF =,∴OHOFOA OD =,∵HOF AOD ∠=∠,∴HOF AOD ∽ ,∴OHF OAD ∠=∠,∴HF AD∥(ⅱ)∵ABCD 是菱形,∴AC BD ⊥,又OE OF =,60EHF ∠=︒,∴30EHO FHO ∠=∠=︒,∴OH =,∵AM BC ∥.2MD AM =,∴13AHAMHC BC ==,即3HC AH =,∴()3OA AH OA OH +=-,∴2OA OH =,∵BN AD ∥,2MD AM =,AM CN =,∴23BEBN ED AD ==,即32BE ED =,。
2005年安徽数学中考试题 一、选择题 (4’×10) 1. 今天,和你一起参加全省课改实验区的初中毕业血液考试的同学约有15万人. 其中男生约有a万人, 则女生约有 ( )
A. (15 + a) 万人 B. (15 – a) 万人 C. 15a 万人 D. a15 万人 2. 计算1-|-2|结果正确的是 ( ) A. 3 B. 1 C. -1 D. -3 3. 根据下图所示,对a、b、c三中物体的重量判断正确的是 ( )
A. ac D. b4. 下列图中能过说明∠1>∠2的是 ( )
A. B. C. D. 5. 一批货物总重1.4×107kg, 下列可将其一次性运走的合适运输工具是 ( ) A. 一艘万吨巨轮 B. 一架飞机 C. 一辆汽车 D. 一辆板车 6. 小亮在镜中看到身后墙上的时钟如下, 你认为实际时间最接近8:00的是 ( )
A. B. C. D. 7. 方程x(x+3)=x+3的解是 ( ) A. x=1 B. x1=0, x2=-3 C. x1=1, x2=3 D. x1=1, x2=-3 8.下列个物体中, 是一样的为 ( )
(1) (2) (3) (4) A. (1)与(2) B. (1)与(3) C. (1)与(4) D. (2)与(3) 9.某市社会调查队对城区内一个社区居民的家庭经济状况进行调查. 调查的结果是, 该社区工有500户, 高收入\中等收入和低收入家庭分别有125户\280户和95户. 已知该市有100万户家庭下列表述正确的是 ( ) A. 该市高收入家庭约25万户 B. 该市中等收入家庭约56万户 C. 该市低收入家庭业19万户 D. 因城市社区家庭经济状况好,所以不能据此估计全市所有家庭经济状况 10. 如图, ⊙O的半径OA=6, 以A为圆心,OA为半径的弧交⊙O于B、C点, 则BC= ( ) A. 36 B. 26 C. 33 D. 23 二、填空题(5’×4) 11. 任意写出一个图象经过二、四象限的反比例函数的解析式:__________ 12. 某校九年级(1)班有50名同学, 综合数值评价”运动与健康”方面的等级统计如图所示, 则该班”运动与健康”评价等级为A的人数是______ 13. 一个矩形的面积为a3-2ab+a, 宽为a,则矩形的长为____________
14. 如图, △ABC中∠A=30°, tanB=23, AC=32, 则AB=____
三、化简与计算(8’×2) 15. 请将下面的代数式尽可能化简, 再选择一个你喜欢的数(要合适哦!)代入求值:
11122aaaa)(
16. 解不等式组4)5(201xx 四、讨论与证明(8’×2) 17. 下面是数学课堂的一个学习片段, 阅读后, 请回答下面的问题: 学习等腰三角形有关内容后, 张老师请同学们交流讨论这样一个问题: “已知等腰三角形ABC的角A等于30°, 请你求出其余两角.” 同学们经片刻的思考与交流后, 李明同学举手说: “其余两角是30°和120°”; 王华同学说: “其余两角是75°和75°.” 还有一些同学也提出了不同的看法„„ (1) 假如你也在课堂中, 你的意见如何? 为什么? (2) 通过上面数学问题的讨论, 你有什么感受? (用一句话表示) 18. 如图, 已知AB∥DE, AB=DE, AF=DC, 请问图中有哪几对全等三角形? 并任选其中一对给予证明.
五、知识应用(10’×2) 19. 2004年12月28日, 我国第一条城际铁路——合宁铁路(合肥至南京)正式开工建设. 建成后, 合肥至南京的铁路运行里程将由目前的312km缩短至154km, 设计时速是现行时速的2.5倍, 旅客列车运行时间将因此缩短约3.13h. 求合宁铁路的设计时速.
20. 如图, 直线y=2x+2与x轴、y轴分别相交于A、B两点, 将△AOB绕点O顺时针旋转90°得到△A1OB1. (1)在图中画出△A1OB1 (2)求经过A、A1、B1三点的抛物线的解析式. 【解】
21. 下图中, 图(1)是一个扇形AOB,将其作如下划分: 第一次划分: 如图(2)所示,以OA的一半OA1为半径画弧,再作∠AOB的平分线, 得到扇形的总数为6个, 分别为: 扇形AOB、扇形AOC、扇形COB、扇形A1OB1、扇形A1OC1、扇形C1OB1; 第二次划分: 如图(3)所示, 在扇形C1OB1中, 按上述划分方式继续划分, 可以得到扇形的总数为11个; 第三次划分: 如图(4)所示; „„ 依次划分下去.
图(1) 图(2)第一次划分 图(3)第二次划分 图(4)第三次划分 (1) 根据题意, 完成下表: 划分次数 扇形总个数 1 6 2 11 3 4 „ „ n
(2) 根据上表, 请你判断按上述划分方式, 能否得到扇形的总数为2005个? 为什么? 22. 图(1)是一个10×10格点正方形组成的网格. △ABC是格点三角形(顶点在网格交点处), 请你完成下面两个问题: (1) 在图(1)中画出与△ABC相似的格点△A1B1C1和△A2B2C2, 且△A1B1C1与△ABC的相似
比是2, △A2B2C2与△ABC的相似比是22. (2) 在图(2)中用与△ABC、△A1B1C1、△A2B2C2全等的格点三角形(每个三角形至少使用一次), 拼出一个你熟悉的图案,并为你设计的图案配一句贴切的解说词.
【解说词】 23. 两人袄去某风景区游玩, 每天某一时段开往该风景区有三辆汽车(票价相同),但是他们不知道这些车的舒适程度, 也不知道汽车开过来的顺序. 两人采用了不同的乘车方案: 甲无论如何总是上开来的第一辆车. 而乙则是先观察后上车, 当第一辆车开来时, 他不上车, 而是子痫观察车的舒适状况, 如果第二辆车的舒适程度比第一辆好, 他就上第二辆车; 如果第二辆车不比第一辆好, 他就上第三辆车. 如果把这三辆车的舒适程度分为上、中、下三等, 请尝试着解决下面的问题: (1) 三辆车按出现的先后顺序工有哪几种不同的可能? (2) 你认为甲、乙采用的方案, 哪一种方案使自己..乘上等车的可能性大? 为什么? 参考答案及评分标准 一、选择题 1.B 2.C 3.C 4.B 5.A 6.D 7.D 8.B 9.D 10.A 二、填空题
11. 12.19 13.a2-2b+1 14.5 注:第11题答案不惟一,符合要求即可得分,若答(k<0)也可得分. 三、化简与计算
15.解:原式 =a-1+a+1 =2a.(4分) 当a=2时,原式=2a=2×2=4.(8分) 注:只要进行一次正确化简,不论表达式如何,均赋给化简的4分.求代数式值时,a取任何使原式有意义的值代入均可,代入为2分,计算为2分.
16.解:由1-x>0,解得x<1.(3分) 由2(x+5)>4,解得x>-3.(6分) ∴不等式组的解集是-3<x<1.(8分) 四、讨论与证明 17.(1)答:上述两同学回答的均不全面,应该是:其余两角的大小是75°和75°或30°和120°.(2分)
理由如下: (i)当∠A是顶角时,设底角是α. ∴30°+α+α=180°, α=75°. ∴其余两角是75°和75°.(4分) (ii)当∠A是底角时,设顶角是β, ∴30°+30°+β=180°, β=120°. ∴其余两角分别是30°和120°.(6分) (2)(感受中答有:“分类讨论”,“考虑问题要全面”等能体现分类讨论思想的给2分,回答出“积极发言”、“参与讨论”等与数学问题联系不紧密的语句给1分.)(8分)
18.解:此图中有三对全等三角形.(若只答有三对全等三角形,而未写出哪三对的得2分)
分别是:△ABF≌△DEC、△ABC≌△DEF、△BCF≌△EFC.(若直接给这三对,即给4分)(4分)
证明:∵AB∥DE, ∴∠A=∠D. 又∵AB=DE、AF=DC,(6分) ∴△ABF≌△DEC.(8分) 注:证明其他某对三角形全等的,依照上述标准给分. 五、知识应用 19.解:设旅客列车现行速度是xkm/h,(1分) 由题意得:
,(6分) 解这个方程得x=80.(8分) 经检验x=80是原方程的根,且符合题意. 2.5×80=200. 答:合宁铁路的设计速度是200km/h.(10分) (此题未规定解题方法,解答正确即可得分)
20.(1)(4分) (2)设该抛物线的解析式为:y=ax2+bx+c. 由题意知A、A′、B′三点的坐标分别是(-1,0)、(0,1)、(2,0).
∴(7分)
解这个方程组得 ∴抛物线的解析式是:(10分) 注:其他解法仿照上述标准给分.
六、探索规律 21.(1)(9分) 划分次数 扇形总个数 1 6 2 11 3 16 4 21 „ „ n 5n+1
(2)不能够得到2005个扇形,因为满足5n+1=2005的正整数n不存在.(12分) 七、图形设计 22.(1)只画出一个符合要求的格点三角形给3分,画出两个符合要求的给5分. (2)图形设计符合要求给5分,解说词给2分.