随机共振方法在微弱周期信号检测中的应用
- 格式:pdf
- 大小:182.34 KB
- 文档页数:3
基于随机共振原理检测微弱信号及自适应的研究作者:冯元来源:《计算技术与自动化》2016年第01期摘要:阐述随机共振的基本概念和原理,分析基于随机共振原理检测微弱信号的方法。
采用RungeKutta算法分别对微弱的周期信号和非周期信号进行仿真验证,仿真结果表明基于随机共振原理可以有效地检测出强噪声背景下的微弱信号。
关键词:随机共振;周期信号;非周期信号中图分类号:TP391.9文献标识码:A1引言微弱信号的检测一直是国内外学者研究的热点所在。
传统的弱信号检测方法主要基于时域和频域两种,但是这两种方法对输入信号的信噪比阀值要求很高,难以有效的检测出强噪声背景下的微弱信号。
随机共振(SR)由意大利学者Benzi等人在解释冰期周期性递归时首次提出[1]。
传统的信号检测方法认为噪声是有害的,因此通过抑制噪声来检测微弱信号;而随机共振理论不把噪声当有害信号,利用噪声的能量检测微弱信号。
就是在一定的非线性条件下,由弱信号和噪声合作而使得非线性系统增强周期性输出的现象。
近年来随机共振在机械故障诊断中[2]、化学弱信号检测领域[3]、传感器测试领域[4]被普遍应用,目前随机共振的电路实现仍处于研究阶段。
本文主要介绍基于随机共振理论的检测原理,通过matlab编程研究周期信号与非周期信号的仿真现象,并分析系统结构参数对检测的影响。
2随机共振基本原理产生随机共振现象需要三个基本条件,即信号、噪声和非线性系统。
由Langevin方程描述的非线性双稳系统是一种研究较多的随机共振系统[5]:x′=ax-bx3+s(t)+Γ(t)(1)其中ax-bx3为非线性外力场,a、b是结构参数、均大于0;st为待测信号;Γt是噪声强度为D的高斯白噪声。
非线性系统具有双势阱Vx=bx4/4-ax2/2,其最小点在±xm处,xm=a/b,它们被垒高为ΔV=a2/(4b)的势垒所分隔,且垒高在xb=0处。
该方程实质描述了单位质点同时受到周期外力与噪声驱动时,在双势阱中的过阻尼运动。
基于随机共振原理的大频率微弱信号检测方法研究
刘进;赵文礼;夏炜
【期刊名称】《机电工程》
【年(卷),期】2010(027)001
【摘要】针对直接利用随机共振原理不能有效地检测出大频率微弱信号的问题,提出了利用混频器的频谱搬移特性,将待测的大频率信号和信号发生器产生的信号混频,从而使大频率信号转化为小频率信号,然后再加入非线性双稳态系统,对此方法进行了理论上的研究并设计出了混频随机共振电路系统.研究结果表明,基于此方法设计的电路能有效地检测出大频率微弱信号.
【总页数】4页(P11-14)
【作者】刘进;赵文礼;夏炜
【作者单位】杭州电子科技大学机械工程学院,浙江,杭州,310018;杭州电子科技大学机械工程学院,浙江,杭州,310018;杭州电子科技大学机械工程学院,浙江,杭州,310018
【正文语种】中文
【中图分类】TN911.23
【相关文献】
1.基于随机共振原理的微弱信号检测与应用 [J], 何大海;赵文礼;梅晓俊
2.基于随机共振技术的微弱信号检测原理和应用 [J], 刘曼;姜源;彭月平
3.基于级联双稳随机共振的微弱信号检测方法研究 [J], 易航;郝研
4.基于随机共振的混合频率微弱信号检测 [J], 缑新科;马艳
5.基于随机共振的任意大频率微弱信号检测方法研究 [J], 樊养余;李利品;党瑞荣因版权原因,仅展示原文概要,查看原文内容请购买。
第25卷第4期2008年4月机电工程Vo l.25 No. 4Ap r. 2008 M E CHAN I CAL & E L E CTR I C AL EN G I N E ER I N G M A G A Z I N E基于随机共振原理的微弱信号检测与应用3何大海,赵文礼,梅晓俊(杭州电子科技大学机械工程学院,浙江杭州310018 )摘要:阐述了应用随机共振对微弱信号进行检测的原理。
在研究双稳态非线性系统的基础上,设计了非线性系统及其控制系统电路,该系统可以大大抑制噪声,并在双稳态系统中产生信号调制噪声效应。
对双稳态系统的输出信号作了频谱分析,辨识出了淹没在白噪声中的微弱正弦信号频率。
实践应用证明,此方法明显提高了信噪比,免去了求解复杂的统计微分方程,这在多传感器测量和机械系统故障早期检测中具有一定的实际应用价值。
关键词:随机共振;双稳态系统;白噪声;微弱信号;信噪比中图分类号: T N911. 23文献标识码: A文章编号: 1001 - 4551 ( 2008 )04 - 0071 - 04A pp l i ca t i on an d de tec t i on of wea k s i gna l ba sed on stocha st i c re s onan c eH E D a2ha i, ZHAO W en2li, M E I X i ao2j un( College of M echan i ca l Eng i neering, H a ngzhou D ianzi U n i versity, H a ngzhou 310018, Ch ina)A b stra c t: The ba sic p rinc i p le of stocha stic re sonance ( S R ) in weak sig na l de tec ti o n wa s in tr oduced. O n the ba sis of stud yi n g non linea r b istab le sy stem , the non linea r system and its con t r o l system c ircu it we re stud ied. The system can grea tly su pp re s s n o i s e and g ene ra te sig na l to ad ju st no ise effec t in b istab le system. S p ec tru m ana lysis in ou tp u t sig na l of b istab le sy stem can i d en t i f y the frequency of weak sinu s o i da l sig na l concea l ed in the wh i te no i se. The p rac t ica l app lica t i o n show s tha t the sig na l2no i se ra t i o ( S NR )can be sig n i fican t ly inc r ea s ed and s o lving comp lica t ed sta t istica l d i ffe r en t ia l equa t ion can be av o i ded by u s ing the m e t h2 od. It po s se s se s grea t p rac t ica l va l ue fo r app lica t ion in m u l ti2sen s o r m e a s u r em e n t and ea r ly fau l t de t ec t ion of m e chan i ca l system. Key word s: stocha s tic re s onance ( S R ); b i stab l e system; wh i te no i se; weak sig na l; sig na l2no i se ra t i o( S NR )0 前言随机共振的概念最初是1 随机共振原理在双稳态或多稳态的非线性系统中, 要实现1981 年由B e nzi等人在SR研究古气象冰川问题时提出来的,它描述了一个非线性系统与输入的信号和噪声之间存在某种匹配时,噪声能量就会向信号能量转移,输入信号的信噪比不仅不会降低,反而会大幅度地增加。
基于随机共振方法的微弱信号检测技术研究基于随机共振方法的微弱信号检测技术研究摘要:随着科技的不断进步,微弱信号的检测在许多领域中扮演着重要角色,如地震监测、生物医学和通信等。
然而,由于环境噪声和信号衰减等因素的影响,微弱信号的检测一直是一个挑战。
基于随机共振方法的微弱信号检测技术通过引入外部随机激励,突破了传统检测方法的限制,具有较高的检测灵敏度和抗干扰能力。
本文将探讨基于随机共振方法的微弱信号检测技术的原理及其在不同领域中的应用。
一、引言微弱信号是指信号强度较低,很难被传统方法直接检测到的信号。
传统的微弱信号检测方法包括滤波器、放大器和相关器等,然而这些方法往往受到环境噪声和信号衰减的影响,很难实现高灵敏度的检测。
为了解决这个问题,科学家们提出了基于随机共振方法的微弱信号检测技术。
二、基于随机共振方法的原理随机共振方法是一种利用特定的随机信号激励来提高系统响应和信号检测灵敏度的方法。
它通过引入随机激励,增加系统激励和响应之间的非线性关系,从而使系统能够对微弱信号作出更大的响应。
其原理主要包括两个方面:非线性耦合和共振增强。
1. 非线性耦合在传统的线性系统中,输入信号和系统响应呈线性关系,无法对微弱信号进行有效检测。
而随机共振方法通过引入非线性耦合,即将系统中的非线性元件与线性元件耦合在一起,使系统呈现非线性响应。
这种非线性耦合可以使系统对微弱信号具有较高的响应灵敏度。
2. 共振增强共振是一种系统在特定频率下的自由振动现象,当系统的固有频率与输入信号的频率相匹配时,系统的响应会显著增强。
基于随机共振方法的微弱信号检测技术通过调节激励信号的频率和振幅,使系统处于共振状态,从而实现对微弱信号的增强和检测。
三、基于随机共振方法的应用基于随机共振方法的微弱信号检测技术在许多领域中都有广泛应用。
1. 地震监测地震是一种地壳运动的表现,对地震进行及时监测和预警对于减少地震灾害具有重要意义。
基于随机共振方法的微弱信号检测技术可以提高地震监测仪器的灵敏度,检测到更多微小地震信号,为地震预警提供更准确的信息。
基于随机共振技术的微弱信号检测方法1. 绪论:介绍微弱信号检测的现状及其重要性,提出随机共振技术的背景、意义和历史演变。
2. 随机共振技术及其原理:阐述随机共振技术的物理原理及其在微弱信号检测中的应用,详细描述其特点、优点和缺点。
3. 随机共振技术在微弱信号检测中的应用:讨论随机共振技术在不同领域中的应用,比如生物医学、天文学和化学等领域,重点描述其检测方法、实验结果及其局限性。
4. 随机共振技术的优化和改进:探讨如何优化和改进随机共振技术,提高其灵敏度和稳定性,包括噪声预处理、信号处理和系统改进等方面。
5. 结论:总结随机共振技术在微弱信号检测中的应用和发展现状,提出未来的研究方向和展望。
同时,指出该技术的优势和局限性,为实际应用提供参考意见。
随着科技的不断发展,微弱信号检测技术在研究和应用领域中变得越来越重要。
微弱信号检测技术被广泛应用于医学、环境监测、航空航天等领域,如肿瘤早期检测、空气和水质量检测、火箭发动机性能监测等。
但是,微弱信号的检测常常面临信噪比低的问题,因此需要创新性的、高敏感度的检测方法。
其中一种被广泛研究的方法是随机共振技术。
随机共振技术是一种基于对微弱信号的非线性响应,利用外部随机噪声“刺激”系统,使系统在临界点上产生共振,从而有效地增加信号的噪声比。
这种技术不仅具有很高的敏感度,而且能够在较大的动态范围内检测微弱信号。
因此,随机共振技术成为了微弱信号检测领域的研究热点之一。
随机共振技术的发展历程可以追溯到上世纪70年代。
当时,物理学家发现在单摆系统和模拟电路中引入外部随机噪声可以激发系统的棕褐噪声,从而使系统产生非线性共振响应。
之后,该技术被逐渐应用于很多领域,例如生物医学、天文学和化学等。
实践证明,随机共振技术是一种比较有效的微弱信号检测方法,可以有效地提高信噪比。
自随机共振技术被提出以来,不断有研究者在其基础上进行改进和优化,并提出了不同的算法和模型。
例如一些研究者将自适应随机共振技术应用于人体黑色素瘤的检测中;还有一些研究者将随机共振技术和谱分析方法相结合,应用于噪声信号的分析和特征提取中。
基于随机共振的微弱信号检测模型及应用研究摘要:基于随机共振的微弱信号检测模型能够有效地检测微弱信号,不仅可以应用于物理学、医学、地质学等领域的实验研究中,也可以用于信号处理、图像识别等领域的实际应用。
本文主要介绍了基于随机共振的微弱信号检测模型及其应用研究,包括基本原理、建模方法、检测方法和应用效果等方面。
首先介绍了随机共振的产生机制和基本原理,随后对其进行建模,包括信号源、噪声源和积分电路的建模等。
然后,详细介绍了基于随机共振的微弱信号检测方法,包括极限环法、平衡点法和扫描法等。
最后,通过实验验证了基于随机共振的微弱信号检测模型的有效性和应用效果。
关键词:随机共振;微弱信号;检测模型;极限环法;平衡点法;扫描法一、引言在现代科技发展与应用过程中,微弱信号的检测是一个重要而又难以解决的问题。
微弱信号的检测不仅可以应用于物理学、医学、地质学等领域的实验研究中,也可以用于信号处理、图像识别等领域的实际应用。
目前,微弱信号的检测方法有很多,其中基于随机共振的微弱信号检测模型是一种比较有效的方法。
二、基本原理随机共振是一种非线性系统在外加激励下所呈现出的一种特殊的动态行为。
当随机激励强度适当时,非线性系统的输出响应表现出比较明显的激励增益效应。
这种效应称为随机共振。
三、建模方法基于随机共振的微弱信号检测模型包含信号源、噪声源和积分电路的建模。
其中,信号源可以是任意一种信号源,如正弦波、方波、三角波等。
噪声源一般是高斯白噪声。
积分电路则采用二阶滤波器。
四、检测方法基于随机共振的微弱信号检测方法包括极限环法、平衡点法和扫描法等。
其中,极限环法是指通过调节激励信号频率的方法,使得随机共振同时出现在信号频率和噪声频率处,从而获得最大输出电压;平衡点法是通过调节相位或幅值,最终找到系统的平衡点,达到检测微弱信号的目的;扫描法则是通过在一定频率范围内连续检测信号,然后对比各个频率对应的输出功率判断是否有信号存在。
五、应用效果本文通过实验验证了基于随机共振的微弱信号检测模型的有效性和应用效果。
随机共振方法在弱信号检测中的应用摘要:针对如何从强噪声背景下提取有用的弱信号问题,利用近年来发展起来的随机共振技术进行了信号检测的研究,发现该方法提取弱信号切实可行。
介绍了随机共振的基本原理,提出了随机共振去噪检测弱信号的新方法。
并通过仿真研究了系统的随机共振现象,实验证明了随机共振技术在强噪声背景下检测弱信号具有很大的优越性。
关键词:强噪声;随机共振;弱信号检测;混沌0 引言强噪声背景下的弱信号检测方法,在众多的学科领域中具有十分广泛的用途。
常规的弱信号检测方法主要是基于时域和频域两种。
如时域的自相关法和频域的功率谱法。
然而,这些方法都有一定的局限性,主要是对输入信号的信噪比阈值要求较高。
因此,迫切需要一种新的方法来弥补以上不足。
近年来,非线性科学的不断发展,尤其是混沌,随机共振理论的提出,为弱信号检测开创了新的思路。
基于混沌理论的弱信号检测方法是利用混沌振子对同频信号具有极强的敏感性和对高斯白噪声极强的免疫能力来实现的。
随机共振理论的独特之处在于:传统信号检测方法,都是想方设法来抑制噪声,认为它是有害的;而随机共振理论恰恰是利用噪声信号的能量,是一种变废为宝的新方法。
该文旨在介绍基于随机共振的检测方法,通过仿真实验证明该方法的可行性。
1 随机共振理论基础随机共振的原理框图如图1所示。
产生随机共振现象需要三个基本条件,即非线性系统、输入信号和噪声。
在存在噪声和周期信号激励的情况下,考虑双稳势中布朗质点的过阻尼运动:其中,U(x)表示映象对称平方势:其中,a和b是系统势函数的结构系数;是均值为零,方差为1的白噪声,D是噪声的强度。
下面首先分析势函数的一些特性。
当实验信号幅值A和噪声n(t)都为0时,则系统在处有两个固定点,在xm=0处有一个亚稳态的固定点。
这些固定点是势函数的最小值和局部最大值。
此时系统有两个相同的势阱,阱底位于垒高为△U=a2/(4b),图2所示是a=b=1时的双稳态势曲线图。