生物化学复习资料重点试题第十一章代谢调节解读
- 格式:doc
- 大小:26.50 KB
- 文档页数:13
11 脂代谢11脂代谢生物化学-第10单元脂代谢习题答案一、名词解释1、酮体:在肝脏中由乙酰辅酶a制备的燃料分子(β-羟基丁酸、乙酰乙酸、丙酮)。
在饥饿期间酮体就是包含脑在内的许多非政府的燃料,酮体过多将引致中毒。
2、脂肪动员:指脂肪组织中的脂肪被一系列脂肪酶水解为脂肪酸和甘油并释放入血液中供其他组织利用的过程。
3、酰基载体蛋白(acp):通过硫酯键融合脂肪酸制备的中间代谢物的蛋白质(原核生物)或蛋白质结构域(真核生物)。
4、β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基,生成含2个碳原子的乙酰辅酶a和比原来少2个碳原子的脂肪酸。
5、肉碱穿行系统:脂酰辅酶a通过构成脂酰肉毒碱从细胞质中转至线粒体的一个穿行循环途径。
二、填空题1、在线粒体外膜脂辅酶a合成酶催化下,游离脂肪酸与(atp-mg2+)和coa-sh反应,生成脂肪酸的活化形式(脂酰coa),再经线粒体内膜肉毒碱-脂酰转移酶系统进人线粒体基质。
2、一个碳原子数为n偶数的脂肪酸在β-水解中需经(0.5n-1)次β-水解循环,分解成(0.5n)个乙酰辅酶a。
3、脂肪酸从头合成的c2供体是(乙酰辅酶a),活化的c2供体是(丙二酸单酰辅酶a)。
4、乙酰辅酶a羧化酶就是脂肪酸从头合成的速度限制酶,该酶以(生物素)辅以基为,消耗atp,催化剂乙酰辅酶a与(hco3-)分解成丙二酸单酰辅酶a。
5、肪酸从头合成中,缩合、两次还原和脱水反应时酰基都连接在(acp)上,它有一个与(辅酶a)一样的4'-磷酸泛酰巯基乙胺长臂。
6、脂肪酸制备酶复合物通常只制备(软脂酸),动物中脂肪酸碳链延长由(线粒体)或内质网酶系统催化剂。
生物化学-第10单元7、真核细胞中,不饱和脂肪酸都就是通过(水解过氧化氢)途径制备的;许多细菌的单烯脂肪酸则就是经由(厌氧)途径制备的。
8、甘油三酯是由(3-磷酸甘油)和(脂酰辅酶a)在磷酸甘油转酰酶的作用下先形成磷脂酸。
生物化学第11章蛋白质的分解代谢第十一章蛋白质的分解代谢课外练习题一、名词解释1、氮平衡;2、一碳单位;3、转氨基作用;4、联合脱氨基作用;5、必须氨基酸;6、生糖氨基酸;7、尿素循环。
二、符号辨识1、GPT;2、GOT;三、填空1、蛋白质消化吸收的主要部位是(),肠液中的肠激酶可激活()酶原。
2、体内主要的转氨酶是()转氨酶和()转氨酶,其辅酶是()。
3、体内氨的主要代谢去向是在()内合成尿素,经()排出。
4、肝脏通过()循环将有毒的氨转变为无毒的()。
5、谷氨酰胺是体内氨的()、()和()形式。
6、氨在血液中的运输形式是()和()。
7、胃液中胃蛋白酶可激活胃蛋白酶原,此过程称为()作用。
8、转氨酶的辅酶是(),它与接受底物脱下的氨基结合转变为()。
9、体内不能合成而需要从食物供应的氨基酸称为()氨基酸。
10、人体先天性缺乏()羟化酶可引起苯丙酮酸尿症;而缺乏()酶可引起白化病。
四、判别正误1、蛋白质在人体内消化的主要器官是胃和小肠。
()2、蛋白质的生理价值主要取决于必须氨基酸的种类、数量和比例。
()3、L-谷氨酸脱氢酶不仅是L-谷氨酸脱氨的主要的酶,同时也是联合脱氨基作用不可缺少的重要的酶。
()4、尿素的合成和排出都是由肝脏来承担的。
()5、磷酸吡哆醛只作为转氨酶的辅酶。
()6、体内血氨升高的主要原因往往是肝功能障碍引起的。
()7、谷氨酸是联合脱氨基作用的重要中间代谢物,若食物中缺乏时可引起脱氨基作用障碍。
() 8、人体内若缺乏维生素B6、维生素PP、维生素B12和叶酸,均会引起氨基酸代谢障碍。
() 9、在体内,半胱氨酸除作为蛋白质组成成分外,仅是产生硫酸根的主要来源。
() 10、氨基酸的降解能导致糖的合成。
()五、单项选择1、食物蛋白质的互补作用是指()。
A、糖与蛋白质混合食用,提高营养价值;B、脂肪与蛋白质混合食用,提高营养价值;C、几种蛋白质混合食用,提供营养价值;D、糖、脂肪和蛋白质混合食用,提高营养价值; 2、必须氨基酸不包括()。
2022年西医综合考研复习已经开始,在此整理了2022考研西医综合备考:【生物化学】物质代谢的调节,希望能帮助大家!生物化学知识:物质代谢的调节一、代谢调节的方式和水平1. 细胞水平的调节通过改变关键酶的结构或含量以影响酶的活性,进而对代谢进行调节。
是生物最基本的调节方式。
关键酶催化的反应特点:在整条代谢通路中催化的反应速度最慢,又称限速酶;催化单向反应或非平衡反应;受多种效应物的调节。
2. 激素水平的调节是通过与靶细胞受体特异结合,将激素信号转化为细胞内一系列化学反应,最终表现出激素的生物效应。
3. 神经水平的调节是神经系统通过激素、酶或直接对组织、器官施加影响,进行整体调节。
二、细胞水平的调节(一)酶活性的调节通过改变酶结构快速调节酶活性,有2种调节方式。
1. 变构调节变构剂与酶的调节亚基或调节部位非共价结合,引起酶分子构象改变,从而改变酶活性。
受调节的酶称为变构酶或别构酶。
变构剂有底物、产物、代谢途径终产物及小分子核苷酸类物质。
变构效应有变构激活和变构抑制。
变构调节主要以反馈方式控制酶的活性,反馈抑制(负反馈)普遍存在。
2. 共价修饰调节酶分子的某些基团在另一种酶催化下发生化学共价修饰(如磷酸化/脱磷酸,乙酰化/脱乙酰,甲基化/脱甲基等),使酶的构象改变,从而改变酶活性。
具有放大效应。
以上两种调节相辅相成。
对某一具体的酶而言,可同时受到它们的调节。
(二)酶量的调节通过改变酶的合成或降解以调节细胞内酶的含量,从而调节代谢的速度和强度。
属迟缓调节。
酶合成是受基因表达调节的,可在转录和翻译水平进行。
1. 原核生物基因表达的调节1960~1961年Jacob和Monod对大肠杆菌乳糖发酵过程酶的诱导合成及各种突变型研究后,提出了操纵子模型。
操纵子是原核生物基因表达的协调单位,一般含2~6个基因。
操纵子模型的核心是对原核生物基因的划分,以后为基因结构分析证实并丰富该模型,还发现色氨酸操纵子、半乳糖操纵子等。
第十一章代谢和代谢调控总论一、名词解释1.新陈代谢:是机体与外界环境不断进行物质交换的过程;2.同化作用:从外界环境摄取营养物质,通过消化吸收并在体内进行一系列复杂而有规律的化学变化,转化为自身物质,就是同化作用;3.异化作用:机体自身原有的物质也不断转化为废物而排出体外的作用;4.基础代谢:指人体处于适宜温度以及清醒而安静的状态中,同时没有食物消化与吸收活动的情况下,所消耗的能量称为基础代谢;5.抗代谢物:指在化学结构上与天然代谢物类似,进入人体可与正常代谢物相拮抗,从而影响正常代谢的物质;6.代谢激活剂:指能激活机体代谢某一反应或某一过程的物质;7.代谢抑制剂:指能抑制机体代谢某一反应或某一过程的物质;8.激素:指体内的某一细胞、腺体、或者器官所产生的可以影响机体内其他细胞活动的化学物质。
二、填空题1.生物体内物质代谢的特点主要有整体性、途径多样性、阻止特异性、可调节性。
2.体内能量的直接利用形式是ATP 。
在生物体内可产生能量的物质有糖、脂肪、蛋白质等。
3.常用的物质代谢研究方法主要有利用正常机体方法、使用病变动物方法、器官切除法、立体组织器官法、组织切片或匀浆法、酶及其抑制剂法、同位素示踪法、使用亚细胞成分的方法、致突变法、分子生物法。
4.细胞或酶水平的调节方式有两种:一种是酶活力的调节,属快调节;另一种是酶含量的调节,属慢调节。
三、简答题1.简述蛋白质与糖代谢的相互联系。
答:①糖是蛋白质合成的碳源和能源:如糖代谢过程中,产生的许多α-酮酸,通过氨基化或者转氨作用可以生成对应氨基酸;②蛋白质分解产物进入糖代谢:组成蛋白质的20种氨基酸除亮氨酸和赖氨酸外,均可产生糖异生的中间产物,经糖异生作用生成糖。
2.简述糖与脂类代谢的联系。
答:①糖转变为脂肪:如乙酰CoA是唐分解的重要中间产物,正是合成脂肪酸与胆固醇的主要原料;②脂肪转变为糖:脂肪分子中的甘油可通过糖的异生作用转变为糖;③能量的相互利用。
物质代谢调节一级要求单选题1 体内物质代谢有几个不同的调节层次A 1B 2C 3D 4E 5 C2 调节物质代谢体内最基础的层次是A 细胞水平B 激素水平C 神经调节D 整体水平E 器官水平 A3 糖原分解的限速酶是CA 磷酸二酯酶B 磷酸酶C 磷酸化酶D 葡萄糖激酶E 丙酮酸激酶 C4 脂肪酸合成的限速酶是A 甘油三酯脂肪酶B 甘油二酯脂肪酶C 甘油一酯脂肪酶D 乙酰辅酶A 羧化酶E 脂蛋白脂肪酶D5 HMGCoA 合成酶是什么代谢途径的限速酶A 胆固醇合成B 胆固醇分解C 胆固醇代谢转变D 酮体分解E 酮体生成E6 甘油三酯脂肪酶是甘油三酯什么代谢途径中的限速酶A 合成B 分解C 储存D 动员E 转变B7 磷酸果糖激酶是什么代谢途径中的别构调节酶A 三羧酸循环B 糖异生C 葡萄糖分解D 糖原合成E 糖原分解C8 三羧酸循环中的别构调节酶是A 柠檬酸合成酶B α-酮戊二酸脱氢酶C 琥珀酸脱氢酶D 延胡索酸酶E 苹果酸脱氢酶A9 (糖原)磷酸化酶化学修饰激活的方式是A -S-S-氧化生成B -SH 还原生成C 与cAMP 结合D 磷酸化E 脱磷酸化D10 胆固醇对肝中胆固醇合成代谢酶活性的调节方式是A 变构B 化学修饰C 阻遏D 诱导E 酶的降解C11 激素必需与靶细胞的什么物质结合才能发挥调节作用A 受体B 配体C 核D 质膜A12 激素对代谢调节的机制或方式按其溶解度不同可分为几种A 1B 2C 3D 4E 5 B13 通过第二信使进行调节是那种物质进行调节的主要方式A 细胞水平B 脂溶性激素C 水溶性激素。
《生物化学》试题物质代谢及调节(含答案)一、选择题(每题2分,共20分)1. 下列哪个不是糖酵解的关键酶?A. 己糖激酶B. 磷酸果糖激酶C. 丙酮酸激酶D. 乳酸脱氢酶答案:D2. 下列哪个过程不属于蛋白质降解的途径?A. 蛋白质磷酸化B. 蛋白质泛素化C. 蛋白质乙酰化D. 蛋白质泛素-蛋白酶体途径答案:C3. 胆固醇的合成过程主要发生在:A. 线粒体B. 内质网C. 高尔基体D. 质体答案:B4. 下列哪个激素能促进蛋白质合成?A. 胰岛素B. 肾上腺素C. 胰高血糖素D. 皮质醇答案:A5. 三羧酸循环中,下列哪个物质既是氧化剂又是还原剂?A. NAD+B. NADP+C. FADD. CoA答案:D二、填空题(每题3分,共15分)1. 糖酵解过程中,1分子葡萄糖被分解成2分子______,同时产生2分子的______和2分子的______。
答案:丙酮酸、ATP、NADH2. 脂肪酸β-氧化过程中,1分子软脂酸(16碳脂肪酸)经过7次循环,生成8分子的______、8分子的______和7分子的______。
答案:乙酰辅酶A、NADH、FADH23. 蛋白质降解的主要途径是______途径,其中泛素的作用是______。
答案:泛素-蛋白酶体途径、标记蛋白质降解4. 胆固醇合成的关键酶是______,该酶受______的调节。
答案:HMG-CoA还原酶、胆固醇5. 胰岛素是调节血糖的主要激素,它能促进______的摄取和利用,降低血糖水平。
答案:葡萄糖三、简答题(每题10分,共30分)1. 简述糖酵解过程及其生理意义。
答案:糖酵解是指在细胞质中,葡萄糖经过一系列酶促反应,最终生成丙酮酸、ATP和NADH的过程。
其生理意义如下:(1)提供能量:糖酵解过程中产生的ATP是细胞生命活动的主要能源。
(2)产生还原当量:NADH可以在线粒体中进一步氧化,生成更多的ATP。
(3)为其他物质代谢提供原料:丙酮酸可以进入三羧酸循环,进一步氧化分解,也可以转化为氨基酸、脂肪酸等物质。
生化-代谢调节考点整理●代谢生物体代谢包括同化作用和异化作用。
代谢目的是消化吸收外界可利用的物质,同化生成自身所需要的物质,从而维持新生个体的生长、发育、繁殖●代谢策略●生物体代谢的目的在于利用外界物质产生自身所需要的物质。
再利用外界物质时,生物体通过酶的作用产生合成自身物质所需要的重要中间产物6-磷酸葡萄糖,丙酮酸,乙酰CoA等以及能量物质ATP和NADPH。
上述物质为生物体合成自身构件提供了重要的物质来源。
●丙酮酸在物质代谢中的作用●器官间代谢的协同●代谢的细胞区域化●生物体不同代谢途径在细胞中的不同部位进行。
同时细胞结构对代谢调节具有分隔控制的作用,具体表现为细胞的区域化使不同的代谢在不同区域进行,互不干扰、相互协调、相互制约;细胞的区域化使反应所需要的酶、第五等有关因子得到浓缩,有利于反应顺利进行;细胞膜可以通过调节物质运输进而调节代谢●代谢途径之间的联系●(1)糖代谢与脂类代谢之间相互关系。
●(2)糖代谢产物进入氨基酸(蛋白质构件分子)代谢。
●糖代谢中糖酵解途径中间产物3-磷酸甘油酸、磷酸烯醇式丙酮酸、丙酮酸和三羧酸循环的中间产物草酰乙酸、α-酮戊二酸,以及磷酸戊糖途径的中间产物4-磷酸赤藓糖、5-磷酸核糖为氨基酸合成提供碳骨架,并根据合成氨基酸的前体物质不同分成丝氨酸族(3-磷酸甘油酸)、丙氨酸族(丙酮酸)、天冬氨酸族(草酰乙酸)、谷氨酸族(α-酮戊二酸)、芳香氨基酸族(磷酸烯醇式丙酮酸和4-磷酸赤藓糖)、组氨酸族(5-磷酸核糖)6个族。
●(3)氨基酸代谢产物进入糖代谢。
●氨基酸降解产生的主要碳水化合物为7种碳骨架,分别是丙酮酸、草酰乙酸、α-酮戊二酸、琥珀酰CoA、延胡索酸、乙酰CoA、乙酰乙酰CoA。
这7种碳骨架能够通过葡萄糖异生作用产生葡萄糖,或者通过酮体代谢途径生成酮体,因此氨基酸可以分成生糖氨基酸、生酮氨基酸、生糖生酮氨基酸。
●(4)脂类代谢与氨基酸代谢之间的关系。
●脂肪降解产生甘油和脂肪酸,甘油通过糖酵解途径、TCA循环能够产生形成氨基酸的前体物质,从而合成氨基酸;脂肪酸通过β-氧化产生乙酰CoA,进入乙醛酸循环,进而产生形成氨基酸的前体物质,从而合成氨基酸。
物质代谢调节知识点总结一、碳水化合物的代谢碳水化合物是生物体内主要的能量来源,其代谢主要分为糖原形成、糖解和糖异生三个过程。
1. 糖原形成糖原是一种由葡萄糖分子组成的多糖,以肝脏和肌肉为主要合成地点。
当血糖浓度升高时,胰岛素的分泌增加,促进肝脏和肌肉细胞内糖原的合成,从而将多余的葡萄糖转化为糖原储存起来。
2. 糖解糖解是指将碳水化合物分解为葡萄糖的过程,这一过程在细胞内进行。
葡萄糖在细胞内被氧化分解,生成能量和水,同时用于细胞代谢和功能活动。
3. 糖异生糖异生是指通过一系列代谢反应,利用非糖物质(如脂肪、蛋白质)合成葡萄糖的过程。
当机体葡萄糖储备不足时,糖异生能够维持血糖水平,保证机体正常的生理功能。
二、脂肪的代谢脂肪是储存能量的主要形式,其代谢包括脂质的消化吸收、脂类的分解和合成以及氧化等过程。
1. 脂类的消化吸收食物中摄入的脂类经过胃肠道消化酶的作用,分解成脂肪酶能够降解的小分子脂肪,然后被吸收到肠细胞内。
在肠细胞内,这些小分子脂肪重新合成为三酸甘油酯,然后通过淋巴系统进入其他组织。
2. 脂肪的分解脂肪在体内被分解为甘油和脂肪酸,并经过代谢产生能量和合成其他脂质物质。
这一过程受到甲状腺激素和胰岛素的调节,其中甲状腺激素促进脂肪酸的分解,胰岛素则促进脂肪的合成。
3. 脂肪的合成脂肪的合成主要发生在肝脏和脂肪组织中,受到胰岛素和一氧化氮的调节。
胰岛素促进脂肪的合成,而一氧化氮则抑制脂肪酸的合成和脂肪的储存。
4. 脂肪的氧化脂肪氧化是维持机体内能量平衡的重要途径。
脂肪氧化主要在线粒体内进行,产生大量的三酰甘油和酮体,是维持机体正常生理功能的重要能量来源。
三、蛋白质的代谢蛋白质是生物体内各种酶、激素、血液蛋白等重要组成部分,其代谢主要包括蛋白质的降解、氨基酸的转运和利用以及蛋白质的合成等过程。
1. 蛋白降解蛋白质在体内被分解为氨基酸,其中主要受到一氧化氮的调节。
氨基酸经过一系列代谢反应,生成能量和其他物质,是维持机体内氮平衡的重要途径。
物质代谢调节1.细胞水平调节:细胞水平的调节主要是细胞内酶水平的调节。
方式:细胞内酶呈隔离分布、代谢调节作用点(限速酶、关键酶)、酶的别构调节、酶的化学修饰、同工酶对物质代谢的调节、酶含量的调节2.关键酶:催化代谢途径定向步骤的酶,往往是代谢途径反应的第一个酶。
在可逆反应中偏向一个方向,决定着多酶体系的催化方向。
限速酶:体内代谢是一系列酶促反应的总和。
整个代谢途径速度取决于多酶体系中催化活力最低、米氏常数最大、催化反应速度最慢的酶。
此酶起着限速作用,代谢调节的作用点。
生理意义:①限速酶的催化活力最低,Km最大,催化反应速度最慢,故它的速度决定了整个代谢途径的总速度。
②关键酶多为催化各代谢途径反应的第一个酶,在催化可逆反应中往往极度偏向一个方向,故它的定向决定着多酶体系催化代谢反应的方向。
③代谢调节主要是通过对限速酶与关键酶活性的调节而实现的,而关键酶大多同时又是限速酶,所以它们是代谢调节的作用点。
例:己糖激酶3.酶的别构调节:小分子化合物与酶分子活性中心以外的某一部位特异结合,引起酶蛋白分子构象的轻微改变,从而引起酶活性的改变,这种调节称为酶的别构调节。
方式:生理意义:①代谢终产物反馈抑制反应途径中的酶,使代谢物不致生成过多。
②别构调节使机体维持在相对恒定的生理状态。
例:HMG-CoA还原酶4.酶的化学修饰:酶蛋白肽链上某些残基在酶的催化下发生可逆的共价修饰,从而引起酶活性改变,这种调节称为酶的化学修饰。
生理意义:①催化的反应具有放大效应,比别构调节调节效率高。
②消耗的ATP少于酶蛋白合成所需。
③比酶蛋白合成的调节迅速。
④是体内酶活性经济、高效的调节方式。
例:磷酸化酶。
第十一章代谢调节一、知识要点代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。
通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。
根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。
因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。
酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。
细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。
细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。
代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。
例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。
细胞内酶的区域化为酶水平的调节创造了有利条件。
生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。
酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。
在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。
而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。
操纵子是在转录水平上控制基因表达的协调单位,由启动子(P、操纵基因(O和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA 转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA 本身核苷酸组成和排列(如SD序列,反义RNA的调节,mRNA 的稳定性等方面。
酶活性的调节是直接针对酶分子本身的催化活性所进行的调节,在代谢调节中是最灵敏、最迅速的调节方式。
主要包括酶原激活、酶的共价修饰、反馈调节、能荷调节及辅因子调节等。
二、习题(一名词解释1.诱导酶(Inducible enzyme2.标兵酶(Pacemaker enzyme3.操纵子(Operon4.衰减子(Attenuator5.阻遏物(Repressor6.辅阻遏物(Corepressor7.降解物基因活化蛋白(Catabolic gene activator protein8.腺苷酸环化酶(Adenylate cyclase9.共价修饰(Covalent modification10.级联系统(Cascade system11.反馈抑制(Feedback inhibition12.交叉调节(Cross regulation13.前馈激活(Feedforward activation14.钙调蛋白(Calmodulin(二英文缩写符号1. CAP(Catabolic gene activator protein:2. PKA(Protein kinase:3. CaM(Calmkdulin:4. ORF(Open reading frame:(三填空题1. 哺乳动物的代谢调节可以在、、和四个水平上进行。
2. 酶水平的调节包括、和。
其中最灵敏的调节方式是。
3. 酶合成的调节分别在、和三个方面进行。
4. 合成诱导酶的调节基因产物是,它通过与结合起调节作用。
5. 在分解代谢阻遏中调节基因的产物是,它能与结合而被活化,帮助与启动子结合,促进转录进行。
6. 色氨酸是一种,能激活,抑制转录过程。
7. 乳糖操纵子的结构基因包括、和。
8. 在代谢网络中最关键的三个中间代谢物是、和。
9. 酶活性的调节包括、、、、和。
10.共价调节酶是由对酶分子进行,使其构象在和之间相互转变。
11.真核细胞中酶的共价修饰形式主要是,原核细胞中酶共价修饰形式主要是。
(四选择题1. 利用操纵子控制酶的合成属于哪一种水平的调节:A.翻译后加工B.翻译水平C.转录后加工D.转录水平2. 色氨酸操纵子调节基因产物是:A.活性阻遏蛋白B.失活阻遏蛋白C.cAMP受体蛋白D.无基因产物3. 下述关于启动子的论述错误的是:A.能专一地与阻遏蛋白结合B.是RNA聚合酶识别部位C.没有基因产物D.是RNA聚合酶结合部位4. 在酶合成调节中阻遏蛋白作用于:A.结构基因B.调节基因C.操纵基因D.RNA聚合酶5. 酶合成的调节不包括下面哪一项:A.转录过程B.RNA加工过程C.mRNA翻译过程D.酶的激活作用6. 关于共价调节酶下面哪个说法是错误的:A.都以活性和无活性两种形式存在B.常受到激素调节C.能进行可逆的共价修饰D.是高等生物特有的调节方式7. 被称作第二信使的分子是:A.cDNAB.ACPC.cAMPD.AMP8.反馈调节作用中下列哪一个说法是错误的:A.有反馈调节的酶都是变构酶B.酶与效应物的结合是可逆的C.反馈作用都是使反速度变慢D.酶分子的构象与效应物浓度有关(五是非判断题(1.分解代谢和合成代谢是同一反应的逆转,所以它们的代谢反应是可逆的。
(2.启动子和操纵基因是没有基因产物的基因。
(3.酶合成的诱导和阻遏作用都是负调控。
(4.衰减作用是在转录水平上对基因表达进行调节的一种方式。
(5.与酶数量调节相比,对酶活性的调节是更灵敏的调节方式。
(6.果糖1,6二磷酸对丙酮酸激酶具有反馈抑制作用。
(7.序列反应中几个终产物同时过多时的调节作用叫累积调节。
(8.酶的共价修饰能引起酶分子构象的变化。
(9.脱甲基化作用能使基因活化。
(10.连锁反应中,每次共价修饰都是对原始信号的放大.(六问答题1.糖代谢与脂类代谢的相互关系?2.糖代谢与蛋白质代谢的相互关系?3.蛋白质代谢与脂类代谢的相互关系?4.简述酶合成调节的主要内容?5.以乳糖操纵子为例说明酶诱导合成的调控过程?6.以糖原磷酸化酶激活为例,说明级联系统是怎样实现反应信号放大的?7.二价反馈抑制作用有哪些主要类型?8.代谢的区域化有何意义?三、答案(一、名词解释:1. 诱导酶:由于诱导物的存在,使原来关闭的基因开放,从而引起某些酶的合成数量明显增加,这样的酶称为诱导酶2. 标兵酶:在多酶促系列反应中,受控制的部位通常是系列反应开头的酶,这个酶一般是变构酶,也称标兵酶。
3. 操纵子:在转录水平上控制基因表达的协调单位,包括启动子(P、操纵基因(O 和在功能上相关的几个结构基因。
4. 衰减子:位于结构基因上游前导区调节基因表达的功能单位,前导区转录的前导RNA通过构象变化终止或减弱转录。
5. 阻遏物:由调节基因产生的一种变构蛋白,当它与操纵基因结合时,能够抑制转录的进行。
6. 辅阻遏物:能够与失活的阻碣蛋白结合,并恢复阻遏蛋白与操纵基因结合能力的物质。
辅阻遏物一般是酶反应的产物。
7. 降解物基因活化蛋白:由调节基因产生的一种cAMP受体蛋白,当它与cAMP 结合时被激活,并结合到启动子上促进转录进行。
是一种正调节作用。
8. 腺苷酸环化酶:催化ATP焦磷酸裂解产生环腺苷酸(cAMP的酶。
9. 共价修饰:某种小分子基团可以共价结合到被修饰酶的特定氨基酸残基上,引起酶分子构象变化,从而调节代谢的方向和速度。
10. 级联系统:在连锁代谢反应中一个酶被激活后,连续地发生其它酶被激活,导致原始调节信号的逐级放大,这样的连锁代谢反应系统称为级联系统。
11. 反馈抑制:在代谢反应中,反应产物对反应过程中起作用的酶产生的抑制作用。
12. 交叉调节:代谢产物不仅对本身的反应过程有反馈抑制作用,而且可以控制另一代谢物在不同途径中的合成。
13. 前馈激活:在反应序列中,前身物质对后面的酶起激活作用,使反应向前进行。
14. 钙调蛋白:一种依赖于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变化,调解酶的活性。
如磷酸化酶激酶是一种依赖于钙的蛋白激酶。
(二英文缩写符号1. CAP(Catabolic gene activator protein:降解物基因活化蛋白2. PKA(Protein kinase:蛋白激酶A3. CaM(Calmkdulin:钙调蛋白4. ORF(Open reading frame:开放阅读框架(三填空题1. 细胞内酶水平;细胞水平;激素水平;神经水平2. 酶的区域化;酶数量的调节;酶活性的调节3. 转录水平;转录后加工和运输;翻译水平4. 阻遏蛋白;操纵基因5. 降解物基因活化蛋白(CAP;环腺苷酸(cAMP;RNA聚合酶6. 辅阻遏物;阻遏蛋白7. LacZ;LacY;LacA8. 6-磷酸葡萄糖;丙酮酸;乙酰辅酶A9. 酶原激活;酶共价修饰;变构调节;反馈调节;辅因子调节;能荷调节10. 小分子基团;共价修饰;有活性;无活性11. 磷酸化和脱磷酸化;核苷酰化和脱核苷酰化(四选择题1. D:操纵子在酶合成的调节中是通过操纵基因的开闭来控制结构基因表达的,所以是转录水平的调节。
细胞中酶的数量也可以通过其它三种途径进行调节。
2. B:色氨酸操纵子控制合成色氨酸五种酶的转录,色氨酸是蛋白质氨基酸,正常情况下调节基因产生的是无活性阻遏蛋白,转录正常进行。
但当细胞中色氨酸的含量超过蛋白质合成的需求时,色氨酸变成辅阻遏物来激活阻遏蛋白,使转录过程终止;诱导酶的操纵子调节基因产生的是活性阻遏物;组成酶的操纵子调节基因不产生阻遏蛋白;有分解代谢阻遏作用的操纵子调节基因产物是cAMP受体蛋白(降解物基因活化蛋白。
3. A:操纵基因是阻遏蛋白的结合部位。
4. C:活性阻遏蛋白与操纵基因结合使转录终止。
5. D:酶的激活作用是对酶活性的调节,与酶合成的调节无关。
6.D:共价调节酶是高等生物和低等生物都具有的一种酶活性调节方式。
7.C:cDNA 为互补DNA,ACP为酰基载体蛋白,AMP为腺苷酸。
cAMP由腺苷酸环化酶催化ATP焦磷酸裂解环化生成,腺苷酸环化酶可感受激素信号而被激活,所以,一般把激素称为“第一信使”,把cAMP称为“第二信使”。
8.C:反馈作用包括正反馈(反馈激活和负反馈(反馈抑制,正反馈对酶起激活作用,负反馈对酶起抑制作用。
(五是非判断题1.错:分解代谢和合成代谢虽然是同一反应的逆转,但它们各自的代谢途径不完全相同,如在糖酵解途径中,葡萄糖被降解成丙酮酸的过程有三步反应是不可逆的,在糖异生过程中需要由其它的途径或酶来代替。
2.对:操纵子包括启动子、操纵基因和结构基因,启动子是RNA聚合酶识别和结合部位,操纵基因可以与阻遏蛋白结合控制基因表达,两者都没有基因产物。