曲线运动知识点总结
- 格式:doc
- 大小:151.50 KB
- 文档页数:4
总结曲线运动知识点总结在曲线运动中,物体的速度、加速度的变化是非常重要的。
在曲线运动的问题中,我们常常需要求解物体在运动过程中的速度、加速度、位移、运动轨迹等参数。
因此,掌握曲线运动的知识对于理解和解决这些问题是非常重要的。
一、曲线运动的基本概念1. 曲线运动的概念曲线运动是物体在其运动过程中,其速度、加速度不是保持一个方向和大小的运动形式。
在曲线运动中,物体的速度和加速度的方向和大小都会随着时间的变化而发生变化,它的运动轨迹也不是一条直线,而是一条曲线。
2. 曲线运动过程中的速度、加速度变化规律在曲线运动过程中,物体的速度和加速度都可以随着时间的变化而变化。
速度的变化是由加速度决定的。
当物体在曲线上做曲线运动时,它总是有一个向心加速度,这个向心加速度决定了速度的大小和方向的变化。
因此,在曲线运动中,我们需要分析物体的向心加速度,从而确定速度和加速度的变化规律。
3. 曲线运动的运动轨迹在曲线运动中,物体的运动轨迹通常是一条曲线,这条曲线可能是一个圆、椭圆、抛物线等等。
运动轨迹的形状取决于物体所受的力的大小和方向,例如,当物体处于一个旋转的圆周运动中时,它的运动轨迹就是一个圆。
二、曲线运动的基本理论1. 切线加速度和法向加速度在曲线运动中,物体的加速度可以分解为切线加速度和法向加速度两个分量。
切线加速度是沿着速度方向的加速度分量,它决定了速度的大小的变化。
而法向加速度是垂直于速度方向的加速度分量,它决定了速度方向的变化。
根据这个分解,我们可以更好地理解曲线运动中速度和加速度的变化规律。
2. 向心加速度在曲线运动中,物体总是有一个向心加速度,这个向心加速度决定了速度的大小和方向的变化。
向心加速度是由曲线运动物体所受的向心力决定的,它的大小与速度的平方成正比,与曲线的曲率成反比。
因此,向心加速度是曲线运动中一个重要的参数,它决定了物体速度和加速度的变化。
3. 非惯性系中的曲线运动在非惯性系中,物体的曲线运动问题会更加复杂。
高中物理曲线运动知识点总结一、曲线运动的基本规律1. 曲线运动的概念曲线运动是指物体在一定时间内沿着曲线路径运动的现象。
在这种运动过程中,物体的速度和加速度都是随时间变化的。
因此,曲线运动是一种复杂的运动形式,需要通过物理学知识进行分析和研究。
2. 曲线运动的基本特征曲线运动有许多与之相关的基本特征,例如曲线的凹凸性、切线与速度、速度与加速度的关系等。
通过对这些基本特征的分析,可以更好地理解和解释曲线运动的规律和特点。
3. 曲线运动的描述方法曲线运动的描述主要有两种方法,一种是参数方程法,另一种是运动学方程法。
这两种方法可以通过不同的数学和物理模型对曲线运动进行描述和分析,从而得到更准确的运动规律和轨迹。
二、曲线运动的数学模型1. 参数方程参数方程是一种描述曲线运动的数学方法。
它将物体的运动状态描述为时间t的函数,并通过参数化的形式来描述曲线轨迹。
参数方程可以更直观地展现出曲线运动的规律,对于复杂的曲线路径来说,参数方程更容易进行运动规律的分析。
2. 运动学方程运动学方程是描述曲线运动的另一种数学模型。
它是根据牛顿运动定律和匀变速直线运动的知识推导出来的。
通过运动学方程可以得出物体在曲线轨迹上的速度和加速度的关系,从而对曲线运动进行定量的分析和计算。
三、曲线运动的速度和加速度1. 曲线运动的速度在曲线运动中,物体的速度是随着时间和位置的变化而变化的。
通常情况下,物体的速度可以分解为切向速度和法向速度两个分量。
切向速度是描述物体在曲线路径上的速度,而法向速度则是描述物体在曲线路径上的加速度。
这两个分量结合起来可以更全面地描述曲线运动中的速度规律。
2. 曲线运动的加速度曲线运动的加速度也是随着时间和位置的变化而变化的。
在曲线路径上,物体的加速度可以分解为切向加速度和法向加速度两个分量。
切向加速度是描述物体在曲线路径上的加速度,而法向加速度则是描述物体在曲线路径上的加速度。
这两个分量结合起来可以更全面地描述曲线运动中的加速度规律。
曲线运动知识点总结曲线运动是高中物理中较为重要的一部分内容,它涉及到物体运动轨迹不是直线的情况。
下面我们来详细总结一下曲线运动的相关知识点。
一、曲线运动的定义与特点曲线运动是指物体运动的轨迹为曲线的运动。
其特点主要有:1、轨迹是曲线:这是曲线运动最直观的表现。
2、速度方向不断变化:因为曲线的走向在不断改变,所以速度方向也必然随之变化。
3、一定存在加速度:速度方向的改变意味着速度发生了变化,而速度变化就一定有加速度。
二、曲线运动的条件当物体所受合外力的方向与它的速度方向不在同一条直线上时,物体将做曲线运动。
合外力的作用是改变速度的方向,使其偏离原来的直线轨迹。
三、运动的合成与分解1、合运动与分运动的关系等时性:合运动与分运动经历的时间相等。
独立性:一个物体同时参与几个分运动,各分运动独立进行,互不影响。
等效性:合运动是各分运动的叠加,具有相同的效果。
2、运动的合成与分解遵循平行四边形定则:已知分运动求合运动叫运动的合成;已知合运动求分运动叫运动的分解。
四、平抛运动1、定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下所做的运动。
2、特点水平方向:做匀速直线运动,速度大小不变,方向不变。
竖直方向:做自由落体运动,加速度为重力加速度 g。
3、平抛运动的规律水平方向:x = v₀t竖直方向:y = 1/2gt²合速度:v =√(v₀²+(gt)²)合位移:s =√(x²+ y²)4、平抛运动的飞行时间 t =√(2h/g),只与下落高度 h 有关,与初速度 v₀无关。
五、匀速圆周运动1、定义:质点沿圆周运动,如果在相等的时间里通过的圆弧长度相等,这种运动就叫做匀速圆周运动。
2、特点线速度大小不变,方向时刻改变。
角速度不变。
周期和频率不变。
3、描述匀速圆周运动的物理量线速度 v:v = s/t =2πr/T角速度ω:ω =θ/t =2π/T周期 T:物体运动一周所用的时间。
曲线运动物理知识点总结曲线运动物理知识点总结高考复习正在紧张的进行中,为了使同学们更好的复习高考物理,掌握政治的重要知识点,店铺整理了曲线运动物理知识点总结,供同学们参考学习。
曲线运动物理知识点总结篇1(1)曲线运动中的速度方向做曲线运动的物体,速度的方向时刻在改变,在某点(或某一时刻)的速度方向是曲线上该点的切线方向。
(2)曲线运动的性质由于曲线运动的速度方向不断变化,所以曲线运动一定是变速运动,一定存在加速度。
(3)物体做曲线运动的条件物体所受合外力(或加速度)的方向与它的速度方向不在同一直线上。
①如果这个合外力是大小和方向都恒定的,即所受的力为恒力,物体就做匀变速曲线运动,如平抛运动。
②如果这个合外力大小恒定,方向始终与速度垂直,物体就做匀速圆周运动。
③做曲线运动的物体,其轨迹向合外力所指一方弯曲.根据曲线运动的轨迹,可以判断出物体所受合外力的大致方向。
说明:当物体受到的合外力的方向与速度方向的夹角为锐角时,物体做曲线运动速率将增大,当物体受到的合外力的方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小。
曲线运动物理知识点总结篇2一、质点的运动(1)----直线运动(1)匀变速直线运动1.平均速度V平=S/t(定义式)2.有用推论Vt2–Vo2=2as3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移S=V平t=Vot+at2/2=Vt/2t7.加速度a=(Vt-Vo)/t以Vo为正方向,a与Vo同向(加速)a>0;反向则a<08.实验用推论ΔS=aT2ΔS为相邻连续相等时间(T)内位移之差9.主要物理量及单位:初速(Vo):m/s加速度(a):m/s2末速度(Vt):m/s时间(t):秒(s)位移(S):米(m)路程:米速度单位换算:1m/s=3.6Km/h注:(1)平均速度是矢量。
必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。
曲线运动相关的知识点总结一、曲线运动的概念和特点曲线运动是指物体在空间中不沿直线运动,而是沿着一定的轨迹运动的运动。
曲线运动的特点有以下几个方面:1. 随着时间的推移,物体在空间中的位置不断变化,形成一定的轨迹;2. 曲线运动的速度和加速度可能随着时间和位置的变化而变化;3. 曲线运动通常受到外界力的作用,这些外界力会影响物体的速度和加速度;4. 曲线运动的轨迹可以是圆形、椭圆形、抛物线形等不同形状。
二、曲线运动的基本参数1. 位移(s):物体在曲线运动过程中,由于位置的变化而产生的矢量,表示物体在空间中的移动距离和方向。
位移通常用矢量来表示,其大小等于物体起始位置和终点位置之间的直线距离,方向与曲线轨迹的切线方向一致。
2. 速度(v):物体在曲线运动中的平均速度和瞬时速度分别表示物体在一段时间内的位移与时间的比值和物体在某一瞬时的位置变化率。
曲线运动中的速度通常也是矢量,其大小等于位移与时间的比值,方向与曲线轨迹的切线方向一致。
3. 加速度(a):物体在曲线运动中的平均加速度和瞬时加速度分别表示物体在一段时间内速度的变化率和物体在某一瞬时的速度变化率。
曲线运动中的加速度也是矢量,其大小等于速度与时间的比值,方向与速度变化的方向一致。
三、曲线运动的数学描述1. 位移-时间图:曲线运动的位移-时间图用来描述物体在不同时间段内的位移变化情况,通过位移-时间图可以了解物体的运动方向、速度和运动过程中的各个阶段。
2. 速度-时间图:曲线运动的速度-时间图用来描述物体在不同时间段内的速度变化情况,通过速度-时间图可以了解物体的加速度、减速度和速度达到最大值和最小值的时间点。
3. 加速度-时间图:曲线运动的加速度-时间图用来描述物体在不同时间段内的加速度变化情况,通过加速度-时间图可以了解物体的变速情况和加速度的大小和方向变化情况。
四、曲线运动的相关定理和公式1. 物体的位移与速度关系:曲线运动中,物体的位移与速度之间存在着一定的关系,如在匀变速直线运动中,位移与速度之间的关系可以表示为s=v0t+1/2at^2或v^2=v0^2+2as 等。
曲线运动要点归纳要点一曲线运动的特点1.轨迹是一条曲线.2.曲线运动的速度方向(1)质点在某一点(或某一时刻)的速度方向沿曲线在该点的切线方向.(2)曲线运动的速度方向时刻改变.速度是描述运动的一个重要的物理量,它既有大小,又有方向.如果物体在运动过程中只有速度大小的改变,而速度方向不变,那么物体只能做直线运动.因此,假设物体做曲线运动,说明物体的速度方向时刻变化.3.运动性质是变速运动(1)无论物体做怎样的曲线运动,由于轨迹上各点的切线方向不同,物体的速度时刻发生变化,因此,曲线运动一定是变速运动.(2)曲线运动是否为匀变速运动决定于物体是否受到恒力作用,如抛体运动中,由于物体只受重力作用,其加速度不变,故物体做匀变速运动,这与物体的运动轨迹无关.要点二物体做曲线运动的条件1.曲线运动是变速运动,凡物体做变速运动必有加速度,而加速度是由于力的作用产生的,因而做曲线运动的物体在任何时刻所受合外力皆不为零,不受力的物体不可能做曲线运动.2.当物体受到的合外力的方向与运动方向在一条直线上时,运动方向(速度方向)只能沿该直线(或正或反),其运动依然是直线运动.3.当物体受到合外力的方向跟物体的速度方向不在一条直线上,而是成一定角度时,合外力产生的加速度方向跟速度方向也成一定角度.一般情况下,这时的加速度不仅反映了速度大小的变化快慢,还包含了速度方向的变化快慢.其运动必然是曲线运动.4.当合外力为恒力(F与v不共线)时,加速度也恒定,物体的速度均匀变化,物体做匀变速曲线运动;当合外力变化时,物体做非匀变速曲线运动(变加速度的曲线运动).应该注意的是,曲线运动不一定要求合外力变化.因此,一个物体是否做曲线运动,与力的大小及力是否变化无关,关键是看合外力的方向与速度方向是否在同一直线上.在比拟中可知:(1)在变速直线运动(加速直线运动或减速直线运动)中,加速度方向(即合外力方向)与速度方向在同一直线上,加速度只改变速度的大小,不改变速度的方向.(2)在曲线运动中,加速度方向(合外力方向)与速度方向不在同一条直线上,加速度可以改变速度的大小,也可以改变速度的方向.1.运动轨迹和外力、速度的关系(1)把加速度和合力F都分解到沿曲线切线和法线(与曲线切线垂直)方向上,沿切线方向的分力F1使质点产生切线方向的加速度a1,当a1和v同向时,速度增大,如图5-1-3甲所示,此时的合力方向一定与速度方向成锐角;当a1和v反向时,速度减小,如图乙所示,此时的合力方向一定与速度方向成钝角;如果物体做曲线运动的速率不变,说明a1=0,即F1=0,此时的合力方向一定与速度方向垂直.沿法线方向的分力F2产生法线方向上的加速度a2,它使质点改变了速度的方向.由于曲线运动的速度方向时刻在改变,合力的这一作用效果对任何曲线运动总是存在的.可见,在曲线运动中合力的作用效果可分成两个方面:产生切线方向的加速度a1,改变速度的大小;产生法线方向的加速度a2,改变速度的方向,这正是物体做曲线运动的原因.假设a1=0,那么物体的运动为匀速率曲线运动;而假设a2=0,那么物体的运动为直线运动.(2)运动轨迹确实定①物体的轨迹与初速度和合外力有关,物体的运动轨迹一定夹在合外力与速度方向之间.②运动轨迹与速度相切,并偏向合外力一侧,因此轨迹是平滑的曲线.(3)合外力方向确实定物体所受合外力的方向指向轨迹的弯曲方向的内侧.即运动轨迹必夹在速度方向与合力方向之间.2.力与运动的关系(1)认识这个问题,应分清物体做曲线运动的条件和做匀变速运动的条件,物体做曲线运动的条件是加速度与初速度不在同一直线上,而做匀变速运动的条件是加速度的大小和方向恒定不变,二者之间没有必然联系.(2)物体运动的形式,按速度分类有匀速和变速;按径迹分类,有直线和曲线,其原因取决于物体的初速度v0和合外力F,具体分类如下:①F=0,静止或匀速运动.②F≠0,变速运动.③F为恒量,匀变速运动.④F为变量,非匀变速运动.⑤F和v0方向在同一直线上,直线运动.⑥F和v0方向不在同一直线上,曲线运动.归纳总结1.物体做曲线运动时,其速度方向是沿曲线上该点的切线方向.2.速度方向时刻改变,即速度一定时刻改变,所以曲线运动一定是变速运动.3.速度变化包括大小和方向的变化,故变速运动包括曲线运动与直线运动.平抛运动的特点及规律1.平抛运动是水平方向的匀速直线运动和竖直方向自由落体运动的合运动〔运动的合成〕2. 运动的规律 ⎪⎩⎪⎨⎧==2021)1(at y t v x⎪⎪⎩⎪⎪⎨⎧+===220)2(y x y x v v v gt v v v平抛特点总结:1.运动时间只由高度决定设想在高度H 处以水平速度v o 将物体抛出,假设不计空气阻力,那么物体在竖直方向的运动是自由落体,由公式可得:,由此式可以看出,物体的运动时间只与平抛运动开始时的高度有关。
第四章曲线运动第一模块:曲线运动、运动的合成和分解『夯实基础知识』■考点一、曲线运动1、定义:运动轨迹为曲线的运动。
2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上,即某一点的瞬时速度的方向,就是通过该点的曲线的切线方向。
3、曲线运动的性质由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。
4、物体做曲线运动的条件(1)物体做一般曲线运动的条件物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。
(2)物体做平抛运动的条件物体只受重力,初速度方向为水平方向。
可推广为物体做类平抛运动的条件:物体受到的恒力方向与物体的初速度方向垂直。
(3)物体做圆周运动的条件物体受到的合外力大小不变,方向始终垂直于物体的速度方向,且合外力方向始终在同一个平面内(即在物体圆周运动的轨道平面内)总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。
5、分类⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。
⑴非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。
■考点二、运动的合成与分解1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。
运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。
2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。
3、合运动与分运动的关系:■运动的等效性(合运动和分运动是等效替代关系,不能并存);■等时性:合运动所需时间和对应的每个分运动时间相等■独立性:一个物体可以同时参与几个不同的分运动,物体在任何一个方向的运动,都按其本身的规律进行,不会因为其它方向的运动是否存在而受到影响。
曲线运动知识点总结一、曲线运动1、所有物体的运动从轨迹的不同可以分为两大类:直线运动和曲线运动。
2、曲线运动的产生条件:合外力方向与速度方向不共线(≠0°,≠180°)性质:变速运动3、曲线运动的速度方向:某点的瞬时速度方向就是轨迹上该点的切线方向。
4、曲线运动一定收到合外力,“拐弯必受力,”合外力方向:指向轨迹的凹侧。
若合外力方向与速度方向夹角为θ,特点:当0°<θ<90°,速度增大;当0°<θ<180°,速度增大;当θ=90°,速度大小不变。
5、曲线运动加速度:与合外力同向,切向加速度改变速度大小;径向加速度改变速度方向。
6、关于运动的合成与分解(1)合运动与分运动定义:如果物体同时参与了几个运动,那么物体实际发生的运动就叫做那几个运动的合运动。
那几个运动叫做这个实际运动的分运动.特征:①等时性;②独立性;③等效性;④同一性。
二、运动的合成与分解的方法1.运动的合成与分解:包括位移、速度、加速度的合成和分解.它们和力的合成与分解一样都遵守平行四边形定则,由已知的分运动求跟它们等效的合运动叫做运动的合成,由已知的合运动求跟它等效的分运动叫做运动的分解.2.运动分解的基本方法根据运动的实际效果将描述合运动规律的各物理量(位移、速度、加速度)按平行四边形定则分别分解,或进行正交分解.★两直线运动的合运动的性质和轨迹,由两分运动的性质及合初速度与合加速度的方向关系决定.(1).根据合加速度是否变化判定合运动是匀变速运动还是非匀变速运动:若合加速度不变则为匀变速运动;若合加速度变化(包括大小或方向)则为非匀变速运动.(2).根据合加速度与合初速度是否共线判定合运动是直线运动还是曲线运动:若合加速度与合初速度的方向在同一直线上则为直线运动,否则为曲线运动.①两个匀速直线运动的合运动仍然是匀速直线运动.②一个匀速直线运动与一个匀变速直线运动的合运动仍然是匀变速运动,当二者共线时为匀变速直线运动,不共线时为匀变速曲线运动.③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动.④两个匀变速直线运动的合运动仍然是匀变速运动;若合初速度与合加速度在同一直线上,则合运动为匀变速直线运动,如图甲所示;不共线时为匀变速曲线运动,如图乙所示.三、小船过河问题1、渡河时间最少:无论船速与水速谁大谁小,均是船头与河岸垂直,渡河时间mindtv=船,合速度方向沿v合的方向。
曲线运动知识点总结
一、曲线运动
1.曲线运动的特征
(1)曲线运动的轨迹是曲线。
(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。
即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。
(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。
(注意:合外力为零只有两种状态:静止和匀速直线运动。
)
曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。
2.物体做曲线运动的条件
(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。
(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。
3.匀变速运动:加速度(大小和方向)不变的运动。
也可以说是:合外力不变的运动。
4.质点运动性质的判断方法:根据加速度是否变化判断质点是做匀变速运动还是非匀变速运动;由加速度(合外力)的方向与速度的方向是否在同一直线上判断是直线运动还是曲线运动.质点做曲线运动时,加速度的效果是:在切线方向的分加速度改变速度的大小;在垂直于切线方向的分加速度改变速度的方向.
(1)a(或F)跟v 在同一直线上→直线运动:a 恒定→匀变速直线运动;a 变化→变加速直线运动.
(2)a(或F)跟v 不在同一直线上→曲线运动:a 恒定→匀变速曲线运动;a 变化→变加速曲线运动.
5.曲线运动的合力、轨迹、速度之间的关系
(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。
(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。
①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。
②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。
③当合力方向与速度方向垂直时,物体的速率不变。
(举例:匀速圆周运动)
二、抛体运动
1.抛体运动的定义:将物体以一定的初速度向空中抛出,仅在重力的作用下物体所做的运动叫做抛体运动.
2.抛体运动的条件:
(1)有一定的初速度(v0≠0);
(2)仅受重力的作用(F 合=G,不受其他力的作用).
3.常见的抛体运动:
(1)竖直上抛运动:初速度 v0 与重力 G 方向相反.
(2)竖直下抛运动:初速度 v0 与重力 G 方向相同.
(3)平抛运动:初速度 v0 与重力 G 方向垂直.
(4)斜抛运动:初速度 v0 与重力 G 方向既不平行也不垂直,有一定的夹角.
4.抛体运动属于理想化运动模型,实际上物体总要受到空气阻力的作用;抛体运动的初速度方向可以是任意的,所以抛体运动既可以是直线运动也可以是曲线运动.
三、运动的合成与分解
1.分运动和合运动:一个物体同时参与几个运动,参与的这几个运动都是分运动,物体的实际运动就是合运动.
2.运动的合成:已知分运动求合运动,叫做运动的合成.
(1)同一条直线上的两个分运动的合成:同向相加,反向相减。
(2)不在同一条直线上的两个分运动合成时,遵循平行四边形。
3.运动的分解:已知合运动求分运动,叫做运动的分解.
(1)运动的分解是运动的合成的逆运算.
(2)分解方法:根据运动的实际效果分解或正交分解。
4.合运动与分运动的关系:
(1)运动的独立性:一个物体同时参与两个(或多个)运动,其中的任何一个运动并不会受其他分运动的干扰,而保持其运动性质不变,这就是运动的独立性原理.虽然各分运动互不干扰,但是它们共同决定合运动的性质和轨迹.
(2)运动的等时性:各个分运动与合运动总是同时开始,同时结束,经历时间相等(不同时的运动不能合成).
(3)运动的等效性:各分运动叠加起来与合运动有相同的效果.
(4)运动的同一性:各分运动与合运动,是指同一物体参与的分运动和实际发生的运动,不是几个不同物体发生的不同运动.
四、竖直方向的抛体运动
(一)、竖直下抛运动
1. 概念:把物体以一定初速度v0沿着竖直方向向下抛出,仅在重力作用下物体所做的运动叫做竖直下抛运动.
2.条件:①v0≠0且方向竖直向下;②F合=G(a=g)
3.运动性质:匀加速直线运动.
的方向(竖直向下)为正方向
4.运动规律:取初速度 v
速度公式:v t=v0+gt;
位移公式:h=v0t+21gt2;
v t2-v02=2gh.
5.竖直下抛运动可以看作是在同一直线上向下的匀速直线运动和自由落体运动的合运动.
6.竖直下抛运动的 v-t 图象:
为抛出时的初速度,
v
斜率为重力加速度 g,
直线与坐标轴所围面积为物体下抛位移的大小.
(二)、竖直上抛运动
沿着竖直方向向上抛出,仅在重力作用下物体所做的1. 概念:把物体以一定初速度v
运动叫做竖直上抛运动.
2.条件:①初速度:v
≠0且方向竖直向上;②F合=G(a=g)
3.运动性质:初速度 v
0≠0、加速度 a=-g 的匀变速直线运动(通常规定初速度 v
的
方向为正方向)
4.竖直上抛运动的特殊规律(对称性):
⑴时间对称:(t
上=t
下
)
上升过程和下落过程经过同一段高度所用时间相等.
⑵速度对称:(v
上= - v
下
)
上升过程和下落过程经过同一位置时速度大小相等、方向相反.
5. 竖直上抛运动的几个特征量:
①上升时间:t
上=v
/ g
②下落时间:t
下=v
/ g
③空中运动时间:t
总=t
上
+t
下
=2v0 / g
④最大高度:h m= v02/2g
6.研究方法:
(1)分段分析法:将竖直上抛运动分为
上升过程和下降过程。
①上升过程是匀减速直线运动,
取竖直向上为正方向,a=- g.
②下降过程是自由落体运动,
取竖直向下为正方向,a=g .
(2)整体分析法:将全过程看成是初速度为 v
、加速度是
重力加速度g匀变速直线运动,取v
为正方向,a=-g。
注意:①S为正,表示质点在抛出点的上方,
s为负表示在抛出点的下方.
②v为正,表示质点向上运动,
v为负表示质点向下运动。
(取竖直向上为正方向)
7.竖直上抛运动的v-t图象:
①斜率:k=-g
②上升时间:t
上=v
/ g
③最大高度:h m= v02/2g
④落地时间:t =2t
1=2v
/g
⑤落地速度:v
t = - v
⑥落地位移:h
总
=0
8.竖直上抛的h-t图象:
五、平抛运动
1、定义:将物体以一定的初速度沿水平方向抛出,物体只在重力作用下所做的运动,叫平抛运动。
2.平抛运动的条件:(1)物体具有水平方向的初速度;(2)仅受重力的作用(F 合=G).
3.平抛运动的性质:匀变速曲线运动,a=g.
4.研究平抛运动可以从水平方向和竖直方向研究:
(1)水平方向:初速度为 v 0,物体不受力,即 Fx =0,物体由于惯性而做匀速直线运动.
(2)竖直方向:初速度为零,物体受重力的作用,a =g ,物体做自由落体运动.
5.平抛运动的运动规律:
如图所示,物体从 O 点以水平初速度 v0 抛出,P 为
经过时间 t 后轨迹上的一点,位移为 s ,速度为 v ,
α、θ分别为 s 、v 与水平方向的夹角.
速度:0x y
v v v gt =⎧⎨=⎩ 合速度:22y x v v v +=
方向: 位移0212x v t y gt =⎧⎪⎨=⎪⎩ 合位移: 方向:o v gt x y 21tan ==θ (4)轨迹方程:平抛运动的轨迹为抛物线,其轨迹方程为
6.结论:
(1)平抛运动飞行时间:
仅由高度决定,与初速度无关。
(2)水平射程:
由初速度和高度
共同决定。
(3)落地速度: 由初速度和高度共同决定。
3.两个推论:
(1)平抛运动中,某一时刻速度方向与水平方向
的夹角为α,位移方向与水平方向夹角为θ,则
有 tan α=2tan θ.
(2)做平抛运动的物体,任意时刻合速度方向的
反向延长线与 x 轴的交点为此时刻水平方向位
移的中点.
22y x s +=o
x y
v gt v v ==αtan。