动力弹塑性时程分析的方法及其应用
- 格式:doc
- 大小:360.50 KB
- 文档页数:5
弹塑性结构地震反应分析弹塑性结构地震反应分析是一种用于评估建筑结构在地震荷载作用下的变形和破坏能力的方法。
弹塑性结构分析能够提供关于结构在弹性和塑性阶段的响应特性、临界变形和破坏能力等方面的信息,对于工程设计、抗震设计和结构安全评估等领域有着重要的应用价值。
在进行弹塑性结构地震反应分析时,首先需要确定地震荷载的参数,包括地震波的加速度谱和地震波的平面波或垂直波等。
然后,需要对结构进行建模,将结构划分为一个或多个有限元单元,并定义每个单元的建模参数,包括材料性质、几何形状和边界条件等。
在进行弹塑性结构地震反应分析时,通常采用动力时程分析的方法。
该方法基于结构的动力方程和地震动力学原理,通过求解结构动力响应的历时过程,得到结构在地震荷载作用下的响应。
为了实现弹塑性分析,需要考虑结构材料的非线性行为,包括弹性模量的变化、屈服强度的削减和拉伸-压缩非对称等因素。
在进行弹塑性结构地震反应分析时,需要注意以下几个方面:1.输入地震波的选择:选择与工程实际情况相符合的地震波,考虑到地震波的方向性、频谱特性和持续时间等因素。
2.结构材料的本构关系:结构材料的本构关系是非线性分析的关键,需要选择合适的本构模型,如弹塑性材料模型、混凝土损伤模型或钢材的拉伸屈服-塑性模型等。
3.非线性分析方法的选择:弹塑性结构分析可以采用塑性铰模型、强度折减模型或塑性分段模型等方法。
选择合适的非线性分析方法,可以更准确地模拟结构的非线性行为。
4.结构的边界条件和约束:在分析过程中,需要准确地定义结构的边界条件和约束,以保证结构模型的合理性和准确性。
通过弹塑性结构地震反应分析,可以获得结构在地震荷载作用下的变形和破坏情况,进而评估结构的安全性和可靠性。
这对于工程设计师来说是非常重要的,可以帮助其设计更加抗震可靠的建筑结构,并提供技术支持和依据,保障人员的生命安全和财产安全。
罕遇地震作用下的动力弹塑性时程分析方法简介发布时间:2021-09-08T00:53:25.212Z 来源:《基层建设》2021年第17期作者:宋徽[导读] 摘要:本文介绍罕遇地震(大震)作用下针对超限结构采取动力弹塑性分析的方法,主要包含显式求解方式,计算程序的选择,钢筋和混凝土损伤的材料本构、计算单元的确定以及结构大震性能的评估方法。
安徽省人防建筑设计研究院摘要:本文介绍罕遇地震(大震)作用下针对超限结构采取动力弹塑性分析的方法,主要包含显式求解方式,计算程序的选择,钢筋和混凝土损伤的材料本构、计算单元的确定以及结构大震性能的评估方法。
关键词:罕遇地震;动力弹塑性;结构性能评估1.弹塑性分析方法简介目前工程中常见的有静力弹塑性分析和动力弹塑性分析两种。
静力弹塑性分析(PUSH-OVER ANALYSIS,以下简称POA)方法也称为推覆法,它基于美国的FEMA-273抗震评估方法和ATC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。
动力弹塑性分析方法是将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动时的加速度,然后求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,求解方程组的算法一般可以分为显式和隐式两类。
由于材料的失效和破坏常常导致隐式分析中出现严重的收敛困难,我们在分析中采用显式方法求解线性方程组。
根据已有的研究成果,对于结构振动以第一振型为主、基本周期在2秒以内的结构,POA方法较为理想。
当较高振型为主要时,如高层建筑和具有局部薄弱部位的建筑,采用显式动力弹塑性分析方法较为适合[1]。
2.计算程序的选择目前能够进行动力弹塑性时程分析的大型商业通用有限元软件包括:ANSYS、ADINA、ABAQUS等[2],这些软件功能强大,通用性好。
相对于其它软件,ABAQUS提供了丰富的单元类型和材料模型,如弥散钢筋单元和各种混凝土破坏模型等,而且具有强大的非线性求解能力,适合对复杂建筑结构进行动力弹塑性分析。
某连体结构动力弹塑性分析报告-使用midas-building简介本文介绍了某连体结构的动力弹塑性分析过程和结果,使用了midas-building 软件进行计算和分析。
建模和材料参数设置建模使用了midas-building软件中的三维建模功能,将某连体结构建模成一个由矩形截面构成的矩形柱廊。
考虑到该结构受到的荷载是地震荷载,因此将结构的弹塑性分析过程设置为动力弹塑性分析。
在材料参数设置时,我们假设该结构主要由钢筋和混凝土构成,选用了midas-building软件中的标准材料参数。
其中钢筋的材料参数包括抗拉强度、屈服强度、弹性模量等,混凝土的材料参数包括轴向抗压强度、抗拉强度、初始弹性模量等。
根据国家标准和相关文献数据,我们进行了合理的调整和设置。
荷载设置该结构受到了地震荷载的作用,我们使用了midas-building软件中的地震荷载模拟功能进行荷载设置。
模拟时,我们设置了合理的地震加速度和保护系数,并合理选择了地震波。
动力弹塑性分析在进行动力弹塑性分析前,我们对结构进行了预处理,包括对节点和单元进行编号、分组、约束设置等。
然后,使用midas-building软件中的时程分析功能进行动力弹塑性分析。
具体分析过程如下:1.计算地震作用下的初始结构反应谱。
2.利用初始反应谱进行时程分析,得到结构的振动响应,并将响应进行波形、频谱等多种形式的分析。
3.根据分析输出的数据,进行弹塑性塑性计算,得到结构受力情况,包括节点的位移、应力、应变等参数。
结果分析根据分析计算结果,我们得到了该结构在地震荷载下的应力、位移等参数。
根据这些参数,我们对结构的受力情况进行了分析。
在最大地震作用下,该结构的最大位移为X,最大极限断面承载力为Y,最大弯矩为Z。
根据这些结果,我们对结构进行了评价和分析。
并提出了相应的加固和改进措施。
本文介绍了某连体结构的动力弹塑性分析过程和结果,采用了midas-building软件进行计算和分析。
PKPM软件园地 建筑结构.技术通讯 2007年1月弹性、弹塑性时程分析法在结构设计中的应用杨志勇 黄吉锋(中国建筑科学研究院 北京 100013)0 前言地震作用是建筑结构可能遭遇的最主要灾害作用之一。
几十年来,人们积累了大量的实测地震资料,这些资料多以位移、速度或者加速度时程的形式体现。
与此相对应,时程分析方法也被认为是最直接的一种计算建筑结构地震响应的方法。
但是,由于地震作用随机性导致计算结果的不确定性,弹性时程分析方法只是结构设计的一种辅助计算方法;虽然如此,抗震规范为了增强重要结构的抗震安全性,还是将弹性时程分析方法规定为常遇地震作用下振型分解反应谱法的一种补充计算方法;尤其是考虑了结构的弹塑性性能后,弹塑性时程分析方法更是被普遍认为是一种仿真的罕遇地震作用响应计算方法。
《建筑抗震设计规范》(GB50011-2001)第3.6.2,5.1.2,5.5.1,5.5.2,5.5.3等条文规定了时程分析相关的内容。
下面结合TAT ,SATWE ,PMSAP 和EPDA 等软件应用,探讨如何将弹性、弹塑性时程分析正确应用到结构设计中去。
1 弹性时程分析的正确应用11正确地在软件中应用弹性时程分析方法需要对规范的相关条文规定有正确的认识。
以下几点是需要特别明确的:(1)抗震规范第5.1.2条第3点规定,“可取多条时程曲线计算结果的平均值与振型分解反应谱法计算结果的较大值”。
在设计过程中,如何实现“较大值”有不同的做法:1)设计采用弹性时程分析的构件内力响应包络值的多波平均值与振型分解反应谱法计算结果二者的较大值直接进行构件设计;2)在实现振型分解反应谱方法时,放大地震力使得到的楼层响应曲线包住时程分析楼层响应曲线的平均值。
图1 SATWE 地震作用放大系数前一种做法可能使得构件配筋较大,因为在时程分析过程中,构件内力的最大响应具有不同时性,采用包络值进行设计会使得构件内力,尤其是压弯构件内力偏于保守。
建筑结构爆破地震反应弹塑性精细时程分析[摘要]根据爆破的地震影响下的建筑的结构安全方面评价的分析,提出使用时程的分析方式进行整体的评价爆破方面的地震波安全程度,成立比较精确的结构弹塑性方面的动力研究结构的方式,制定了建筑结构中的爆破地震的反应中弹塑性的时程研究过程。
本文就建筑机构爆破地震反应弹塑性精细时程进行分析。
[关键词]建筑结构爆破地震弹塑性精细时程中图分类号:tu973.2 文献标识码:a 文章编号:1009-914x (2013)10-0129-01建筑的结构在爆破的地震波的影响中作出的安全评价长久以来都是人们非常重视的问题。
一些爆破的安全制度中也有很的明确规定,要将爆破的地震波动频率的峰值进行安全地振动的速度要求,但是地震波动的速度与主要频率的选择和采用都有着很大的困难。
现在所设计的结构都是根据抗震的规则来进行预防的设置的,但爆破的地震和自然的地震还是有着非常明显的不同。
必须采用时程的分析研究,才可以精准地断定爆破地震的状况下,结构产生动力的反应,从而进行全方位爆破震波的安全性的评估。
爆破的振动产生的破坏其实就是动态的随机的破坏情况。
从动力学的角度研究结构振动的动力反应,这个已经是分析振动对结构造成破坏的有效途径。
使用成熟一点的响应谱的理论方式来研究结构体处在不一样的动力环境中的爆破振动的反应,并且得到了一些成果。
但是,响应谱的理论是根据单个的自由程度系统的弹性的动力进行研究,不可以完全地表现出爆破时地震波对多个自由度的系统弹塑性的动力特点。
将实际测量的爆破的地震记录与爆破的震波模仿当作基础,通过时程的研究方式与有限元的原理研究结构将进行爆破震波与自然震波的环境中所出现的动力反应的不同。
但这样的方式都差分近似,并且对时间都特别地敏锐,并且精确度也不够高,在计算的时候会遇到一些问题。
1、结构的爆破地震响应中弹塑性的动力研究(一)结构中爆破地震响应中弹塑性的动力研究通过爆破的地震波的影响,结构体通常会从弹性的形态步入到弹塑性的形态,分析弹塑性的结构系统在爆破的地震环境里面的动力影响是非常有价值的,使用机制的质量方式或者是有限元的方式,获得n个自由方面结构体的动力计算方式。
某超高办公楼罕遇地震作用下动力弹塑性时程分析要点发表时间:2019-10-17T14:56:38.940Z 来源:《建筑细部》2019年第8期作者:胡凯[导读] 本办公楼项目位于安徽省合肥市滨湖新区用地面积约1.6万平方米,容积率6.0,总建筑面积约12.6万平方米。
深圳市建筑设计研究总院有限公司广东深圳 518000摘要:某超高办公楼项目为超A类高度办公楼,地下3层,地上40层,主要屋面高度179.9米,采用框架-核心筒结构体系,由于建筑平面宽度及核心筒宽度均较窄,结合建筑避难层设置钢支撑,为避免X向与Y向刚度相差过大,仅在Y向边榀框架上设置钢支撑,本项目采用PKPM系列软件中的SATWE模块,MIDAS Building软件对结构进行整体对比分析,本文简要介绍了采用MIDAS Building软件对结构罕遇地震作用下动力弹塑性时程分析。
1、工程概况本办公楼项目位于安徽省合肥市滨湖新区用地面积约1.6万平方米,容积率6.0,总建筑面积约12.6万平方米。
地上包含一栋179.9米超高层办公塔楼及7层裙房,地下设三层地下室。
项目地块占地平面尺寸约70m~105.6 x102m,地下3层,地上塔楼建筑层数40层(不包括三层构架),塔楼房屋高度179.9m,裙房7层,裙房房屋高度31.7m,地上各层层高均为4.5m,塔楼避难层层高4.4m,地下一层层高5.4m,地下二层层高4.8m,地下三层层高3.7m,主要建筑功能为办公,建筑效果图详见图1,建筑标准层平面图详见图2。
图1 图2工程抗震设防烈度为7度,为避免平面严重不规则,在塔楼与裙楼交接部位设置抗震缝,使得塔楼与裙楼脱开,本文仅针对超高塔楼。
2、结构体系本塔楼结构采用框架-核心筒结构,核心筒尺寸为36.6米x10.1米,Y向宽度较窄,为保证结构侧向刚度,结合建筑避难层位置,在12层、23层及34层避难层Y向边榀框架设置Y向腰桁架,并且为有效控制结构扭转效应,钢支撑设置在边榀框架上,支撑相关的框架梁及框架柱均设置钢骨。
动力弹塑性时程分析的方法及其应用 彪仿俊1 阎晓铭1 陈志强1 王传甲1 王庆扬1,2 张劲2 (1 深圳市电子院设计有限公司; 2 中国石油大学) 摘要:本文对现有的弹塑性分析方法进行了概述,重点介绍了动力弹塑性时程分析的理论、优点和基本方法,及该方法在东莞一实际工程中的成功应用,对于动力弹塑性时程分析方法在高层、特别是超限高层分析中的推广应用提供了有益的参考和借鉴。
关键词: 静力弹塑性分析 动力弹塑性时程分析 ABAQUS 混凝土塑性损伤模型
1. 引言 《建筑抗震设计规范》5.5.2条规定,对于特别不规则的结构、板柱-抗震墙、底部框架砖房以及高度不大于150m的高层钢结构、7度三、四类场地和8度乙类建筑中的钢筋混凝土结构和钢结构宜进行弹塑性变形验算。对于高度大于150m的钢结构、甲类建筑等结构应进行弹塑性变形验算。《高层建筑混凝土结构技术规程》5.1.13条也规定,对于B级高度的高层建筑结构和复杂高层建筑结构,如带转换层、加强层及错层、连体、多塔结构等,宜采用弹塑性静力或动力分析方法验算薄弱层弹塑性变形。 历史上的多次震害也证明了弹塑性分析的必要性:1968年日本的十橳冲地震中不少按等效静力方法进行抗震设防的多层钢筋混凝土结构遭到了严重破坏,1971年美国San Fernando地震、1975年日本大分地震也出现了类似的情况。相反,1957年墨西哥城地震中11~16层的许多建筑物遭到破坏,而首次采用了动力弹塑性分析的一座44层建筑物却安然无恙,1985年该建筑又经历了一次8.1级地震依然完好无损。 可以看出,随着建筑高度迅速增长,复杂程度日益提高,完全采用弹性理论进行结构分析计算和设计已经难以满足需要,弹塑性分析方法也就显得越来越重要。 2. 现有弹塑性分析方法综述 2.1 静力弹塑性分析 静力弹塑性分析(PUSH-OVER ANALYSIS,以下简称POA)方法也称为推覆法,它基于美国的FEMA-273抗震评估方法和ATC-40报告,是一种介于弹性分析和动力弹塑性分析之间的方法,其理论核心是“目标位移法”和“承载力谱法”。
1. 计算方法 (1) 建立结构的计算模型、构件的物理参数和恢复力模型等;
(2) 计算结构在竖向荷载作用下的内力;
(3) 建立侧向荷载作用下的荷载分布形式,将地震力等效为倒三角或与第一振型等效的水平荷载模式。在结构各层的质心处,沿高度施加以上形式的水平荷载。确定其大小的原则是:水平力产生的内力与前一步计算的内力叠加后,恰好使一个或一批杆件开裂或屈服;
(4) 对于开裂或屈服的杆件,对其刚度进行修改后,再增加一级荷载,又使得一个或一批杆件开裂或屈服;
(5) 不断重复步骤(3)、(4),直至结构达到某一目标位移或发生破坏,将此时的结构的变形和承载力与允许值比较,以此来判断是否满足“大震不倒”的要求。 2. 计算模型 POA方法中结构的弹塑性是通过定义构件力和变形的关系曲线实现。对于梁和柱,可以较为准确的模拟。但是对于剪力墙,一直没有理想的计算模型,目前可以进行POA的商用计算软件包括MIDAS/GEN等,是将剪力墙简化为两根刚体梁通过非线性弹簧(包括轴向变形、弯曲变形、剪切变形弹簧)连接的形式,如图1所示,相对于壳单元而言比较粗糙。而SAP2000、ETABS等程序目前只能对框架结构进行POA分析,对于带剪力墙的结构只能人为简化为杆系模拟。 图1 POA剪力墙计算模型 3. POA方法的优缺点 该方法的优点是: (1) 相比目前的承载力设计方法,POA可以估计结构和构件的非线性变形,比承载力方法接近实际; (2) 相对于弹塑性时程分析,POA方法的概念、所需参数和计算结果相对明确,构件设计和配筋是否合理能够直观的判断,易被工程设计人员接受; (3) 可以花费相对较少的时间和费用得到较稳定的分析结果,减少分析结果的偶然性,达到工程设计所需要的变形验算精度。 该方法的缺点是: (1) POA方法将地震的动力效应近似等效为静态荷载,只能给出结构在某种荷载作用下的性能,无法反映结构在某一特定地震作用下的表现,以及由于地震的瞬时变化在结构中产生的刚度退化和内力重分布等非线性动力反应;
(2) 计算中选取不同的水平荷载分布形式,计算结果存在一定的差异,为最终结果的判断带来了不确定性;
(3) POA方法以弹性反应谱为基础,将结构简化为等效单自由度体系。因此,它主要反映结构第一周期的性质,对于结构振动以第一振型为主、基本周期在2秒以内的结构,POA方法较为理想。当较高振型为主要时,如高层建筑和具有局部薄弱部位的建筑,POA方法并不适用;
(4) 对于工程中常见的带剪力墙结构的分析模型尚不成熟,三维构件的弹塑性性能和破坏准则、塑性铰的长度、剪切和轴向变形的非线性性能有待进一步研究完善。
正是由于存在以上的一些缺点,对于目前工程中遇到的许多超限结构分析,POA方法显得力不从心,人们逐渐开始重视动力弹塑性分析方法的理论研究和工程应用。
2.2 动力弹塑性时程分析 弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。
相比弹性分析中的振型分解反应谱法和POA方法,弹塑性时程分析方法的优点是:
(1) 由于输入的是地震波的整个过程,可以真实反映各个时刻地震作用引起的结构响应,包括变形、应力、损伤形态(开裂和破坏)等;
(2) 目前许多程序是通过定义材料的本构关系来考虑结构的弹塑性性能,因此可以准确模拟任何结构,计算模型简化较少;
(3) 该方法基于塑性区的概念,相比POA中单一的塑性铰判别法,特别是对于带剪力墙的结构,结果更为准确可靠。 该方法的缺点是: (1) 计算量大,运算时间长,由于可进行此类分析的大型通用有限元分析软件均不是面向设计的,因此软件的使用相对复杂,建模工作量大,数据前后处理繁琐,不如设计软件简单、直观; (2) 分析中需要用到大量有限元、钢筋混凝土本构关系、损伤模型等相关理论知识,对计算人员要求较高。 但是随着理论研究的不断发展,计算机软硬件水平的不断提高,动力弹塑性时程分析方法已经开始应用于少数超高层和复杂的大型结构分析中。 以下,本文将详细介绍动力弹塑性分析的原理和方法。 3 动力弹塑性分析的基本原理和方法 3.1 基本原理 多自由度体系在地面运动作用下的振动方程为: 1gMxCxKxMx 式中x、x、x分别为体系的水平位移、速度、加速度向量;gx为地面运动水平加速度,K、C、M分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。 式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。
3.2 弹塑性动力分析的基本方法 弹塑性动力分析包括以下几个步骤: (1) 建立结构的几何模型并划分网格;
(2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵;
(3) 输入适合本场地的地震波并定义模型的边界条件,开始计算;
(4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。
3.3 通用有限元软件ABAQUS在动力弹塑性计算中的应用 在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。 以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。它的主要优点有: (1) 应用范围广泛,可以使用在梁单元、壳单元和实体单元等各种单元类型中,并与钢筋单元共同工作; (2) 可以准确模拟混凝土结构在单调加载、循环加载和动力荷载下的响应,并且可以考虑应变速率的影响; (3) 引入了损伤指标的概念,可以对混凝土的弹性刚度矩阵进行折减,可以模拟混凝土的刚度随着损伤增加而降低的特点; (4) 将非关联硬化引入到了混凝土弹塑性本构模型中,可以更好的模拟混凝土的受压弹塑性行为,可以人为指定混凝土的拉伸强化曲线,从而更好的模拟开裂截面之间混凝土和钢筋共同作用的情况; (5) 可以人为的控制裂缝闭合前后的行为,更好的模拟反复荷载作用下混凝土的反应。 以单轴工况为例,在往复荷载作用下混凝土的滞回曲线如图2所示: 图2 混凝土滞回曲线 对于钢材等材料的屈服和强化, ABAQUS提供了各种屈服准则,流动法则和强化准则,并可以考虑加载时的应变速率等问题。 在ABAQUS的后处理模块中,可以给出整个模型在地震作用下每个时刻的结构变形形态、应力等相关数据,可以查看结构所有混凝土单元的损伤、混凝土中分布的钢筋应力等,了解结构的破坏情况,也可以根据结构的总侧移量和层间位移等控制指标对结构进行整体的判定分析。
4 工程应用介绍 东莞台商会馆大楼位于广东省东莞市中心区,由一栋68层超高层办公公寓楼(主楼)和一栋十层商业办公楼(副楼)组成(见图3),主楼与副楼之间采用防震缝分开。主楼总高度为289m,属于超过《高规》规定的B级高度的超限高层。该楼为钢框架混凝土核心筒结构,采用钢管混凝土柱,钢-混凝土组合楼板。结合建筑的避难层,在23、38、54及64层设置了四个加强层。加强层沿核心筒Y向剪力墙布置四道伸臂桁架,并沿外框架柱一周布置带状桁架。
图3 东莞台商会馆大楼 该结构高度较高,周期较长,受高阶振型影响明显,而且核心筒剪力墙的是否安全可靠是整个分析的重点,因此POA方法并