对数公式总结
- 格式:docx
- 大小:28.16 KB
- 文档页数:15
excel对数函数公式摘要:1.Log函数简介2.Excel中对数函数的常用公式3.对数函数在Excel中的应用实例4.对数函数的变形和扩展5.总结正文:在日常生活中,对数函数是一个非常实用的数学工具,而在电子表格软件Excel中,对数函数同样具有很高的实用价值。
本文将介绍Excel中对数函数的用法、常见公式及其应用实例,帮助读者更好地掌握这一功能。
1.Log函数简介在Excel中,Log函数表示以某个基数为底的对数。
它的语法格式为:LOG(基数,数值)。
其中,基数是对数函数的底数,数值是要计算对数的数值。
需要注意的是,Excel中的Log函数默认是以10为底的对数。
2.Excel中对数函数的常用公式在Excel中,对数函数的常用公式包括:- LOG(a, b):返回以a为底,b的对数。
- LOG(a, b)/LOG(c, d):返回以a为底,b的对数除以以c为底,d的对数。
- LOG(a^b,c):返回a的b次方以c为底的对数。
- LOG(a/(a-1),b):返回以a为底,a/(a-1)的对数。
3.对数函数在Excel中的应用实例以下是一些使用对数函数的实例:- 计算两个数的比值:=LOG(A2/A1),其中A1和A2分别为两个数值。
- 计算增长率:=LOG((结束数值/开始数值)),其中结束数值和开始数值分别为表格中的两个数值。
- 计算复合增长率:=LOG((结束数值/开始数值)^(1/年数)),其中结束数值、开始数值和年数分别为表格中的三个数值。
4.对数函数的变形和扩展对数函数还可以进行变形和扩展,例如:- LN(x):返回x的自然对数(以e为底)。
- EXP(x):返回x的指数(以e为底)。
- POWER(x, y):返回x的y次方。
5.总结Excel中的对数函数及相关公式为我们在处理数值计算、数据分析等方面提供了强大的工具。
通过熟练掌握对数函数的用法和应用实例,我们可以更加高效地完成日常工作中的数学计算任务。
高二对数函数知识点总结对数函数是数学中重要的一类函数,也是高中数学中的重要内容之一。
在高二阶段,学生们开始接触和学习对数函数,并掌握其相关知识点。
本文将对高二对数函数的知识点进行总结。
一、基本概念对数函数是指以指数为自变量,对数为函数值的函数。
对数函数常用的底数有10和e。
其中,以底数10为底的对数函数叫做常用对数函数,记作log₋₁₀x;以底数e为底的对数函数叫做自然对数函数,记作lnx。
二、对数函数的性质1. 定义域和值域:对于常用对数函数log₋₁₀x,定义域为正实数集(0,+∞),值域为实数集;对于自然对数函数lnx,定义域为正实数集(0,+∞),值域为实数集。
2. 基本性质:(1) 对于常用对数函数log₋₁₀x,log₋₁₀(1) = 0;(2) 对于自然对数函数lnx,ln(1) = 0;(3) 对于常用对数函数和自然对数函数,log₋₁₀10 = 1,ln e= 1。
3. 对数函数的图象:(1) 常用对数函数y = log₋₁₀x的图象是一条过点(1, 0)的递增曲线;(2) 自然对数函数y = lnx的图象是一条过点(1, 0)的递增曲线。
三、对数函数的运算1. 对数乘法运算法则:logₐ(xy) = logₐx + logₐy2. 对数除法运算法则:logₐ(x/y) = logₐx - logₐy3. 对数幂运算法则:logₐ(xⁿ) = n·logₐx4. 换底公式:logᵦa = logₐa / logₐb四、对数函数的常用性质1. 对数函数的奇偶性:(1) 常用对数函数log₋₁₀x是奇函数,即log₋₁₀(-x) = -log₋₁₀x;(2) 自然对数函数lnx是奇函数,即ln(-x) = -lnx。
2. 对数函数的单调性:(1) 常用对数函数log₋₁₀x在定义域内是递增的;(2) 自然对数函数lnx在定义域内是递增的。
3. 对数函数的图象变换:(1) 常用对数函数y = log₋₁₀(ax)与y = log₋₁₀x的图象相比,沿x轴方向压缩(0 < a < 1)或伸长(a > 1);(2) 自然对数函数y = ln(ax)与y = lnx的图象相比,沿x轴方向压缩(0 < a < 1)或伸长(a > 1)。
数学对数知识点总结一、对数的定义对数是指数的逆运算。
设a是一个正数且不等于1,b是一个正数,则称指数y是对数a 的b的(用符号表示为y=logab),当且仅当a^y=b。
其中,a称为对数的底数,b称为真数。
对数的定义是由指数的概念推广而来的。
指数运算是将一个数乘以自身多次,而对数运算则是找到一个数是底数的多少次方。
对数的定义可以推广到任意的底数,不仅仅限于正数,也可以是复数、矩阵等。
在实际应用中,我们通常使用对数的底数为10(常用对数)或者自然对数(底数为自然常数e)。
二、对数的性质1. 对数的基本性质对数有一系列基本性质:(1)对数的底数不等于1;(2)对数的底数不能为0或者负数;(3)对数的真数必须是正数。
2. 对数的运算性质在对数运算中,有一系列运算性质:(1)对数与幂的运算法则:loga(mn)=logam+log an;对数与商的运算法则:loga(m/n)=logam−logan。
(2)换底公式:logab=logcb/logca。
(3)对数的负数和零:loga(1)=0,loga(a)=1,loga(1/a)=-1。
(4)对数的乘方法则:logaax=x。
3. 对数函数的性质对数函数是一个重要的函数类型,它有一系列的性质:(1)对数函数的图像是一条直线,斜率为1,截距为0。
(2)对数函数是单调增函数,即x1<x2时,logax1<logax2。
4. 对数的极限性质对数函数在极限计算中有一些特殊性质:(1)lim(x→+∞) logax=+∞。
(2)lim(x→0+) logax=−∞。
5. 对数的导数性质对数函数的导数性质是:(1)(logax)′=1/(xlna)。
三、对数的应用对数在数学和其他学科的应用中有着广泛的应用。
以下是对数的一些典型应用:1. 计算问题对数在计算中有很多应用。
例如在计算机科学中,对数是一种常用的数据结构。
对数的运算性质可以帮助我们在计算中简化复杂的问题,提高计算的效率。
对数函数知识点总结对数函数是指可以用对数形式表示的函数,它的定义域为正实数集合,值域为实数集合。
对数函数具有一些特殊的性质和运算规则,在数学中得到广泛应用。
本文将对对数函数的定义、性质、运算规则以及常见的应用进行总结。
一、对数函数的定义与性质:1. 对数的定义:对于任意的正实数a和b (a ≠ 1),对数函数 y = loga(b) 表示满足 a^y = b 的唯一实数y。
2.对数函数的定义域为正实数集合,值域为实数集合。
3. 常见的对数函数是以自然常数e为底的自然对数函数 y = ln(x)和以常数10为底的常用对数函数 y = log10(x)。
4. 对数函数与指数函数是互逆变换关系,即 loga(a^x) =a^(loga(x)) = x。
5. 对数函数的图像特点:以对数函数 y = loga(x) 为例,当 a > 1 时,函数图像过点(1,0),在区间(0,+∞)上是单调递增的,当x趋于0时,y趋于负无穷;当 a < 1 时,函数图像过点(1,0),在区间(0,+∞)上是单调递减的,当x趋于0时,y趋于正无穷。
6. 对数函数具有对称性,即 loga(a/x) = -loga(x)。
二、对数函数的运算规则:1. 对数的乘法规则:loga(mn) = loga(m) + loga(n)。
2. 对数的除法规则:loga(m/n) = loga(m) - loga(n)。
3. 对数的幂次规则:loga(m^p) = p * loga(m)。
4. 对数的换底公式:loga(b) = logc(b) / logc(a),其中c为任意的正实数(c ≠ 1)。
5. 对数函数的反函数:对于对数函数 y = loga(x),其反函数为指数函数 x = a^y。
三、对数函数的应用:1.解指数方程和指数不等式:对于形如a^x=b或a^x<b的方程或不等式,可以通过取对数将其转化为对数方程或对数不等式进行求解。
对数知识点总结一、对数的基本概念定义:对数是指数函数的逆运算。
给定正实数a(a≠1)和正实数x,如果等式a^y=x成立,那么数y就是以a为底,x的对数,记作y=log_a(x)。
其中,a被称为对数的底,x被称为真数,y被称为对数。
对数的底和真数:对数的底必须为正实数且不等于1,真数必须为正实数。
对数的值:对数的值可以是实数,也可以是复数。
二、对数的性质对数函数为单调增函数。
常用的对数:以10为底的对数称为常用对数,记作lgN;以无理数e(e=2.71828…)为底的对数称为自然对数,记作lnN。
三、对数的运算规则对数的乘法规则:log_a(MN) = log_a(M) + log_a(N),其中M、N 为正实数,a为正实数且a≠1。
对数的除法规则:log_a(M/N) =log_a(M) - log_a(N),其中M、N为正实数,a为正实数且a≠1。
对数的幂次规则:log_a(M^p) = p * log_a(M),其中M为正实数,a为正实数且a≠1,p为任意实数。
对数的换底公式:log_b(M) /log_b(a) = log_a(M),其中M为正实数,a、b为正实数且a≠1,b≠1。
四、对数的应用对数在各个领域都有广泛的应用,包括统计学、金融、化学反应、数据压缩、声学和地震学、科学计量、货币贬值、人口增长、生物学、天文学、网络和社交媒体以及电路分析等。
对数可以帮助处理广泛的数据范围、计算复利、描述化学反应速率与反应物浓度的关系、压缩数据、表示声音的强度等。
以上是对数的基本知识点总结,涵盖了定义、性质、运算规则以及应用等方面。
希望这些信息能够帮助你更好地理解和掌握对数知识。
高中数学知识点全总结对数一、对数的概念与性质对数是数学中一个重要的概念,它与指数函数有着密切的关系。
对数的定义是基于指数的逆运算,其形式为:如果 \(a^x=b\),那么 \(x\) 就是以 \(a\) 为底 \(b\) 的对数,记作 \(x = \log_a b\),其中\(a\) 称为对数的底数,\(b\) 称为真数。
1.1 常用对数在实际应用中,以 10 为底的对数被称为常用对数,记作 \(\log_{10} b\),简写为 \(\log b\)。
以自然数 \(e\)(约等于 2.71828)为底的对数称为自然对数,记作 \(\ln b\)。
1.2 对数的性质对数具有以下基本性质,这些性质在解决对数方程和简化对数表达式时非常有用:- \(\log_a (xy) = \log_a x + \log_a y\)- \(\log_a (x/y) = \log_a x - \log_a y\)- \(\log_a (x^p) = p \cdot \log_a x\)- \(\log_a b = \frac{\log_c b}{\log_c a}\)(换底公式)二、对数的运算法则对数的运算法则与指数的运算法则相对应,是解决高中数学问题时不可或缺的工具。
掌握对数的运算法则,可以帮助我们更快地解决涉及乘法、除法、幂运算的对数问题。
2.1 乘法变加法当面对两个相同底数的对数相乘时,可以将乘法转换为加法:\(\log_a (x^n) = n \cdot \log_a x\)2.2 除法变减法同样地,当进行相同底数的对数相除时,可以将除法转换为减法:\(\log_a \left(\frac{x}{y}\right) = \log_a x - \log_a y\)2.3 幂运算对于对数的幂运算,可以将幂移到对数前面:\(\log_a (x^p) = p \cdot \log_a x\)三、对数的应用对数在实际问题中有广泛的应用,特别是在处理涉及增长和衰减的问题时。
二、新授内容:定义:一般地,如果 的b 次幂等于N, 就是 ,那么数 b 叫做 ()1,0≠>a a a N a b=以a 为底 N 的对数,记作 ,a 叫做对数的底数,N 叫做真数b N a =log 例如:; 1642=⇔216log 4=100102=⇔2100log 10= ; 2421=⇔212log 4=01.0102=-⇔201.0log 10-=探究:⑴负数与零没有对数(∵在指数式中 N > 0 )⑵,01log =a 1log =a a ∵对任意 且 , 都有 ∴0>a 1≠a 10=a 01log =a 同样易知: 1log =a a ⑶对数恒等式如果把 中的 b 写成 , 则有 N a b=N a log NaNa =log ⑷常用对数:我们通常将以10为底的对数叫做常用对数为了简便,N 的常用对数简记作lgNN 10log 例如:简记作lg5 ; 简记作lg3.5.5log 105.3log 10⑸自然对数:在科学技术中常常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数简记作lnN N e log 例如:简记作ln3 ; 简记作ln103log e 10log e (6)底数的取值范围;真数的取值范围),1()1,0(+∞ ,0(+∞三、讲解范例:咯log例1将下列指数式写成对数式:(课本第87页)(1)=625 (2)=(3)=27 (4) =5.734562-641a3m )(31例2 将下列对数式写成指数式:(1); (2)128=7;416log 21-=2log (3)lg0.01=-2; (4)ln10=2.303例3计算: ⑴,⑵,⑶,⑷27log 981log 43()()32log 32-+625log 345二、新授内容:积、商、幂的对数运算法则:如果 a > 0,a ≠ 1,M > 0, N > 0有:)()()(3R)M(n nlog M log 2N log M log NM log 1N log M log (MN)log a n a a a a a a a ∈=-=+=三、讲授范例:例1 计算(1)25, (2)1, (3)(×), (4)lg 5log 4.0log 2log 74525100例2 用,,表示下列各式:x a log y a log z a log log )2(;(1)log zxyaa 例3计算:(1)lg14-2lg+lg7-lg18 (2) (3)379lg 243lg 2.1lg 10lg 38lg 27lg -+四、课堂练习:1.求下列各式的值:(1)6-3 (2)lg 5+lg 22log 2log (3)3+ (4)5-155log 5log 313log 3log 2. 用lg x,lg y,lg z表示下列各式:(1) lg (xyz ); (2)lg ; (3); (4)z xy 2zxy 3lg z y x2lg 二、新授内容:1.对数换底公式:( a > 0 ,a ≠ 1 ,m > 0 ,m ≠ 1,N>0)aNN m m a log log log =证明:设 N = x , 则 = Na log xa 两边取以m 为底的对数:N a x N a m m m xm log log log log =⇒= 从而得: ∴ a N x m m log log =N a log =2.两个常用的推论:①,1log log =⋅a b b a 1log log log =⋅⋅a c b c b a② ( a, b > 0且均不为1)b mnb a na m log log =三、讲解范例:例1 已知 3 = a , 7 = b, 用 a, b 表示 562log 3log 42log 例2计算:① ②3log 12.05-2194log 2log 3log -⋅例3设 且 ),0(,,+∞∈z y x zy x 643==1︒ 求证; 2︒ 比较的大小zy x 1211=+z y x 6,4,3 例4已知x=c+b ,求xa log a log 四、课堂练习:①已知 9 = a , = 5 , 用 a, b 表示4518log b1836log ②若 3 = p , 5 = q , 求 lg 58log 3log 1.证明:bxxa ab a log 1log log += 2.已知λ====n a a a b b b n log log log 2121 求证:λ=)(log 2121n a a a b b b n 二、新授内容:1.对数函数的定义:函数叫做对数函数;它是指数函数 的反x y a log =)10(≠>a a 且xa y =)10(≠>a a 且函数对数函数 的定义域为,值域为x y a log =)10(≠>a a 且),0(+∞),(+∞-∞2.对数函数的图象由于对数函数与指数函数互为反函数,所以的图象与x y a log =xa y =x y a log =的图象关于直线对称因此,我们只要画出和的图象关于对称的x a y =x y =x a y =x y =曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质x y a log =A3.对数函数的性质三、讲解范例:例1(课本第94页)求下列函数的定义域:(1); (2); (3)2log x y a =)4(log x y a -=)9(log 2x y a -=例2求下列函数的反函数① ② 121-⎪⎭⎫⎝⎛=xy 3)21(12+=+x y )0(<x 四、练习:1.画出函数y=x 及y=的图象,并且说明这两个函数3log x 31log 的相同性质和不同性质.2.求下列函数的定义域:(1)y=(1-x) (2)y=3log x2log 1(3)y= x311log 7-x y 3log )4(=二、新授内容:例1比较下列各组数中两个值的大小:⑴; ⑵;5.8log ,4.3log 227.2log ,8.1log 3.03.0⑶)1,0(9.5log ,1.5log ≠>a a a a 例3比较下列各组中两个值的大小:⑴; ⑵6log ,7log 76.0log ,log 23π例4 求下列函数的定义域、值域:⑴ ⑵41212-=--xy )52(log 22++=x x y ⑶ ⑷)54(log 231++-=x x y )(log 2x x y a --=10(<<a 1.比较0.7与0.82log 31log 2.已知下列不等式,比较正数m 、n 的大小:(1)m <n (2) m >n 3log 3log 3.0log 3.0log (3) m <n(0<a <1) (4) m >n(a >1) a log a log a log a log 二、新授内容:例1 ⑴证明函数在上是增函数)1(log )(22+=x x f ),0(+∞⑵函数在上是减函数还是增函数?)1(log )(22+=x x f )0,(-∞例2 求函数的单调区间,并用单调定义给予证明)32(log 221--=x x y 三、练习:1.求y=(-2x)的单调递减区间3.0log 2x 2.求函数y=(-4x)的单调递增区间2log 2x 3.已知y=(2-)在[0,1]上是x 的减函数,求a 的取值范围.a log xa 练习(1)证明函数y= (+1)在(0,+∞)上是减函数;21log 2x (2)判断函数y=(+1)在(-∞,0)上是增减性.21log 2x 概念是数学理论的基础、概念性强是中学数学中函数理论的一个显著特征,集合,函数三要素(对应法则、定义域、值域);反函数;函数的单调性,最大(小)值等是函数有关概念的重要内容.本章学习的内容中数学概念较多,正确地理解数学概念在于准确把握概念的本质特征.1.映射的定义,就明确如下几点(1)映射f:A→B说的是两个集合A与B间的一种对应,两个集合是有序.(2)映射必须是“多对一”或“一对一”的对应,即允许集合A中不同元素在集合B中有相同的象,但不要求B中的元素在A中都有原象,有原象也不要求惟一,象集可以是B的真子集.(3)映射所涉及两个集合A、B(均非空),可以是数集,也可以是点集或其他类元素构成的集合.2.函数的概念在映射的基础上理解函数概念,应明确:(1)函数是一种特殊的对应,它要求是两个集合必须是非空数集;函数y=f(x)是“y是x的函数”这句话的数学表示,其中x是自变量,y是自变量x的函数,f是表示对应法则,它可以是一个解析式,也可以是表格或图象,也有的只能用文字语言叙述.(2)函数三要素是定义域,对应法则和值域,而定义域和对应法则是起决定作用的要素,因为这二者确定后,值域也就相应得到确定,因此只有定义域和对应法则二者完全相同的函数才是同一函数.(3)确定函数定义域是函数这部分所涉及的重要问题之一,应会求各种函数的定义域,若为实际问题还应注意实际问题有意义.3.函数的单调性函数的单调性是函数重要概念之一,应明确:(1)它是一个区间概念,即函数的单调性是针对定义域内的区间而言的,谈到函数的1单调性必须指明区间(可以是定义域,也可以是定义域内某个区间),例如函数y=在(-x1∞,0)上是减函数,在(0,+∞)上也是减函数,但决不能讲函数y=是减函数.x(2)用函数单调性定义来确定函数在某区间是增函数还是减函数的一般方法步骤是:取值作差化积定号.(3)由函数单调性的定义知,当自变量由小到大,函数值也由小到大,则为增函数,反之,为减函数;由函数图象的走向十分直观反映函数变化趋势,当函数的图象(曲线)从左到右是逐渐上升的,它是增函数,反之为减函数.4.反函数反函数是函数部分重要概念之一,应明确:(1)对于任意一个函数y=f(x)不一定有反函数,如果有反函数,那么原函数y=f(x)与它的反函数是互为反函数.(2)原函数的定义域是反函数的值域,原函数的值域是反函数的定义域,在求反函数时,应先确定原函数的值域.(3)求反函数的步骤是“一解”“二换”.所谓一解,即是首先由给出原函数的解析式1-1-y=f(x),反解出用y表示x的式子x=f(y);二换,即是将x=f(y)中的x,y两个字母1-互换,解到y=f(x)即为所求的反函数(即先解后换).当然,在同一直角坐标系中,函1-1-数y=f(x)与x=f(y)是表示同一图象,y=f(x)与y=f(x)的图象关于直线y=x对称.(4)一般的偶函数不存在反函数,奇函数不一定存在反函数.(5)原函数与其反函数在其对称区间上的单调性是一致的.5.方法总结⑴.相同函数的判定方法:定义域相同且对应法则相同.⑵.函数表达式的求法:①定义法;②换元法;③待定系数法.⑶.反函数的求法:递解x,互换x、y,注明反函数的定义域(即原函数的值域).⑷.函数的定义域的求法:布列使函数有意义的自变量的不等关系式,求解即可求得函数的定义域.常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义等.⑸.函数值域的求法:①配方法(二次或四次);②判别式法;③反函数法;④换元法;⑤不等式法;⑥函数的单调性法.⑹.单调性的判定法:①设x ,x 是所研究区间内任两个自变量,且x <x ;②判定1212f(x )与f(x )的大小;③作差比较或作商比较.12⑺.奇偶性的判定法:首先考察定义域是否关于原点对称,再计算f(-x)与f(x)之间的关系:①f(-x)=f(x)为偶函数;f(-x)=-f(x)为奇函数;②f(-x)-f(x)=0为偶;f(x)+f(-x)=0为奇;③f(-x)/f(x)=1是偶;f(x)÷f(-x)=-1为奇函数.⑻.图象的作法与平移:①据函数表达式,列表、描点、连光滑曲线;②利用熟知函数的图象的平移、翻转、伸缩变换;③利用反函数的图象与对称性描绘函数图象.⑼.函数的应用举例(实际问题的解法).解决应用问题的一般程序是:①审题:弄清题意、分清条件和结论、理顺数量关系;②建模:将文字语言转化成数学语言,利用相应的数学知识模型.③求模:求解数学模型,得到数学结论.④还原:将用数学方法得到的结论,还原为实际问题的意义.四、二次函数的基础知识及运用:二次函数虽然是初中内容,但由于应用广泛性,且是解决许多数学问题的基础,在高考中属于重点考查的内容.在高考试题中常有直接考查二次函数的题目,而且还有一定的难度.题型有选择题、填空题,也有解答题,近几年解答题常围绕二次函数并结合二次方程、二次不等式(简称:“三个二”)来设置,而且往往是压轴题,因此,作为重点知识,有必要再次研究二次函数,以掌握并加深对这一部分知识理解,对于二次函数的定义、图象和性质及二次函数的最值,在理解的基础上,并加强记忆和运用.高考对二次函数的考查主要从以下几方面:1.二次函数解析式的三种表示方法:(1)y=ax +bx+c(a≠0)叫做标准式;2(2)y=a(x+)+,叫做顶点式;ab 22a b ac 442-(3)y=a(x-x )(x-x ),叫做二根式;(这里指的是:当Δ>0时,即抛物线与x 轴有12两个交点(x ,0)和(x ,0)时的解析式形式).12注意:以上三种形式突出了解析式的特点,运用时要有选择性.2.二次函数的定义、二次函数y=ax +bx+c(a≠0)的图象与性质:2(1)顶点是(-,),对称轴是x=-.a b 2a b ac 442-ab2(2)当a >0时图象开口方向向上,分别在单调区间(-∞,-上是减函数;在[-ab 2],+∞上是增函数,其最小值为ymin=.ab 2)a b ac 442-当a <0时,图象开口方向向下,分别在单调区间(-∞,-上是增函数;在[-ab 2],+∞)上是减函数,其最大值为ymax=.ab 2a b ac 442-(3)抛物线与x 轴的关系:(即ax +bx+c=0(a≠0)的解).2ⅰ.当Δ>0时,抛物线与x 轴有两个交点(x ,0)和(x ,0)其中横坐标为12x 、 =;12aacb b 242-±-ⅱ.当Δ=0时,抛物线与x 轴切于一点,坐标为(-,0);ab2ⅲ.当Δ<0时,抛物线与x 轴没有交点.(4)函数值的正负号当Δ<0时,x∈R 时,y 与a 同号.当Δ=0时,x∈R 且x≠-时,y 与a 同号.ab2当Δ>0时,设x <x ,则(ⅰ)当x <x 或x >x 时,y 与a 同号;1212(ⅱ)当x <x <x 时,y 与a 异号.12以上涉及的是二次函数的定义、图象和性质等基础知识,特别是对函数值的符号,奇偶性,在指定区间上的最值等进行了引伸,应结合图象理解和运用.3.二次函数在指定区间上的最值;4.运用二次函数的知识解决某些数学问题与实际问题.五、指数函数与对数函数的图像和性质:指数函数的图象和性质)10(≠>=a a a y x且对数函数的性质:)10(log ≠>=a a x y a 且六、把握数形结合的特征和方法本章函数中,重点讨论的指数函数、对数函数,都是以定义、性质、图象作为主要的内容,性质和图象相互联系、相互转化,有关函数性质的很多结论是在观察图象的基础上,通过概括,归纳得出的,并借助于函数图象所具有的直观性强的优点形成记忆,在分析和解决与函数有关的问题中,也常常是函数图象的几何特征与函数性质的数量特征紧密结合,相互为用.函数图象可直观、生动地反映函数的某些性质,因此在研究函数性质时,应密切结合函数图象的特征,对应研究函数的性质.七、认识函数思想的实质,强化应用意识函数是用以描述客观世界中量的存在关系的数学概念,函数思想的实质是用联系与变化的观点提出数学对象,抽象数量特征,建立函数关系、解决各种问题.纵观近几年的高考试题,考查函数的思想方法已放在一个突出的位置上,特别是近三年加大了应用题的考查力度,选用的题目都要应用函数的思想、知识、方法才能解答的,因此在函数的学习中,一定要认识函数思想的实质,一定要强化应用意识.八、讲解范例:例1已知函数的定义域是[0,1],则函数的定义域是________.)(x f )(2x f 例2已知函数= (-1≤x≤0),则=________.)(x f 21x -)5.0(1-f九、课堂练习:1.已知映射f:M→N,使集合N 中的元素y=x 与集合M 中的元素x 对应,要使映射2f:M→N 是一一映射,那么M ,N 可以是( )A.M=R ,N=RB.M=R,N={y|y≥0}C.M={x|x≥0},N=RD.M={x|x≥0},N={y|y≥0}2.求下列函数的定义域:(1)y=; (2)y=;34+x 21++x x (3)y=; (4)y=431++-++x x x 2561x x --3.设f(x)=,求证(1)f(-x)=f(x);(2)f()=-f(x).2211x x -+x 11.指出下列函数的单调区间,并说明在单调区间上函数是增函数还是减函数:(1)f(x)=-x +x-6; (2)f(x)=-;2x (3)f(x)=; (4)f(x)=-x +122x -3二、例题分析:例1若函数f(x)=x +bx+c 对任意实数x 都有f(2+x)=f(2-x),那么( )2A.f(2)<f(1)<f(4)B.f(1)<f(2)<f(4)C.f(2)<f(4)<f(1)D.f(4)<f(2)<f(1)(1)若对任意实数x,都有f(a+x)=f(a-x)成立,则x=a 是函数f(x)的对称轴(2)若对任意实数x,都有f(a+x)=f(b-x)成立,则x=是f(x)的对称轴.2ba +例2求f(x)=x -2ax+2在[2,4]上的最大值和最小值.2例3已知f(x)=|lgx|,且0<a <b <c,若 f(b)<f(a)<f(c),则下列一定成立的是()A.a <1,b <1,且c >1B.0<a <1,b >1且c >1C.b >1,c >1D. c >1且<a <1,a <b < c 1a1例4函数f(x)=x -bx+c ,满足对于任何x∈R 都有f(1+x)=f(1-x),且f(0)=3,则f(b )与2xf(c )的大小关系是( )xA.f(b )≤f(c )B.f(b )≥f(c )x x x xC.f(b )<f(c )D.f(b )>f(c )x x x x三、课堂练习:已知f(x)=x -4x-4,x∈[t,t+1](t∈R),求f(x)的最小值φ(t )的解析式.2。
对数相关知识点总结一、对数的概念1. 对数的定义对数是一种数学运算,用来表示一个数在指数运算中的幂。
例如,如果a^x = b,那么x称为以a为底b的对数,记作x= log(a)b。
2. 对数的性质(1) log(a)1 = 0(2) log(a)a = 1(3) log(b)a = 1/log(a)b(4) log(a)b + log(a)c = log(a)(b*c)(5) log(a)b - log(a)c = log(a)(b/c)3. 对数的底常见的对数底有自然对数底e和常用对数底10。
自然对数底e约等于2.71828,常用对数底10。
二、对数的运用1. 对数的应用对数在数学中有着广泛的应用,尤其在指数函数、微积分、概率统计等领域中有着重要作用。
2. 对数方程对数方程是指含有对数的方程,例如log(x+2) = 2。
对数方程的解法通常是先化为指数方程,然后解出方程的根。
3. 对数不等式对数不等式是指含有对数的不等式,例如log(x+2) < 2。
对数不等式的解法通常是先将其转化为指数形式,然后求出解。
4. 对数函数对数函数是指以对数为自变量的函数,例如y = log(x)。
对数函数的图像通常为单调增加的曲线,与指数函数互为反函数。
三、常用对数和自然对数1. 常用对数对数底为10的对数称为常用对数,通常用log表示,例如log(x)。
常用对数在计算中有着广泛的应用。
2. 自然对数对数底为e的对数称为自然对数,通常用ln表示,例如ln(x)。
自然对数在微积分、概率统计等领域中有着重要作用。
3. 常用对数和自然对数的换底公式常用对数和自然对数的换底公式是log(a)b = ln(b)/ln(a)。
利用换底公式可以方便地转化对数的底。
四、对数的运算1. 对数的加减法对数的加减法规则是log(a)b + log(a)c = log(a)(b*c)、log(a)b - log(a)c = log(a)(b/c)。
对数及其知识点总结一、定义和性质1. 定义对数是一个数学函数。
正式定义为:如果a > 0且a≠1,且x>0,则以a为底x的对数记作log_a(x)=y,其中y表示底为a的x的对数。
换句话说,log_a(x)表示a的y次幂等于x,其中a称为底数,x称为真数,y称为对数。
2. 性质(1)对数函数的定义域为正实数。
(2)对数函数的值域为实数。
(3)对数函数在a>1时,在a=1时,及a<1时对数的性质是不同的。
(4)对数函数y=log_a(x)的图象是一条单调递增的曲线,穿过第一象限。
当x=a时,y=1。
(5)对数函数的性质:log_ab=log_ax/log_ab=log_a(x)×log_a(b)。
二、对数的计算1. 对数的运算法则(1)加法法则:log_a(mn)=log_am+log_an。
(2)减法法则:log_a(m/n)=log_am- log_an。
2. 对数的换底公式对数的换底公式是指,当我们计算不同底数的对数时,可以使用换底公式来进行计算。
换底公式是log_ab= log_cb/log_ca。
3. 对数的计算方法对数的计算方法可以通过以下步骤进行:(1)确定底数a和真数x;(2)使用对数的定义,代入相应的值进行计算;(3)根据需要,使用对数的运算法则和换底公式进行计算。
(4)对于特殊情况,如对数为整数或分数时,需要进行额外的计算。
4. 对数的应用对数在实际生活中有着广泛的应用。
例如,在科学计算、工程技术、金融业务等领域都有着重要的作用。
对数常常用来表示某一数量级的大小,例如声音的强度、地震的强度、化学溶液的浓度等。
三、常用对数及自然对数1. 常用对数常用对数是指以10为底的对数。
在常用对数中,log_10(10)=1,log_10(100)=2,log_10(1000)=3,依此类推。
常用对数可以简化对数的计算,常用对数的应用也十分广泛。
2. 自然对数自然对数是以常数e≈2.71828为底的对数。
对数归纳总结对数是数学中的一个重要概念,广泛应用于各个领域。
在数学中,对数是指一个数以另一个数为底的幂。
对数归纳是一种数学证明方法,它通过对一系列数值进行观察和总结,找到其中的规律并得出结论。
本文将对对数归纳进行详细介绍,并分析其在实际问题中的应用。
一、对数的基本概念在介绍对数归纳之前,我们先来简要回顾一下对数的基本概念。
对数是指一个数以另一个数为底的幂,记作logₐb,其中a为底数,b为真数。
对数的定义可以表达为:b = a^x <-> x = logₐb其中,a为底数,b为真数,x为对数。
对数具有一些重要的性质,例如:1. 对数的底数必须为正数且不等于1;2. 对数的真数必须为正数;3. 对数的结果可以是负数、零或正数,具体取决于真数和底数的大小关系;4. 底数为10的对数称为常用对数,常用对数的符号通常省略底数不写,例如log 100 = 2表示以10为底的100的对数为2;5. 底数为自然常数e的对数称为自然对数,自然对数的符号通常记作ln,例如ln e = 1表示以e为底的e的对数为1。
二、对数归纳的原理对数归纳是一种数学归纳法的特殊形式,它利用对数的性质进行推导和证明。
对数归纳的原理可以总结如下:1. 设定初始条件,即基本情况。
对数归纳的起点需要给出一个初始值,通常是对数公式中的最小值。
2. 假设命题对某个数值成立,即假设对数公式在某个数值上的等式成立。
3. 通过数学推导和化简,利用对数的性质将命题推广至下一个数值。
4. 重复步骤2和步骤3,直到得到推论对所有数值成立的结论。
三、对数归纳的实际应用对数归纳方法在实际问题中有广泛的应用,包括但不限于以下几个方面:1. 数学证明:对数归纳是一种常用的数学证明方法,特别适用于需要推导一般情况下的结论的问题。
通过对基本情况的验证和对数公式的推广,可以得到普遍成立的数学结论。
2. 算法复杂度分析:对数归纳方法可以用来分析算法的时间复杂度和空间复杂度。
对数公式总结 1对数的概念 如果a(a>0,且a≠1)的b次幂等于N,即ab=N,那么数b叫做以a为底N的对数,记作:logaN=b,其中a叫做对数的底数,N叫做真数. 由定义知: ①负数和零没有对数; ②a>0且a≠1,N>0; ③loga1=0,logaa=1,alogaN=N,logaab=b. 特别地,以10为底的对数叫常用对数,记作log10N,简记为lgN;以无理数e(e=2.718 28…)为底的对数叫做自然对数,记作logeN,简记为lnN. 2对数式与指数式的互化 式子名称abN指数式ab=N(底数)(指数)(幂值)对数式logaN=b(底数)(对数)(真数) 3对数的运算性质 如果a>0,a≠1,M>0,N>0,那么 (1)loga(MN)=logaM+logaN. (2)logaMN=logaM-logaN. (3)logaMn=nlogaM (n∈R). 问:①公式中为什么要加条件a>0,a≠1,M>0,N>0? ②logaan=? (n∈R) ③对数式与指数式的比较.(学生填表) 式子ab=NlogaN=b名称a—幂的底数 b— N—a—对数的底数 b— N—运 算 性 质am?an=am+n am÷an= (am)n= (a>0且a≠1,n∈R)logaMN=logaM+logaN logaMN= logaMn=(n∈R) (a>0,a≠1,M>0,N>0) 难点疑点突破 对数定义中,为什么要规定a>0,,且a≠1? 理由如下: ①若a<0,则N的某些值不存在,例如log-28 ②若a=0,则N≠0时b不存在;N=0时b不惟一,可以为任何正数 ③若a=1时,则N≠1时b不存在;N=1时b也不惟一,可以为任何正数 为了避免上述各种情况,所以规定对数式的底是一个不等于1的正数 解题方法技巧 1 (1)将下列指数式写成对数式: ①54=625;②2-6=164;③3x=27;④13m=5 73. (2)将下列对数式写成指数式: ①log1216=-4;②log2128=7; ③log327=x;④lg0.01=-2; ⑤ln10=2.303;⑥lgπ=k. 解析由对数定义:ab=N logaN=b. 解答(1)①log5625=4.②log2164=-6. ③log327=x.④log135.73=m. 解题方法 指数式与对数式的互化,必须并且只需紧紧抓住对数的定义:ab=N logaN=b.(2)①12-4=16. ②27=128.③3x=27. ④10-2=0.01.⑤e2.303=10.⑥10k=π. 2 根据下列条件分别求x的值: (1)log8x=-23;(2)log2(log5x)=0; (3)logx27=31+log32;(4)logx(2+3)=-1. 解析(1)对数式化指数式,得:x=8-23=? (2)log5x=20=1. x=? (3)31+log32=3×3log32=?27=x? (4)2+3=x-1=1x. x=? 解答(1)x=8-23=(23)-23=2-2=14. (2)log5x=20=1,x=51=5. (3)logx27=3×3log32=3×2=6, ∴x6=27=33=(3)6,故x=3. (4)2+3=x-1=1x,∴x=12+3=2-3. 解题技巧 ①转化的思想是一个重要的数学思想,对数式与指数式有着密切的关系,在解决有关问题时,经常进行着两种形式的相互转化. ②熟练应用公式:loga1=0,logaa=1,alogaM=M,logaan=n.3 已知logax=4,logay=5,求A=〔x?3x-1y2〕12的值. 解析思路一,已知对数式的值,要求指数式的值,可将对数式转化为指数式,再利用指数式的运算求值; 思路二,对指数式的两边取同底的对数,再利用对数式的运算求值 解答解法一∵logax=4,logay=5, ∴x=a4,y=a5, ∴A=x512y-13=(a4)512(a5)-13=a53?a-53=a0=1. 解法二对所求指数式两边取以a为底的对数得 logaA=loga(x512y-13) =512logax-13logay=512×4-13×5=0, ∴A=1. 解题技巧 有时对数运算比指数运算来得方便,因此以指数形式出现的式子,可利用取对数的方法,把指数运算转化为对数运算.4 设x,y均为正数,且x?y1+lgx=1(x≠110),求lg(xy)的取值范围. 解析一个等式中含两个变量x、y,对每一个确定的正数x由等式都有惟一的正数y与之对应,故y是x的函数,从而lg(xy)也是x的函数.因此求lg(xy)的取值范围实际上是一个求函数值域的问题,怎样才能建立这种函数关系呢?能否对已知的等式两边也取对数? 解答∵x>0,y>0,x?y1+lgx=1, 两边取对数得:lgx+(1+lgx)lgy=0. 即lgy=-lgx1+lgx(x≠110,lgx≠-1). 令lgx=t, 则lgy=-t1+t(t≠-1). ∴lg(xy)=lgx+lgy=t-t1+t=t21+t. 解题规律 对一个等式两边取对数是解决含有指数式和对数式问题的常用的有效方法;而变量替换可把较复杂问题转化为较简单的问题.设S=t21+t,得关于t的方程t2-St-S=0有实数解. ∴Δ=S2+4S≥0,解得S≤-4或S≥0, 故lg(xy)的取值范围是(-∞,-4〕∪〔0,+∞). 5 求值: (1)lg25+lg2?lg50+(lg2)2; (2)2log32-log3329+log38-52log53; (3)设lga+lgb=2lg(a-2b),求log2a-log2b的值; (4)求7lg20?12lg0.7的值. 解析(1)25=52,50=5×10.都化成lg2与lg5的关系式. (2)转化为log32的关系式. (3)所求log2a-log2b=log2ab由已知等式给出了a,b之间的关系,能否从中求出ab的值呢? (4)7lg20?12lg0.7是两个指数幂的乘积,且指数含常用对数, 设x=7lg20?12lg0.7能否先求出lgx,再求x? 解答(1)原式=lg52+lg2?lg(10×5)+(lg2)2 =2lg5+lg2?(1+lg5)+(lg2)2 =lg5?(2+lg2)+lg2+(lg2)2 =lg102?(2+lg2)+lg2+(lg2)2 =(1-lg2)(2+lg2)+lg2+(lg2)2 =2-lg2-(lg2)2+lg2+(lg2)2=2. (2)原式=2log32-(log325-log332)+log323-5log59 =2log32-5log32+2+3log32-9 =-7. (3)由已知lgab=lg(a-2b)2 (a-2b>0), ∴ab=(a-2b)2, 即a2-5ab+4b2=0. ∴ab=1或ab=4,这里a>0,b>0. 若ab=1,则a-2b<0, ∴ab=1(舍去). ∴ab=4, ∴log2a-log2b=log2ab=log24=2. (4)设x=7lg20?12lg0.7,则 lgx=lg20×lg7+lg0.7×lg12 =(1+lg2)?lg7+(lg7-1)?(-lg2) =lg7+lg2=14, ∴x=14, 故原式=14. 解题规律 ①对数的运算法则是进行同底的对数运算的依据,对数的运算法则是等式两边都有意义的恒等式,运用法则进行对数变形时要注意对数的真数的范围是否改变,为防止增根所以需要检验,如(3). ②对一个式子先求它的常用对数值,再求原式的值是代数运算中常用的方法,如(4).6 证明(1)logaN=logcNlogca(a>0,a≠1,c>0,c≠1,N>0); (2)logab?logbc=logac; (3)logab=1logba(b>0,b≠1); (4)loganbm=mnlogab. 解析(1)设logaN=b得ab=N,两边取以c为底的对数求出b就可能得证. (2)中logbc能否也换成以a为底的对数. (3)应用(1)将logab换成以b为底的对数. (4)应用(1)将loganbm换成以a为底的对数. 解答(1)设logaN=b,则ab=N,两边取以c为底的对数得:b?logca=logcN, ∴b=logcNlogca.∴logaN=logcNlogca. (2)由(1)logbc=logaclogab. 所以logab?logbc=logab?logaclogab=logac. (3)由(1)logab=logbblogba=1logba. 解题规律 (1)中logaN=logcNlogca叫做对数换底公式,(2)(3)(4)是(1)的推论,它们在对数运算和含对数的等式证明中经常应用.对于对数的换底公式,既要善于正用,也要善于逆用.(4)由 (1)loganbm=logabmlogaan=mlogabnlogaa=mnlogab. 7 已知log67=a,3b=4,求log127. 解析依题意a,b是常数,求log127就是要用a,b表示log127,又3b=4即log34=b,能否将log127转化为以6为底的对数,进而转化为以3为底呢? 解答已知log67=a,log34=b, ∴log127=log67log612=a1+log62. 又log62=log32log36=log321+log32, 由log34=b,得2log32=b. ∴log32=b2,∴log62=b21+b2=b2+b.