倒立摆在matlab的simulink库下的仿真 (1)
- 格式:doc
- 大小:252.39 KB
- 文档页数:8
基于MATLAB的一级倒立摆控制系统仿真与设计一级倒立摆是一个经典的控制系统问题,它由一根杆子和一个在杆子顶端平衡的质点组成。
杆子通过一个固定的轴连接到一个电机,电机可以通过施加力来控制杆子的平衡。
设计一个控制系统来实现对一级倒立摆的稳定控制是一个重要的研究课题。
在这篇文章中,我们将介绍基于MATLAB的一级倒立摆控制系统仿真与设计。
我们将首先介绍一级倒立摆的数学模型,并根据模型设计一个反馈控制器。
然后,我们将使用MATLAB来进行仿真,评估控制系统的性能。
一级倒立摆的数学模型可以通过牛顿第二定律得到。
假设杆子是一个质点,其运动方程可以表示为:ml²θ''(t) = mgl sin(θ(t)) - T(t)其中m是质点的质量,l是杆子的长度,g是重力加速度,θ(t)是杆子相对于竖直方向的偏角,T(t)是电机施加的瞬时力。
为了设计一个稳定的控制系统,我们可以使用PID控制器,其控制输入可以表示为:T(t) = Kp(θd(t) - θ(t)) + Ki∫(θd(t) - θ(t))dt +Kd(θd'(t) - θ'(t))其中Kp,Ki和Kd分别是比例,积分和微分增益,θd(t)是我们期望的杆子偏角,θ'(t)是杆子的角速度。
在MATLAB中,我们可以使用Simulink来建模和仿真一级倒立摆的控制系统。
我们可以进行以下步骤来进行仿真:1. 建立一级倒立摆的模型。
在Simulink中,我们可以使用Mass-Spring-Damper模块来建立质点的运动模型,并使用Rotational Motion 库提供的Block来建立杆子的旋转模型。
2. 设计反馈控制器。
我们可以使用PID Controller模块来设计PID 控制器,并调整增益参数以实现系统的稳定性和性能要求。
3. 对控制系统进行仿真。
通过在MATLAB中运行Simulink模型,我们可以观察控制系统的响应,并评估系统的稳定性和性能。
直线二级倒立摆建模与仿真1、直线二级倒立摆建模为进行性线控制器的设计,首先需要对被控制系统进行建模.二级倒立摆系统数学模型的建立基于以下假设:1)每一级摆杆都是刚体;2)在实验过程中同步带长保持不变;3)驱动力与放大器输入成正比,没有延迟直接拖加于小车;4)在实验过程中动摩擦、库仑摩擦等所有摩擦力足够小,可以忽略不计。
图1 二级摆物理模型二级倒立摆的参数定义如下:M 小车质量m1摆杆1的质量m2摆杆2的质量m3质量块的质量l1摆杆1到转动中心的距离l2摆杆2到转动中心的距离θ1摆杆1到转动与竖直方向的夹角θ2摆杆2到转动与竖直方向的夹角F 作用在系统上的外力利用拉格朗日方程推导运动学方程拉格朗日方程为:其中L 为拉格朗日算子,q 为系统的广义坐标,T 为系统的动能,V 为系统的势能其中错误!未找到引用源。
,错误!未找到引用源。
为系统在第i 个广义坐标上的外力,在二级倒立摆系统中,系统有三个广义坐标,分别为x,θ1,θ2,θ3。
首先计算系统的动能:其中错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
,错误!未找到引用源。
分别为小车的动能,摆杆1的动能,摆杆2的动能和质量块的动能。
小车的动能:错误!未找到引用源。
,其中错误!未找到引用源。
,错误!未找到引用源。
分别为摆杆1的平动动能和转动动能。
错误!未找到引用源。
,其中错误!未找到引用源。
,错误!未找到引用源。
分别为摆杆2的平动动能和转动动能。
对于系统,设以下变量: xpend1摆杆1质心横坐标 xpend2摆杆2质心横坐标 yangle1摆杆1质心纵坐标 yangle2摆杆2质心纵坐标 xmass 质量块质心横坐标 ymass 质量块质心纵坐标 又有:(,)(,)(,)L q q T q q V q q =-则有:系统总动能:系统总势能:则有:求解状态方程:可解得:使用MATLAB对得到的系统进行阶跃响应分析,执行命令:A=[0 0 0 1 0 0;0 0 0 0 1 0;0 0 0 0 1 01;0 0 0 0 0 0;0 86.69 -21.62 0 0 0;0 -40.31 39.45 0 0 0];B=[0;0;0;1;6.64;-0.808];C=[1 0 0 0 0 0;0 1 0 0 0 0;0 0 1 0 0 0];D=[0;0;0];sys=ss(A,B,C,D);t=0:0.001:5;step(sys,t)求取系统的单位阶跃响应曲线:图2 二级摆阶跃响应曲线由图示可知系统小车位置、摆杆1角度和摆杆2角度均发散,需要设计控制器以满足期望要求。
成都理工大学工程技术学院基于一阶倒立摆的matlab仿真实验实验人员: --------------学号:-----------------实验日期:20150618摘要本文主要研究的是一级倒立摆的控制问题,并对其参数进行了优化。
倒立摆是典型的快速、多变量、非线性、强耦合、自然不稳定系统。
由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。
本文首先简单的介绍了一下倒立摆以及倒立摆的控制方法,并对其参数优化算法做了分类介绍。
然后,介绍了本文选用的优化参数的状态空间极点的配置和PID控制。
接着建立了一级倒立摆的数学模型,并求出其状态空间描述。
本文着重讲述的是利用状态空间中极点配置实现方法。
最后,用Simulink对系统进行了仿真,得出在实际控制中是两种比较好的控制方法。
目录1 引言 (4)1.1 倒立摆介绍以及应用 (4)1.2 倒立摆的控制方法 (5)2单级倒立摆数学模型的建立 (6)2.1传递函数 (8)2.2状态空间方程 (9)3系统Matlab 仿真和开环响应 (10)4 系统设计 (15)4.1极点配置与控制器的设计 (15)4.2系统仿真: (16)4.3仿真结果 (17)4.4根据传递函数设计第二种控制方法-----PID串级控制 (18)5结论 (19)1 引言1.1 倒立摆介绍以及应用倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
通过对它的研究不仅可以解决控制中的理论和技术实现问题,还能将控制理论涉及的主要基础学科:力学,数学和计算机科学进行有机的综合应用。
其控制方法和思路无论对理论或实际的过程控制都有很好的启迪,是检验各种控制理论和方法的有效的“试金石”。
题目一:考虑如以下图的倒立摆系统。
图中,倒立摆安装在一个小车上。
这里仅考虑倒立摆在图面运动的二维问题。
倒立摆系统的参数包括:摆杆的质量〔摆杆的质量在摆杆中心〕、摆杆的长度、小车的质量、摆杆惯量等。
图倒立摆系统设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量 %≤10%,调节时间ts≤4s,使摆返回至垂直位置,并使小车返回至参考位置(x=0)。
要求:1、建立倒立摆系统的数学模型2、分析系统的性能指标——能控性、能观性、稳定性3、设计状态反响阵,使闭环极点能够到达期望的极点,这里所说的期望的极点确定是把系统设计成具有两个主导极点,两个非主导极点,这样就可以用二阶系统的分析方法进展参数确实定4、用MATLAB 进展程序设计,得到设计后系统的脉冲响应、阶跃响应,绘出相应状态变量的时间响应图。
解:1 建立一级倒立摆系统的数学模型1.1 系统的物理模型如图1所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为u。
这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3外力的共同作用。
图1 一级倒立摆物理模型1.2 建立系统状态空间表达式为简单起见,本文首先假设:(1)摆杆为刚体 ;(2)忽略摆杆与支点之间的摩擦;( 3) 忽略小车与导轨之间的摩擦。
在如图一所示的坐标下,小车的水平位置是y,摆杆的偏离位置的角度是θ,摆球的水平位置为y+lsin θ。
这样,作为整个倒立摆系统来说,在说平方方向上,根据牛顿第二定律,得到u l y dtd m dt d M =++)sin (y 2222θ 〔1〕对于摆球来说,在垂直于摆杆方向,由牛顿第二运动定律,得到θθsin )sin y (m 22mg l dtd =+ 〔2〕 方程(1),(2)是非线性方程,由于控制的目的是保持倒立摆直立,在施加适宜的外力条件下,假定θ很小,接近于零是合理的。
倒立摆控制系统的Simulink 仿真本文针对一个倒立摆系统进行了系统的建模、求解、控制系统的设计,并且使用Simulink 对控制算法进行了仿真。
一、模型的描述倒立摆系统如图(1),设有一个倒立摆装在只能沿x 轴方向移动的小车上,图中1m 为小车的质量,2m 为摆球的质量,g 为重力加速度,l 为摆长,J 为摆的转动惯量。
当小车受到外力()f t 的作用时,小车产生位移()x t ,且摆产生角位移()t θ。
二、模型的建立下面针对该倒立摆系统进行建模求解。
当小车1m 在外力作用下产生位移()x t 时,摆球受力情况如图(2)所示。
图中2m g 为摆球2m 所受重力,222()d x t m dt 为x 方向的惯性力,2sin ()m g t θ为垂直于摆杆方向的重力分量。
在x 方向上,小车的惯性力矩为212()d x t m dt ,摆球产生的位移量为()sin ()x t l t θ+;在垂直于摆杆的方向上,摆球的转动惯性力为22()d t J dt θ;222()d x t m dt的分力为222()cos ()d x t m t dt θ。
图(1)装有倒立摆的小车 图(2)倒立摆受力图根据牛顿运动定律,按照力的平衡原理,可以分别列出该系统在x 方向上和垂直于摆杆方向上的的运动方程222122222()()[sin ()]()d x t d x t d l t m m m f t dt dt dt θ++=(1) 222222()()cos ()sin ()d t d x t J m l t m lg t dt dtθθθ+= (2) 三、模型的求解3.1微分方程组的求解联立式(1)、(2),经过方程组的恒等变形得2222222122222()()2[()cos ()]sin 2()2sin ()()2()d x t d t m m J m l t m l g t Jm l t dt dtJf t θθθθ+-=-++ (3) 2222222212221222()()[cos ()()]sin ()cos ()()()sin ()()d t d t m l t m m J m l t t dt dtm m m lg t m lf t θθθθθθ-+=-++ (4) 由式(3)、(4)令''121343()(),(),()(),()()x t t x x t x t x t x t x t θ====,可建立如下的微分方程组进行求解'12'2222221222222122'34'222422222122()()1()()(sin ()cos ()()()sin ()cos ()()())()()1()()(sin 2()2sin ()()2())2[()cos ()]x t x t d t x t x m l t t m m m lg t m l t m m J dt m lf t x t x t d t x t m l g t Jm l t Jf t m m J m l t dt θθθθθθθθθ⎧=⎪⎪=-+⎪-+⎪+⎨==-+++-⎪⎪⎪⎪⎩3.2控制系统的分析与设计在该模型中,对该倒立摆系统实施角度环、速度换的控制,并假设小车在运行过程中受到空气阻力,阻力大小与小车的速度成正比。
倒立摆系统的建模及MATLAB仿真通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。
之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。
倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。
倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。
因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。
本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。
1 一级倒立摆系统的建模1. 1 系统的物理模型如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。
这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。
图1 一级倒立摆物理模型1. 2 系统的数学模型在系统数学模型中,本文首先假设:(1) 摆杆为刚体。
(2)忽略摆杆与支点之间的摩擦。
(3)忽略小车与导轨之间的摩擦。
然后根据牛顿第二运动定律,求得系统的运动方程为:方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。
则sinθ≈θ,co sθ≈1 。
在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:1. 3 系统的状态方程以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。
即令:则一级倒立摆系统的状态方程为:2 控制器设计及MATLAB 仿真2. 1 极点配置状态反馈的基本原理图2 状态反馈闭环控制系统极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。
Recurdyn/control例題:倒單擺控制分析-使用matlab/simulink(part-1)1.選取inverse_pendulum_i.rdyn項目,按開啟按鈕2.選取Axial項目,產生Axial Force(軸向力)在路面(Base)和台車(Car)之間3.選取Body,Body,Point,Point項目,Body選地面、Body選車子、Point :2000,-100,0、Point : -500,-100,0(注意:軸向力方向(向右為正),因為建立軸向力時,方向是由左到右)4.選取Plant Input項目,按一下Add按鈕5.axial_force是系統的輸入廠(由控制迴路所決定),按一下確定按鈕6.選取Plant Output項目,按一下Add按鈕7.按兩下Add按鈕8.選取項目9. base.Marker1和bird.Marker1項目10.選取文字方塊,az(2,1):單擺的角度值,是系統的輸出廠(由RecurDyn計算),name:angle,按一下OK按鈕11.Plant Output List對話方塊開啟了,按一下確定按鈕12.選取axial1項目13.按一下EL按鈕14. 開啟Expression List對話方塊,按一下Create按鈕15. 開啟Expression對話方塊,按一下Add按鈕16. 軸向力內存函數是:pin(1);pin就是:Plant of Input,(1):就是axial_force。
選取文字方塊:pin(1)。
按一下OK按鈕17. 按一下確定按鈕18. 按一下確定按鈕19. 選取Cosim項目20. 選取Simulink項目,由Simulink啟動RecurDyn21. 輸出matlab*.m檔案,選取m-file to create plant block文字方塊,按delete鍵,輸入inverse_pendulum,按一下Export按鈕22. 按一下儲存(s)按鈕23. 按一下套用(A)按鈕,再按一下取消按鈕24. 記得存檔,關閉RecurDyn軟體------------------------------------------------------------------------------------------------------- Recurdyn/control例題:倒單擺控制分析-使用matlab/simulink(part-2)1.載入:inverse_pendulum.m2.鍵入:rdlib,rdlib是recurdyn plant控制,按enter鍵3.recurdyn_plant_7_視窗開啟4.鍵入:simulink,啟動simulink,按enter鍵5.simulink library browser視窗開啟,按一下simulink library browser按鈕6.按一下create a new model按鈕7.untitled視窗開啟8.拉進recurdyn plant,選取選項,建立pid迴路去控制軸向力大小,讓單擺可以動平衡9.選取Gain圖案進來,按ctrl+c鍵10.選取選項continuous\derivative、integrator圖案進來11.選取項目math operations\add圖案進來12.選取項目commonly used blocks\scope圖案進來,按ctrl+v鍵13.按add圖案快按兩下,function block parameters:add視窗開啟了,將++改成---,按一下OK按鈕14.連好線15.按Gain圖案快按兩下,function block parameters:gain視窗開啟,將1改成200,按一下OK按鈕16.按Gain1圖案快按兩下,function block parameters:gain視窗開啟,將1改成1,按一下OK按鈕17.按Gain2圖案快按兩下,function block parameters:gain視窗開啟,將1改成5,按一下OK按鈕18.按一下save(ctrl+s)按鈕19.輸入inverse_pendulum檔名,按Enter按鈕20.快按recurdyn plant block兩下,inverse_pendulum/recurdyn plant block視窗開啟,recurdyn plant圖案(紅色)是recurdyn與simulink之間的控制核心,快按兩下21. [ ]static analysis(事先進行靜力分析,之後再進行動力分析)[X ]recurdyn_show(計算過程可以啟動recurdyn畫面)[X ]recurdyn_animation(計算過程可以顯示動畫)之後按一下cancel按鈕,按一下關閉按鈕22.模擬時間5,按一下Start simulation按鈕23. RecurDyn 6.4視窗開啟,RecurDyn會自動載入模型,且可以看到計算過程中的動畫(很快就結束所以省略)24.快按scope圖案兩下,scope視窗開啟(scope是角度位移變化、scope1是軸向力輸出變化),Finish。
单级倒立摆控制系统设计及MATLAB中的仿真第一步是建立单级倒立摆的数学模型。
单级倒立摆可以通过旋转关节将一根质量均匀的细杆与一个平台相连。
细杆的一端固定在平台上,另一端可以自由旋转。
细棒的旋转角度用θ表示,质心的位置用x表示。
根据牛顿力学和杆的动力学方程,可以得到如下数学模型:1.摆杆的运动方程:Iθ'' + mgl sin(θ) = u - F (1)其中,I是摆杆的转动惯量,m是摆杆的质量,g是重力加速度,l是摆杆的长度,u是控制输入(摆杆上的转动力矩),F是摩擦力。
2.质心的运动方程:m(x'' - lθ'²cos(θ)) = F (2)接下来是设计控制器来控制单级倒立摆。
一个常用的控制方法是使用线性化控制理论,其中线性化是将系统在一些工作点附近线性近似。
在这种情况下,将摆杆保持在垂直方向,并使质心静止作为工作点。
线性化系统的转移函数为:H(s) = θ(s)/u(s) = (ml²s² + mg)/(s(ml² + I))为了稳定单级倒立摆,可以使用自动控制理论中的反馈控制方法,特别是状态反馈。
状态反馈根据系统的状态变量来计算控制器输入。
为了设计状态反馈控制器,首先需要判断系统的可控性和可观测性。
根据控制系统理论,如果系统是可控和可观测的,则可以设计一个线性状态反馈控制器来稳定系统。
在MATLAB中,可以使用控制系统工具箱来设计单级倒立摆的控制系统。
首先,通过建立系统的传递函数模型(由线性化系统得到)来定义系统。
然后,使用控制系统工具箱中的函数来计算系统的稳定极点,并确定所需的反馈增益以稳定系统。
最后,可以使用MATLAB的仿真工具来模拟单级倒立摆的响应,并进行性能分析。
在进行仿真时,可以将倒立摆的初始状态设置为平衡位置,并应用一个输入来观察系统的响应。
可以通过调整控制器增益和系统参数来改变系统响应的性能,例如收敛时间、超调量和稳态误差。
单级倒立摆控制系统设计及simulink仿真摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。
因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。
单级倒立摆系统是一种广泛应用的物理模型。
控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。
为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用 Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。
实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。
该方法可以有效地改善单级倒立摆控制系统的性能。
本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。
本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。
讨论了单级倒立摆系统的模糊控制方法和操作步骤。
用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。
通过仿真说明控制器的有效性和实现性。
关键词:单级倒立摆;仿真;模糊控制;运动;建模;SimulinkDesign of single stage inverted pendulum control systemand Simulink simulationAbstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortcomings of common physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motionof the inverted pendulum, and designs the fuzzy control system of the model. Experimental results show that the operation speed and computer simulation of this kind of fuzzy control combined with algebraic analysis method are improved by the physical feedback control method. This method can effectively improve the performance of a single stage inverted pendulum control system. In this paper, the main work of this paper is to study the fuzzy control of a linear inverted pendulum system, and the Matlab and Simulink to simulate the fuzzy control system of a single inverted pendulum, verify the feasibility of the design. And a mathematical modeling method of an inverted pendulum is described, their differential equations are derived, and the equation of state is linearized. The fuzzy control method and operation steps of single stage inverted pendulum system are discussed. Using Simulink to realize the fuzzy control simulation system of a single inverted pendulum, the response curve of the control of an inverted pendulum system is given. The effectiveness and the implementation of the controller are illustrated by simulation.Keywords: Inverted pendulum; Simulation; Fuzzy control; Motion; modeling; Simulink 引言倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。
一、实验内容1、完成Matlab Simulink 环境下的电机控制实验。
2、完成直线一级倒立摆的建模、仿真、分析。
3、理解并掌握PID控制的的原理和方法,并应用与直线一级倒立摆4、主要完成状态空间极点配置控制实验、LQR控制实验、LQR控制(能量自摆起)实验、直线二级倒立摆Simulink的实时控制实验。
二、实验设备1、计算机。
2、电控箱,包括交流伺服机驱动器、运动控制卡的接口板、直流电源等。
3、倒立摆本体,包括一级倒立摆,二级倒立摆。
三、倒立摆实验介绍倒立摆是一个典型的不稳定系统,同时又具有多变量、非线性、强耦合的特性,是自动控制理论中的典型被控对象。
它深刻揭示了自然界一种基本规律,即一个自然不稳定的被控对象,运用控制手段可使之具有一定的稳定性和良好的性能。
许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。
(1)被控对象倒立摆的被控对象为摆杆和小车。
摆杆通过铰链连接在小车上,并可以围绕连接轴自由旋转。
通过给小车施加适当的力可以将摆杆直立起来并保持稳定的状态。
(2)传感器倒立摆系统中的传感器为光电编码盘。
旋转编码器是一种角位移传感器,它分为光电式、接触式和电磁感应式三种,本系统用到的就是光电式增量编码器。
(3)执行机构倒立摆系统的执行机构为松下伺服电机和与之连接的皮带轮。
电机的转矩和速度通过皮带轮传送到小车上,从而带动小车的运动。
电机的驱动由与其配套的伺服驱动器提供。
光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,而光电码盘2 将摆杆的位置、速度信号反馈回控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。
图1 直线倒立摆系统总体结构图四、实验步骤4.1 状态空间极点配置控制实验极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。