数控机床电主轴设计的若干问题及探讨
- 格式:pdf
- 大小:177.06 KB
- 文档页数:3
关于数控机床主轴结构的改进设计目前,数控机床主轴结构主要包括主轴箱、主轴、轴承和冷却系统等部分。
针对这些部分的改进设计将有助于提高数控机床的性能和使用效果。
下面将从主轴箱结构、主轴结构和轴承结构三个方面进行详细的改进设计讨论。
一、主轴箱结构的改进设计主轴箱结构是数控机床主轴的重要组成部分,其设计对主轴的稳定性、刚性和传动精度等方面有着重要影响。
在当前主轴箱结构中,存在一些问题,如难以满足高速、高功率主轴的需求,容易产生振动和噪音等。
为了解决这些问题,需要对主轴箱结构进行改进设计。
可以采用卧式主轴箱结构替代立式主轴箱结构。
卧式主轴箱结构相对于立式主轴箱结构具有更好的刚性和稳定性,可以有效降低振动和噪音,提高主轴的加工精度和稳定性。
卧式主轴箱结构也更适合于高速、高功率主轴的设计和加工。
可以采用分体式主轴箱结构。
分体式主轴箱结构将主轴箱分为上下两部分,通过精密调整螺母来调整主轴箱的上下间隙,从而使主轴箱具有更好的密封性和刚性。
这种结构不仅可以有效防止主轴箱内部润滑油渗漏,还可以提高主轴箱的动态刚性和热稳定性,有利于主轴的高速、高精度加工。
可以采用陶瓷复合材料制造主轴箱。
陶瓷复合材料具有良好的耐磨性、耐热性和耐腐蚀性,通过采用陶瓷复合材料制造主轴箱,可以有效提高主轴箱的使用寿命和可靠性。
陶瓷复合材料还具有较低的热膨胀系数和较高的热导率,有利于主轴箱的热稳定性和散热性能。
可以采用空气动力主轴结构替代机械传动主轴结构。
空气动力主轴结构采用气体压力来传递动力,不需要传统的机械传动部件,可以实现零摩擦、零磨损的运转。
空气动力主轴结构的传动效率高、温升小、运转平稳性好,有利于提高主轴的加工精度和稳定性。
可以采用磁悬浮主轴结构。
磁悬浮主轴结构通过磁场来支撑和传递动力,不需要机械轴承,可以实现无接触、无摩擦的运转。
磁悬浮主轴结构具有较高的刚性和稳定性,可以有效降低振动和噪音,提高主轴的加工精度和寿命。
可以采用弹性变形主轴结构。
关于数控机床主轴结构的改进设计数控机床作为现代制造业中的重要设备,其主轴结构的设计对于机床性能和加工质量具有非常重要的影响。
随着制造技术的不断发展,传统的数控机床主轴结构已经不能满足现代制造业对高精度、高效率、高稳定性的需求。
对数控机床主轴结构进行改进设计已成为当今的研究热点之一。
一、数控机床主轴结构的基本形式数控机床主轴结构是由主轴箱、主轴和主轴驱动系统组成的,其中主轴箱起到支撑和导向主轴的作用,主轴承载加工刀具和承受切削负载,主轴驱动系统则负责驱动主轴旋转。
传统的数控机床主轴结构通常采用滚动轴承或滑动轴承支撑主轴,由电机通过皮带传动或直接连接方式驱动主轴旋转。
由于滚动轴承和滑动轴承在高速、高负载工况下易产生磨损和热变形,从而影响机床的加工精度和稳定性。
二、数控机床主轴结构的改进设计方向针对传统数控机床主轴结构存在的问题,现代研究者提出了一系列的改进设计方案,主要包括以下几个方向:采用高速轴承技术、使用直接驱动技术、应用新材料和新工艺等。
这些改进设计方案旨在提高数控机床主轴的转速、承载能力和稳定性,从而提高机床的加工精度和效率。
1. 采用高速轴承技术传统数控机床主轴结构采用的滚动轴承或滑动轴承在高速工况下容易出现磨损和热变形,限制了主轴的转速和稳定性。
而采用高速轴承技术可以有效地提高主轴的转速和承载能力,同时减小主轴的振动和磨损,从而改善机床的加工精度和稳定性。
目前,国内外一些制造商已经开始使用陶瓷轴承和陶瓷滚珠轴承等高速轴承技术来改善数控机床主轴结构。
2. 使用直接驱动技术传统数控机床主轴结构通常采用电机通过皮带传动或直接连接方式来驱动主轴旋转,然而这种方式存在传动效率低、振动大、维护成本高等问题。
使用直接驱动技术成为了现代数控机床主轴结构改进的重要方向。
直接驱动技术通过在主轴内部集成电机,利用电磁力直接驱动主轴旋转,不仅可以减小机床的占地面积,提高传动效率,还可以减小振动和噪音,从而提高机床的加工精度和稳定性。
关于数控机床主轴结构的改进设计数控机床主轴是数控机床的关键部件,其性能直接影响机床加工精度和加工效率。
随着数控技术的不断发展,对数控机床主轴结构的要求也越来越高。
为了满足市场对数控机床加工精度的需求,需要对数控机床主轴结构进行改进设计,以提高其性能和可靠性。
一、数控机床主轴结构存在的问题1. 结构复杂:传统的数控机床主轴结构通常采用多个轴承和润滑系统,结构复杂,加工成本高。
2. 刚性不足:部分数控机床主轴刚性不足,加工时容易产生振动和变形,影响加工精度。
3. 温升大:部分数控机床主轴在高速加工时容易产生较大的温升,影响机床稳定性和使用寿命。
4. 维护困难:传统数控机床主轴结构维护和保养较为繁琐,需要定期更换润滑油和轴承。
以上问题严重影响了数控机床的加工精度和稳定性,需要通过改进设计来解决。
二、改进设计方案针对数控机床主轴结构存在的问题,可以采取以下几点改进设计方案:1. 优化结构:采用轴向预紧轴承和径向预紧轴承的组合方式,降低轴承数量,简化结构,减小主轴体积和重量。
2. 提高刚性:采用高强度材料和优化设计,提高数控机床主轴的刚性,减小振动和变形,提高加工精度。
3. 降低温升:采用先进的冷却系统和材料,减小高速加工时的温升,提高机床稳定性和使用寿命。
4. 简化维护:采用自动润滑系统和可拆卸设计,简化维护和保养,减小维护成本和时间。
上述改进设计方案可以有效解决传统数控机床主轴结构存在的问题,提高数控机床的加工精度和稳定性,提升竞争力。
三、改进设计实施过程改进设计实施过程中,需要参考市场需求和技术发展趋势,充分调研国内外同类产品的主轴结构和性能,进行方案比较和优化设计。
1. 方案比较:对不同的数控机床主轴结构方案进行技术比较和性能测试,寻找最适合产品需求的方案。
2. 优化设计:在方案确定后,对数控机床主轴结构进行进一步的优化设计,满足产品性能指标和质量要求。
3. 样机制造:根据优化设计方案制作数控机床主轴样机,进行性能测试和验证,验证设计方案的可行性和有效性。
电主轴设计的一些要点电主轴是工业生产中常见的一种装置,用于驱动工具进行旋转,广泛应用于机床、数控机床、木工机械、切割、打磨和加工中心等领域。
电主轴设计要考虑多个方面的因素,下面将详细介绍一些电主轴设计的要点。
首先,设计电主轴时需要根据具体工艺要求确定最大转速。
最大转速决定了工具的加工速度和加工质量。
根据工具直径和材料性质,可以计算出所需的最大转速。
其次,电主轴设计要考虑工作时产生的热量。
电主轴在高速运转过程中会产生大量的热量,如果不能有效散热,会导致电主轴温度升高,进而影响工具的使用寿命和样品质量。
因此,设计中应考虑适当的散热装置,如风扇和散热器,以保持电主轴的温度在合理范围内。
第三,电主轴的振动问题需要被重视。
高速运转时产生的振动会影响加工质量和工具的寿命。
为了减小振动,可以采用精确平衡和减震装置来提高电主轴的稳定性。
此外,可以采用颈缩小、减小惯性和增加刚度等措施来减小振动。
第四,选择合适的电机和轴承也是电主轴设计中的重要要点。
电机的功率和转矩必须满足工件需要的加工力矩,并能够提供所需的最大转速。
轴承的选择要考虑到负荷、转速和寿命等因素,以确保电主轴的正常运行。
第五,电主轴的刚性也是设计中需要考虑的重要因素。
刚性直接影响加工精度和稳定性。
为了提高刚性,应使用高强度材料,增加结构的强度和刚性,并采用适当的支撑结构。
第六,安全性是电主轴设计的重要考虑因素之一、应根据安全标准和规范设计相关保护装置,如限位开关、紧急停机按钮和防护罩等。
第七,电主轴的维护和保养也需要考虑在设计中。
电主轴使用一段时间后需要定期维护和保养,以延长使用寿命和保证性能稳定性。
设计时应考虑易维修和拆卸的结构,以便更好地进行维修和保养。
此外,电主轴还需要考虑重量、大小、制造成本等因素。
设计时应根据具体的应用场景和要求进行综合考虑。
综上所述,电主轴设计需要考虑转速、散热、振动、电机和轴承、刚性、安全性、维护和保养等方面的因素。
只有综合考虑这些要点,才能设计出性能优良、稳定可靠、安全高效的电主轴。
关于数控机床主轴结构的改进设计
数控机床主轴结构是数控机床的关键部件之一,其性能直接影响到机床的加工精度和
加工效率。
针对传统数控机床主轴结构存在的问题,如转动精度低、刚性不够、加工效率
低等,需要进行改进设计。
可以采用高精度轴承来提高主轴的转动精度。
传统的数控机床主轴常采用普通轴承,
其转动精度受到轴承自身的限制。
而高精度轴承具有更好的精度和刚度,能够大幅度提高
主轴的转动精度。
可以考虑采用陶瓷轴承、磁悬浮轴承或者超精密轴承等高精度轴承来替
代传统的普通轴承。
可以采用优化的主轴结构来提高主轴的刚性。
传统的数控机床主轴结构多为采用进给
轴和回转轴串联的结构,刚性较差。
改进设计可以考虑采用进给轴和回转轴并联的结构,
或者采用短连接结构,提高主轴的刚性。
可以增加主轴的直径,提高主轴的刚性和承载能力。
可以采用高速主轴设计来提高机床的加工效率。
传统数控机床主轴转速较低,加工效
率有限。
改进设计可以采用电主轴、液压主轴或者电液混合主轴等高速主轴设计,提高主
轴的转速和加工效率。
还可以采用主轴冷却系统来控制主轴的温度,提高主轴的稳定性和
使用寿命。
为了提高数控机床的稳定性和可靠性,可以采用主轴预紧力调节装置。
通过对主轴预
紧力的调节,可以减小运动中的轴向游隙,提高传动精度和位置精度。
通过对数控机床主轴结构进行改进设计,可以提高主轴的转动精度、刚性和加工效率,进而提高机床的加工精度和加工效率。
这对于满足现代制造业对高精度和高效率加工的需
求具有重要意义。
关于数控机床主轴结构的改进设计1. 引言1.1 研究背景数控机床主轴作为整个机床中的核心部件,在加工精度、效率和稳定性等方面起着至关重要的作用。
随着制造业的不断发展和技术的进步,对数控机床主轴结构的要求也越来越高。
目前市场上常见的数控机床主轴结构存在着一些问题,比如轴承摩擦力大、振动噪音大、稳定性差等,影响了机床加工质量和效率。
对数控机床主轴结构进行改进设计具有重要意义。
在当前工业生产中,高精度、高效率、高速度是制造企业追求的目标。
而数控机床主轴结构作为影响机床性能的关键部件之一,需要不断进行创新和改进,以适应不断变化的市场需求。
深入研究主轴结构的改进设计,优化结构材料和加工工艺,对提升数控机床的加工精度和效率具有重要意义。
【2000字】1.2 研究目的研究目的是为了通过对数控机床主轴结构进行改进设计,提高机床的加工精度和工作效率。
当前市场上存在着许多数控机床主轴结构设计较为传统,存在一定的问题,例如在高速高效加工过程中容易产生振动和噪音,影响加工精度和表面质量。
本研究旨在通过优化设计改进数控机床主轴结构,提高其稳定性和刚性,减少振动和噪音,从而提高加工质量和效率。
通过结合结构材料优化和加工工艺改进,探索出一种更加先进和可靠的数控机床主轴结构设计方案,并分析其在技术和经济方面的可行性,为数控机床行业的进一步发展提供参考和指导。
2. 正文2.1 数控机床主轴结构现状数控机床主轴结构是数控机床的核心部件之一,主要负责转动切削工具进行加工。
目前的数控机床主轴结构主要分为直线主轴和滚珠主轴两种类型。
直线主轴结构简单,操作方便,适用于对工件精度要求不高的加工,但主轴刚度较低,容易产生振动。
滚珠主轴结构采用滚珠轴承支撑,具有较高的刚度和承载能力,适用于高精度加工,但制造成本较高。
当前数控机床主轴结构在设计上存在一些问题,如主轴转速范围窄、刚度不足、温升较大等。
这些问题制约了数控机床的加工效率和加工质量。
为了解决这些问题,可以采取改进设计方案。
关于数控机床主轴结构的改进设计随着制造业的发展和技术的进步,数控机床在工业生产中扮演着越来越重要的角色。
数控机床主轴作为数控机床的核心部件之一,其性能和结构对机床的加工精度和效率具有重要影响。
为了提高数控机床主轴的加工精度和稳定性,需要对其结构进行改进设计。
本文将从数控机床主轴的结构特点、存在问题以及改进设计方面进行探讨,以期为数控机床主轴结构的改进设计提供一些参考意见。
一、数控机床主轴的结构特点数控机床主轴是数控机床的核心部件,其主要功能是带动刀具进行切削加工。
数控机床主轴的结构特点主要包括以下几个方面:1.高速高精度数控机床主轴需要具备高速高精度的特点,以满足不同加工要求的需求。
在高速高精度的要求下,主轴需要具备较强的刚性和稳定性。
2.刚性要求高数控机床主轴在工作时需要承受较大的切削力和转矩,因此需要具备较高的刚性。
良好的刚性能够有效地抵抗切削力和振动,保证加工精度和表面质量。
3.稳定性要求高数控机床主轴在高速旋转时需要保持稳定,避免产生振动和不稳定的现象。
稳定的主轴运转能够保证加工的精度和表面质量。
尽管数控机床主轴具有高速高精度、高刚性高稳定性的特点,但在实际应用中还是存在一些问题:1.噪音大部分数控机床主轴在高速旋转时会产生较大的噪音,给工人的工作环境带来一定的影响。
2.振动大部分数控机床主轴在高速旋转时会产生较大的振动,导致加工精度和表面质量下降。
3.散热不好部分数控机床主轴在长时间高速运转时会产生较大的热量,散热效果不佳,导致主轴温度过高,影响主轴的使用寿命和稳定性。
三、改进设计方案针对数控机床主轴存在的以上问题,可以从以下几个方面进行改进设计:1.采用新材料可以采用新型复合材料或者金属材料来替代传统的主轴材料,以提高主轴的强度和刚性,减少噪音和振动。
2.结构优化可以对数控机床主轴的结构进行优化设计,增加降噪材料和减振装置,以减少噪音和振动;采用新的轴承结构和支撑方式,提高主轴的稳定性和寿命。
数控机床高速电主轴技术综述报告随着数控机床的发展,高速电主轴技术逐渐成为数控机床的重要组成部分。
本文将综述数控机床高速电主轴技术的发展现状、挑战和前景。
1.发展现状高速电主轴技术是指将电机与主轴整合在一起,以实现高速、高精度和高效率的加工。
这种技术在数控机床行业得到广泛应用,并在不断发展中。
其次,高速电主轴技术在加工精度方面取得了长足的进步。
传统机床主轴存在动静平衡和热变形等问题,限制了加工精度。
而高速电主轴技术采用电机直接驱动主轴,减少减速传动部件,降低了动静平衡问题,提高了精度。
同时,高速电主轴技术利用高速运转产生的离心力将液体或气体注入轴承,形成微气体轴承,有效抑制了热变形,进一步提高了加工精度。
最后,高速电主轴技术在振动和噪音控制方面也取得了一定的成就。
高速运转的传统机床主轴容易产生振动和噪音,影响加工质量和工作环境。
高速电主轴技术通过电机驱动主轴,提高了运转平稳性,减少了振动和噪音。
2.技术挑战然而,高速电主轴技术在发展过程中也面临着一些挑战。
首先,高速电主轴技术需要解决热问题。
高速运转会导致主轴产生大量的热量,如何有效散热是一个关键问题。
目前,通过轴承内的液体或气体注入来进行主轴冷却已经成为一种常见的解决方案。
此外,还有一些技术如陶瓷轴承、液氮冷却等也在不断研发中。
其次,高速电主轴技术需要解决动静平衡问题。
高速运转会产生离心力,增加主轴的不平衡。
传统的方案是采用平衡块进行动静平衡,但这种方式存在一定的局限性。
新的方案如在线动平衡和振动传感器反馈调整等的发展为解决这个问题提供了新的途径。
最后,高速电主轴技术需要解决驱动技术问题。
高速电主轴对电机的驱动要求非常高,如何实现高速转子的精确控制是一个重要挑战。
目前,采用高性能的伺服电机和调速器已经成为一种常见的解决方案,并且在不断推进优化。
3.发展前景高速电主轴技术在数控机床行业有着广阔的应用前景。
首先,随着制造业对加工效率和精度要求的不断提高,高速电主轴技术将成为机床制造商的技术发展方向,有望在未来得到更广泛的应用。
控机床高速电主轴结构设计及性能探讨摘要:在当代数字化控制机床生产过程中,产品的加工速度正在显著提高。
与此同时,生产时效、产品质量、产品精准度都有一定程度的提高。
高速电主轴是达成高速加工的根本条件,因此,高速电主轴的结构设计工作的高质量完成对于数字化控制机床生产来说具有一定的推进作用,本篇文章对此展开论述。
关键词:数字化控制机床;高速电主轴;结构设计;功能与性质引言:当今,数字化控制机床已经成为工业制造中不可缺少的一部分,高速切削作为是近年来新兴技术之一,其中最主要的部分就是高速电主轴。
因此,深入探究高速电主轴的结构是目前最首要的任务。
一、高速加工技术和高速电主轴的优点(一)高速切削技术的优点高速切削技术作为高速加工过程中的核心技术,与普通切削技术相比较而言,高速切削技术的优点如下:1.对于刚性较差的产品加工时效更快在进行高速切削时,当切削速度增加到某一特定数值时,切削力度总体可降低三分之一左右。
其中,尤其是径向切削力,它的下降幅度更为显著。
由此一来,在进行刚性产品加工时,加工速度和质量将会有所提升。
2.可防止一些产品受热发生形变高速切削技术在使用过程中,切削所生成的热能会快速被清除。
由此一来,这部分热量不会被传送到切削工具上,可以保障待切产品长时间保持冷却状态。
因此,此项技术有效提高了在对一些容易受热发生形变的产品进行切削时的精准度。
3.工作稳定性较高切削技术在运作过程中,机床会产生较快的实际振动频率,与普通切削技术相比较而言,新型高速切削技术没有固定的振动频率波动范围,这一特点可以有效降低机床的振动频率,从而保证机床工作的稳定性,运用此项技术生产出来的零件质量将会大幅度提升。
(二)高速电主轴的优点1.功率较大,转速较高就现有技术水平而言,独立实现高速电主轴大功率运转或高转速运转早就不再是技术难题。
然而,要想达成大功率运转,还要求高转速,这就需要很高的技术水准。
此项技术的创新、完善受到了全球相关公司的高度关注。
加工中心用电主轴结构设计及其仿真分析一、综述随着科技的不断发展,加工中心在制造业中的地位越来越重要。
加工中心作为一种高效、高精度、高自动化的加工设备,已经成为现代制造业的重要支柱。
然而加工中心在使用过程中,电主轴作为其核心部件,其结构设计和性能对加工中心的整体性能具有重要影响。
因此对加工中心用电主轴的结构设计及其仿真分析进行研究,对于提高加工中心的性能和降低生产成本具有重要意义。
电主轴是一种将交流电源转换为高速旋转并带传动功能的电动机。
它具有结构简单、重量轻、惯性小、响应速度快等优点,广泛应用于数控机床、加工中心等机械设备中。
电主轴的结构设计主要包括电机、减速器、轴承、冷却系统等部分。
其中电机是电主轴的核心部件,其性能直接影响到整个电主轴的性能;减速器用于降低电机转速,提高扭矩;轴承用于支撑转子并实现转动;冷却系统用于降低电机温度,保证电主轴的正常运行。
为了提高加工中心的性能,需要对电主轴的结构进行优化设计。
首先应选择合适的电机类型和参数,以满足加工中心的工作要求。
其次应合理选择减速器类型和参数,以保证电主轴具有较高的转速和扭矩输出。
此外还应考虑轴承的选择和配置,以确保电主轴具有较低的噪声和振动。
冷却系统的设计也至关重要,应根据加工中心的工作环境和工艺要求,选择合适的冷却方式和参数。
为了验证电主轴结构设计的合理性和性能,可以采用仿真分析方法对其进行评估。
通过建立数学模型,对电主轴的结构参数进行优化设计,并利用仿真软件对其进行模拟分析。
仿真分析可以帮助我们了解电主轴在不同工况下的性能表现,为实际应用提供依据。
同时仿真分析还可以发现结构设计中的潜在问题,为改进设计提供参考。
加工中心用电主轴结构设计及其仿真分析是一项重要的研究工作。
通过对电主轴结构的设计优化和仿真分析,可以提高加工中心的性能,降低生产成本,为现代制造业的发展做出贡献。
1.1 研究背景和意义随着现代制造业的飞速发展,加工中心在工业生产中扮演着越来越重要的角色。
关于数控机床主轴结构的改进设计数控机床主轴是机床的核心部件之一,主要负责驱动刀具进行加工操作。
主轴的结构设计直接影响到机床的加工精度、稳定性和效率。
为了提高数控机床主轴的性能,现对其进行改进设计。
可以对主轴的传动方式进行改进。
传统的数控机床主轴普遍采用皮带或齿轮传动,存在传动效率低、噪音大和易损耗等问题。
可以考虑采用直接驱动方式,即由电机直接驱动主轴,避免传动损耗和噪音产生,提高机床的工作效率和加工精度。
可以对主轴的轴承结构进行改进。
传统机床主轴多采用滚动轴承,虽然具有较高的刚性和负载能力,但润滑要求较高、维护困难且易磨损。
可以考虑采用陶瓷轴承或气动轴承等新型轴承,具有低摩擦、高刚性和长寿命等特点,提高机床的使用寿命和稳定性。
可以对主轴的冷却系统进行改进。
主轴在工作过程中会产生大量热量,如果不能及时散热会导致主轴的热变形和加工精度下降。
可以考虑在主轴内部设置冷却装置,通过循环流动的冷却液将热量带走,保持主轴的温度稳定,提高机床的加工精度。
可以对主轴的动力装置进行改进。
主轴的转速和转矩都是影响机床加工效果的重要参数。
传统机床主轴多采用交流电机作为动力装置,但由于转速范围有限,限制了机床的加工范围。
可以考虑采用直流电机或伺服电机作为动力装置,具有转速范围广和转矩响应快的优点,提高机床的加工能力和柔性。
可以对主轴的结构进行优化设计。
主轴的结构包括主轴箱、主轴轴承和主轴轴杆等组成部分。
可以通过减小主轴箱的体积和重量、优化主轴轴承的布局和结构、采用高强度材料制作主轴轴杆等方式,降低机床的惯性、提高机床的加工速度和刚度。
通过对数控机床主轴结构的改进设计,可以提高机床的加工精度、稳定性和效率,满足不同加工要求和提高企业竞争力的需求。
这对于推动数控机床行业的发展具有重要的意义。
数控机床主轴总体设计
报告
一、报告概述
数控机床主轴设计涉及机床整体结构及其相关机构的设计,是数控机
床制造过程中的重要步骤,也是控制机床精度和加工质量的关键因素。
本
文将重点介绍数控机床主轴的设计,包括其设计要点、数控机床主轴的结
构设计和参数设计,以及检验和润滑等。
二、主轴的设计要点
1.数控机床主轴的设计应考虑机床的整体结构和控制要求。
2.主轴为定心支承结构,必须考虑受力、应力、热变形等方面的影响,以确保设计符合要求,并能满足用户的实际要求。
3.主轴运行部件应确定所需转速、变速比、功率等参数,以确保设备
具有良好的动力性能。
4.数控机床的主轴应考虑到在高速运行时,动平衡质量及其调整要求。
5.主轴及其附件的安装应考虑其各自的尺寸和形位关系,以确保正确
安装及更换。
三、主轴结构设计
1.主轴材料选择
主轴材料可以根据设计要求选择金属材料或高分子材料。
其中金属材
料包括钢、铝合金、镁合金等,而高分子材料则包括塑料或玻璃钢等,具
体选择要考虑材料的机械性能、抗腐蚀性能和使用寿命等。
2.主轴结构设计。
国产化率低电主轴成数控机床发展之痛难点何在?中国数控机床行业的发展令人瞩目,据中国机床工具工业协会提供的数据,2006年数控机床的产量达85756台,同比增长32.7%。
但令人遗憾的是,作为数控机床关键功能部件的电主轴,无论是从产品品种、技术水平、可靠性和产业化程度等方面均与国外有一定差距,电主轴国产化率低,中高端产品主要依靠进口。
对此,有关专家指出,如果不提高电主轴国产化率,一味依靠进口,不仅会浪费大量外汇,而且会制约国产数控机床的发展。
数控机床的“芯片”传统机床主轴是通过传动装置带动主轴旋转而工作的,电主轴的主要特点是将电机置于主轴内部,通过驱动电源直接驱动主轴进行工作,实现了电机、主轴的一体化功能。
与传统机床主轴相比,电主轴具有十分明显的优势。
由于主轴由内装式电机直接驱动,省去了皮带、齿轮、联轴节等中间变速和传动装置,具有结构简单紧凑、效率高、噪声低、振动小和精度高等特点。
而且利用交流变频技术,电主轴可以在额定转速范围内实现无级变速,以适应机床工作时各种工况和负载变化的需要。
电主轴是将机床主轴与主轴电机融为一体的高新技术产品。
电主轴实际是指电主轴系统,由电主轴、驱动控制器、编码器、润滑装置、冷却装置等组成。
国产电主轴的价位从几万元到十几万元不等,电主轴技术水平的高低、性能的优劣都直接决定和影响着数控机床整机的技术水平和性能,也制约着主机的发展。
因此,有专家认为,电主轴在数控机床中的作用类似电脑中的芯片,将电主轴称为数控机床的“芯片”。
也有日本学者将包括电主轴在内的关键功能部件产业统称为“中场”产业,取足球“中场”寓意,表明其重要位置。
电主轴系统是数控机床三大高新技术之一(高速电主轴、数控系统、送给驱动)。
随着数控技术及切削刀具的飞跃发展,越来越多的机械制造装备都在不断向高速、高精、高效、高智能化发展,电主轴已成为最能适宜上述高性能工况的数控机床核心功能部件之一,尤其是在多轴联动、多面体加工、并联机床、复合加工机床等诸多先进产品中,电主轴的优异特点是机械主轴单元不能替代的。
高速电主轴设计制造中若干问题的探讨近10年随着高速加工技术的迅猛发展和日益广泛的应用,各工业部门,特别是航空航天、汽车工业、模具加工和摩托车工业等,对高速数控机床的需求量与日俱增。
美、日、德、意和瑞士等工业发达国家已生产了多种商品化高速机床,下表列出了近几年在国际机床市场上出现的几种著名品牌的高速加工中心。
新型高速加工中心表制造厂家(国别)机床名称和型号主轴最高转速(r/min)最大进给速度(m/min)主轴驱动功率(kW)Cincinati Milacron(美)Maxim 500型卧式加工中心200002812Ingersoll(美)HVM800型高速卧式加工中心2000076.245Mikron(美)HSM700型高速立式加工中心420004014Ex-cell-O(德)XHC241型高速卧式加工中心2400012040RODERS(德)RFM1000型加工中心420003020~30Makino(日)A55-A128型加工中心400005022新泻铁工(日)VZ40型加工中心500002018.5Mazak(日)Super-400H型加工中心“零传动”。
从机床的主传动系统来看,这种传动方式取消了从主电动机到主轴之间一切中间的机械传动环节(如皮带、齿轮、离合器等),实现了主电动机与机床主轴的一体化。
这种传动方式有以下优点:1.机械结构最为简单,传动惯量小,因而快速响应性好,能实现极高的速度、加(减)速度和定角度的快速准停(C轴控制)。
2.采用交流变频调速和矢量控制的电气驱动技术,输出功率大,调速范围宽。
有比较理想的扭矩——功率特性(图1b),一次装夹既可实现粗加工又可进行高速精加工。
3.实现了主轴部件的单元化,可独立做成标准化的功能部件,并由专业厂进行系列化生产。
机床主机厂只需根据用户的不同要求进行选用,可很方便地组成各种性能的高速机床,符合现代机床设计模块化的发展方向。
电主轴的机械结构虽然比较简单,但制造工艺的要求却非常严格。