解:(1)∵点(-3,2)在第二象限,
∴抛物线的标准方程可设为 y2=-2px(p>0)或 x2=2py(p>0).
把点(-3,2)的坐标分别代入 y2=-2px(p>0)和 x2=2py(p>0),得
4=-2p·(-3)或 9=2p·2,
4
3
9
2
即 2p= 或2p= .
4
3
9
2
故所求抛物线的标准方程为 y2=− 或x2= .
y=ax2+bx+c(a≠0)的图象可由开口向上或向下的标准形式的抛物线
通过平移得到.
求抛物线的标准方程
【例1】 试求满足下列条件的抛物线的标准方程:
(1)过点(-3,2);
(2)焦点在直线x-2y-4=0上;
5
(3)焦点到准线的距离为 .
2
分析:对于(1),需要确定 p 的值和开口方向两个条件,因为点(-3,2)
5
2
5
2
(3)由焦点到准线的距离为 , 可知p= ,
即 2p=5.
故所求的抛物线方程为 y2=5x 或 y2=-5x 或 x2=5y 或 x2=-5y.
抛物线的定义及标准方程的应用
【例2】 平面上动点P到定点F(1,0)的距离比到y轴的距离大1,求动
点P的轨迹方程.
分析一:设点 P 的坐标为(x,y),则有 (-1)2 + 2 = || + 1,
在第二象限,所以抛物线的标准方程可设为 y2=-2px(p>0)或
x2=2py(p>0);对于(2),因为抛物线标准方程的焦点在坐标轴上,所以
求出直线 x-2y-4=0 与坐标轴的两个交点(4,0)和(0,-2),即为所求抛物