激光原理及应用-激光核聚变
- 格式:docx
- 大小:316.03 KB
- 文档页数:7
激光的发明与应用激光是在1960年正式问世的。
但是,激光的历史却已有100多年。
确切地说,远在1893年,波尔多中学物理教师布卢什就已经指出,两面靠近和平行镜子之间反射的黄钠光线随着两面镜子之间距离的变化而变化。
他虽然不能解释这一点,但为未来发明激光发现了一个极为重要的现象。
1917年爱因斯坦提出“受激辐射”的概念,奠定了激光的理论基础。
1958年美国科学家肖洛和汤斯发现了一种奇怪的现象:当他们将闪光灯泡所发射的光照在一种稀土晶体上时,晶体的分子会发出鲜艳的、始终会聚在一起的强光:由此他们提出了“激光原理”,受激辐射可以得到一种单色性、亮度又很高的新型光源。
1958年,贝尔实验室的汤斯和肖洛发表了关于激光器的经典论文,奠定了激光发展的基础。
1960年,美国人梅曼发明了世界上第一台红宝石激光器。
梅曼利用红宝石晶体做发光材料,用发光度很高的脉冲氙灯做激发光源,获得了人类有史以来的第一束激光。
1965年,第一台可产生大功率激光的器件——二氧化碳激光器诞生。
1967年,第一台X射线激光器研制成功。
1997年,美国麻省理工学院的研究人员研制出第一台原子激光器。
激光的出现带动了多学科的发展,如量子光学、量子电子学、激光光谱学、非线性光学、集成光学、海洋光学等等。
这里我们只列举一些与日常生活相关的激光应用科学的发展。
激光光盘制作技术1877年世界上第一台留声机在爱迪生的手上诞生了!它是声像技术发展的开端。
而1972年荷兰菲利浦公司研制出用激光器录音的彩色电视录像盘。
这就是现代激光光盘的诞生!激光光盘的诞生,激光在音响设备上的应用,是音响上的一次革命。
人们利用激光,以“光针”代替钢针、宝石针,制成激光唱片。
激光唱片不仅能够录音,而且能够录像。
激光唱片用来记录、存储声音和图像,可以说,这是声像技术上的一次革命,一个伟大的创举。
1983年,美国和日本分别研制成崭新的数字录音唱片。
这种唱片完全摆脱了传统唱片的制作和重播方式,为唱片开辟了一个全新的境界。
激光原理及应用---激光核聚变激光核聚变激光核聚变(laser nuclear fusion)是以高功率激光作为驱动器的惯性约束核聚变。
在探索实现受控热核聚变反应过程中,随着激光技术的发展,1963年苏联科学家N.巴索夫和1964年中国科学家王淦昌分别独立提出了用激光照射在聚变燃料靶上实现受控热核聚变反应的构想,开辟了实现受控热核聚变反应的新途径激光核聚变。
激光核聚变要把直径为1毫米的聚变燃料小球均匀加热到1亿度,激光器的能量就必须大于1亿焦,这在技术上是很难做到的。
直到1972年美国科学家J.纳科尔斯等人提出了向心爆聚原理以后,激光核聚变才成为受控热核聚变研究中与磁约束聚变平行发展的研究途径。
1、基本原理激光核聚变中的靶丸是球对称的。
球的中心区域(半径约为3毫米)充有低密度(≤1克/厘米3)的氘、氚气体。
球壳由烧蚀层和燃料层组成:烧蚀层的厚度为200—300微米,材料是二氧化硅等低Z(原子序数)材料;燃料层的厚度约300微米,材料是液态氘、氚,其质量约5毫克。
有的靶丸的中心区域是真空,球壳由含有氘、氚元素的塑料组成。
有的靶丸则用固体氘、氚燃料,球壳由玻璃组成。
当激光对称照射在靶丸表面上时,烧蚀层表面材料便蒸发和电离,在靶丸周围形成等离子体。
激光束的部分能量在临界密度层处(该处的等离子体频率与入射的激光频率相等)被反射掉,另一部分能量则被等离子体吸收并加热等离子体。
等离子体的热量通过热传导穿过临界密度层向烧蚀层内传递,烧蚀层材料蒸发并向四周飞散产生反作用力(类似火箭推进原理),将靶丸球壳向靶心压缩(爆聚)产生传播的球形激波,使靶丸内氘、氚燃料的密度和温度增加,这种效应称为向心爆聚。
如果激光脉冲的波形选得合适,则向心传播的球形激波可会聚到靶丸球心区域,使球心区域一部分氘、氚燃料优先加热,形成热斑。
当热斑中的温度高到足以产生聚变反应时,则释放出的聚变能量就可驱动通过靶丸径向向外传播的超声热核爆炸波,并在靶丸物质移动之前就能将燃料层的聚变燃料加热并产生聚变反应,最后将烧蚀层毁掉。
激光的应用和原理一、激光的原理激光,即光的放大与激发的一种形式,是一束具有高度聚焦和狭窄频谱宽度的光线。
激光的产生基于光的放大过程,包括受激辐射和受激吸收。
其产生过程包括以下几个关键步骤:1.激发: 通过能量输入激发物质中的原子或分子,使其处于高能级。
2.受激辐射: 通过激发态的原子或分子受到入射光激发,释放出与入射光同频率相干和同相的光子。
3.反射与倍增: 通过反射和增强装置增加激光的能量和增强光的相位一致性。
4.输出: 通过输出装置使激光束从激光器中以准直、高度聚焦的形式发出。
二、激光的应用激光技术应用广泛,包括但不限于以下几个领域:1. 医疗美容•激光切割: 激光切割技术在医疗美容领域有着广泛的应用,如激光手术刀能够精确切割和焊接组织,用于美容手术中的皮肤病变疗法。
•激光脱毛: 激光脱毛技术利用激光的高能量对毛囊进行破坏,达到去除不需要的毛发的效果。
2. 工业制造•激光切割和焊接: 激光切割和焊接技术在工业制造领域被广泛应用,能够用于金属、塑料和其他材料的切割和焊接。
•激光打标和雕刻: 激光打标和雕刻技术能够在各种材料表面精确刻印文字、图案和条形码,用于产品标识和防伪等领域。
3. 通信和信息技术•光纤通信: 激光作为传输介质,能够提供高速、大容量的数据传输,广泛应用于光纤通信领域。
•光盘存储: 激光能够通过读取和写入方式实现对光盘、DVD和蓝光等介质的数据存储和读取。
4. 科学研究•激光测量: 激光测量技术可以实现对距离、速度和形状等参数的高精度测量,应用于环境监测、地质勘测、气象预测和航天探测等领域。
•激光光谱: 激光光谱技术通过对物质吸收、散射和荧光等光学特性的研究,可以分析物质的成分和结构。
5. 军事和安全•激光制导: 激光制导技术应用于导弹、无人机和火炮等武器系统中,提高了命中精度和打击效果。
•激光雷达: 激光雷达通过测量光的传播时间和散射特性,实现高分辨率的目标探测和跟踪。
三、小结激光技术的应用范围广泛,涵盖了医疗美容、工业制造、通信和信息技术、科学研究以及军事和安全领域。
激光核聚变激光核聚变,是利用超强激光束压缩燃料靶丸,使之达到“点火”条件从而引发的核聚变,是人类实现可控热核聚变的重要方式。
由于该核聚变过程需要1亿度以上的极高温和1千亿倍大气压的极高压条件才能触发,能否成功“点火”是关键和难点所在,科学家们至今尚未攻克。
目前的美国的国家点火装置NIF,尽管其在2014年初宣布实验中释放的能量首次超过燃料吸收能量,但“点火”仍未能实现。
中国的卓红斌团队提出了一种高能电子束定向准直理论,并构建了新物理方案,简单说分“两步走”,即先用单束长脉冲激光打到靶背面,在靶背面形成一个由等离子体构成的内嵌环形磁场;约0.4纳秒后,在靶正面辐照一束短脉冲激光,当由短脉冲激光产生的高能电子束向背面传输时,笼罩在外的环向磁场构成一具“透镜”,对电子束运动方向进行约束,使得发散角降低,从而实现发散电子束的有效聚焦。
惯性约束核聚变是一种产生核聚变能量的方法,其操作原理是利用高功率激光束辐照氘氚等热核燃料组成的微型靶丸,在极短时间里靶丸表面会发生电离和消融而形成包围靶芯的高温等离子体。
等离子体膨胀向外爆炸的反作用力会产生极大的向心聚爆压力,在压力的作用下,氘氚等离子体被压缩到极高的密度和温度,引起氘氚燃料的核聚变反应。
一直以来,人们希望能通过惯性约束核聚变产生既干净又经济的能量,但是技术限制等因素让相关工作面临许多困难。
其中,美国劳伦斯·利弗摩尔国家实验室教授Omar Hurricane及其科研团成功克服了障碍,实现了总增益超过初始功率的实验。
他们使用192支激光,替一颗燃料芯块进行加热和压缩至核聚变反应发生。
据悉,NIF可以把200万焦耳的紫外线能量,通过192条激光束聚焦到一个2毫米大的冷冻氢气球上,从而产生1亿摄氏度的高温和约为地球大气压1000亿倍的高压,类似恒星和巨大行星的内核以及核爆炸时产生的温度和压力。
在此基础上,科学家可进行此前在地球上无法进行的许多试验。
首先,研究人员沿反应室四周搅动熔铅,创造出中间有空隙的涡流;在空隙中,他们点燃聚变燃料“紧凑环形线圈”。
超强激光的研究进展与应用随着科技的不断进步,激光技术被广泛应用于医学、材料加工、光通信等领域。
而其中又以超强激光最为引人注目,其强度可达数千万至数万亿倍的常规激光强度,具有极高的能量密度和超快速度,因此在科学研究和工业应用中都有着广泛的应用前景。
一、超强激光的研究进展1. 激光短脉冲技术超强激光中的激光脉冲时间极短,常常只有几百飞秒,这种超短脉冲在物理学和化学等领域中有着广泛的应用。
比如,高能物理学中利用激光脉冲产生高能电子束,进行物理学实验;化学中利用激光脉冲抓拍瞬态反应。
2. 制备高质量二维材料超强激光在制备二维材料中也有着广泛的应用。
二维材料作为一种新型的材料,具有独特的电学、光学和物理特性,对电子元件、传感器、储能装置等具有良好的应用前景。
超强激光等技术可以制备高质量的二维材料,并利用二维材料进行光电器件的制备。
3. 激光聚变技术激光聚变是指利用超强激光进行核聚变反应研究的技术。
核聚变是一种将轻元素合成为重元素的核反应,能够释放出巨大的能量。
利用超强激光进行核聚变研究,不仅可以丰富我们对宇宙起源的认识,还可以利用核聚变技术进行丰富、廉价、清洁的能源开发。
二、超强激光的应用前景1. 医学领域超强激光被广泛应用于医学领域,比如激光手术、激光治疗等。
超强激光可以精确打击病变组织,减少手术出血,大大提高手术治疗的效果。
此外,超强激光还可以用于医学诊断,比如超强激光可用于成像检查、组织切割等操作。
2. 工业材料加工超强激光可用于工业材料加工,比如激光切割、激光打标、激光焊接等。
激光加工具有高精度、高效率、污染小等特点,可以大大提高工业生产效率。
超强激光的应用使得激光加工得以更加精细化,减少了工业制造中的浪费。
3. 光通信领域超强激光也被广泛应用于光通信领域。
光通信是指利用光来进行通信传输的技术,和电信技术相比,光通信具有更高的传输速度和更大的传输距离。
超强激光可以提高光通信中的传输速度和精度,为光通信技术的发展提供了新的方向和支持。
超强激光在物理实验中的应用超强激光是一种光强度极高的激光束,由于其超强的光强度和高可调性,使用超强激光装置进行物理实验已经成为当前物理研究中的热点和难点。
本文将从激光的基本原理、物理实验领域中超强激光的应用等方面阐述超强激光在物理实验中的应用,希望能为物理学爱好者对该领域有更深入的了解。
1.激光的基本原理激光是由物理激发的粒子(如电子、原子)释放能量时产生的强聚集光束。
激光产生的过程可以用三个阶段来描述:激发、自发辐射和受激辐射。
(1)激发阶段:在原子或分子中注入外部能量,使其激发至高能态。
(2)自发辐射阶段:由于外部注入的激发能量,物质原子或分子在它们的基态下有一定的概率自发地向低能态跃迁并释放能量,产生粒子的自发辐射。
(3)受激辐射阶段:当物质原子或分子中自发地释放一个能量的粒子与其他被激发的原子或分子相遇时,被激发原子或分子中同样能量的粒子也会被释放,并两者之间会自发地发生相互作用。
产生的这种同样能量、同样方向和相位的粒子集合成了一个与与自发辐射不同的、相干的光束,这就是激光。
2. 超强激光在物理实验领域的应用超强激光的光强度很高,比较适合一些刻画微观粒子的物理实验,如医学检测、材料加工等领域中清晰的成像和精细的加工都是这种激光的特点。
具体地说,超强激光在凝聚态物理、高能物理、核物理、等离子体物理、粒子加速器物理、化学动力学、分子和材料物理等领域都有广泛的应用。
超强激光技术的引入,使得凝聚态物理领域突飞猛进。
超强激光可以产生超短脉冲,可以通过研究光子-物质相互作用来发掘新的材料物理和化学性质,如超快动力学,光学计算机等。
(2)高能物理超强激光光子,由于其高能量、高频率特性,可以产生高能电子或高能离子束,在应用中可加速粒子以近光速,从而产生高能粒子束或偏振粒子,以研究物质的结构与性质。
(3)核物理超强激光设备进行核聚变实验是一种新的思路。
当激光达到极高的光强度时,可以产生极高的电场和磁场,这些电场和磁场可以用来控制离子束,从而引起离子与靶原子产生核反应,进而产生中子或目标原子核的反应。
未来绿色能源的翘楚—激光核聚变人类文明历史的进步,能源功不可没。
从柴薪到煤炭,石油、天然气等“化石燃料”的应用,使人类社会经济建设、生活文明大步前进。
但是,人类对亿万年沉积形成的“化石燃料”的依赖,在促使社会高速发展的同时,已经造成了能源难以为继的危机。
“化石燃料”燃烧,就是大气污染、酸雨、温室效应等破坏生态和污染环境的罪魁祸首,寻找新能源已是人类生存发展的当务之急。
无论是高铁和电动汽车,还是工业及日用,电能是未来高效干净的能量,但产生电能的途径和方式要环保、绿色及经济。
现有的核电站都是利用核裂变原理,在特殊情况下不可控且有辐射问题,比如日本福岛…….而核聚变属于可控,无辐射污染,且高效经济,属于绿色干净能源。
如果是由重的原子核变化为轻的原子核,叫核裂变,如原子弹爆炸;如果是由轻的原子核变化为重的原子核,叫核聚变,如氢弹爆炸(太阳发光发热的能量来源就是核聚变反应)。
核聚变是指由质量小的原子,主要是指氘或氚,在一定条件下(如超高温和高压),发生原子核互相聚合作用,生成新的质量更重的原子核,并伴随着巨大的能量释放的一种核反应形式。
核聚变能释放出巨大的能量,氢弹爆炸是非受控的核聚变,而受控核聚变具有极其诱人的前景。
轻核聚变与目前核电站的重核裂变相比,有三大优点。
一是高效。
温度更高、能量更大;二是安全,全部反应不产生放射性污染物;三是可控性好。
聚变反应只要中止燃烧就立即中断,不会“链式延续”。
激光核聚变就是利用高功率激光照射核燃料使之发生核聚变反应。
高功率的激光会聚到充满核聚变材料(氘或氚)的小球上,激光的能量将球壳表面烧蚀并离子化,剥离时产生的反作用力使内层材料向内压缩,使核聚变材料达到极高的温度和密度从而引发核聚变反应。
利用激光核聚变原理建造的发电站称为可控聚变核电站。
通过激光核聚变,人类就可以利用激光控制核聚变反应,使核聚变按照人类的需要释放出相应的能量,从而获得可控的核聚变能源。
中国现在在激光核聚变研究领域处于世界前沿。
激光核聚变的基本原理嘿,朋友们!今天咱来聊聊激光核聚变这个超厉害的玩意儿。
你们知道吗,激光核聚变就像是一场超级能量的大聚会!想象一下,一堆小小的原子,就像一群调皮的小精灵,平时各自玩耍。
但在激光核聚变这里,它们被聚集到了一起,然后发生了神奇的变化。
这就好比一场盛大的音乐会,激光就像是那激昂的指挥棒。
一束束强烈的激光射向那些原子,就像指挥棒指挥着乐手们奏出震撼的乐章。
这些激光给予原子巨大的能量,让它们兴奋起来,开始相互碰撞、融合。
说起来,这可真不容易啊!要把这些原子恰到好处地“摆弄”好,需要极其精准的控制和高超的技术。
这可不是随随便便就能做到的,就像你要让一群调皮的孩子乖乖听话一样难。
在这个过程中,能量在不断地积聚和释放。
就好像是一个大力士在不断地积攒力量,然后突然爆发出来,那威力可不得了!这种能量的爆发,说不定将来能为我们提供取之不尽用之不竭的能源呢,那可真是太棒啦!那为什么要研究激光核聚变呢?这还用问吗?咱们现在对能源的需求那可是越来越大呀!传统的能源总会有用完的一天,那我们以后靠什么呢?激光核聚变不就是一个超级有希望的方向嘛!而且,这个研究可不光是为了能源哦。
它还能让我们更加深入地了解物质的本质,就像我们通过探索宇宙来了解我们生活的这个神奇世界一样。
你想想,如果我们真的掌握了激光核聚变的技术,那会给我们的生活带来多大的改变呀!我们再也不用为能源短缺而发愁啦,各种高科技产品都能得到更好的发展。
这难道不值得我们努力去追求吗?所以啊,激光核聚变真的是一个超级有趣又超级重要的领域。
虽然现在还有很多困难需要克服,还有很长的路要走,但我相信,只要科学家们不断努力,总有一天,我们一定能让激光核聚变为我们的生活带来巨大的改变!让我们一起期待那一天的到来吧!。
《激光应用简介》讲义一、激光的基本原理激光,这个听起来充满科技感的词汇,其实背后的原理并不复杂。
简单来说,激光就是通过受激辐射产生的一种光。
我们先来说说普通的光,比如太阳光或者灯光,它们是由大量的原子自发地发射光子形成的,这些光子的频率、相位和方向都是随机的。
而激光则不同,它是由原子在受到外界能量的激发后,处于一种特殊的高能态,然后在特定条件下,这些处于高能态的原子会同时向一个方向发射出频率、相位和方向都完全相同的光子,这就是受激辐射。
为了实现这种受激辐射,需要有一个能够提供能量的激励源,比如闪光灯或者电流,还要有一个能够让光子来回反射并不断增强的光学谐振腔。
二、激光的特点激光具有很多独特的特点,正是这些特点使得它在众多领域得到了广泛的应用。
首先,激光具有极高的方向性。
这意味着激光能够沿着一个非常狭窄的方向传播,几乎不会发散。
打个比方,如果把普通的灯光比作一把散弹枪射出的子弹,那么激光就像是一支精准的狙击步枪射出的子弹,能够准确地击中目标。
其次,激光具有很高的单色性。
也就是说,激光的颜色非常纯粹,几乎只包含一种波长的光。
这对于很多需要特定波长光的应用非常重要,比如在光谱分析中。
再者,激光的亮度非常高。
这使得它能够在很远的距离上仍然保持很强的能量,比如在激光测距和激光武器中。
最后,激光还具有相干性。
相干性使得激光的光波能够相互叠加,从而产生更强的光场。
三、激光在通信领域的应用在现代通信领域,激光发挥着至关重要的作用。
我们都知道,传统的通信方式,比如通过电线传输电信号或者通过无线电波传输信号,都存在着一些局限性。
比如,电线传输信号的距离有限,而且容易受到干扰;无线电波传输信号则容易受到其他电磁波的干扰,而且频谱资源有限。
而激光通信则可以有效地解决这些问题。
由于激光具有极高的方向性和单色性,所以可以在空间中实现非常精准的传输,不容易受到干扰。
而且激光通信的带宽非常宽,可以传输大量的数据,这对于高清视频、大数据等的传输非常有利。
激光原理及在生活中的应用激光的英文名是laster,是”Light amplification by stimulated emission of radiation”的缩写,意为“受激辐射式光频放大”。
激光的三个基本组成为:泵浦源.谐振腔.增益媒质,世界上第一台激光器是美国科学家梅曼于1960年研制成功的。
激光是通过原子受激辐射发光和共振放大形成的。
原子具有一些不连续分布的能电子,这些能电子在最靠原子核的轨道上转动时稳定的,这时原子所处的能级为基态。
当有外界能量传入,则电子运行轨道半径扩大,原子内能增加,被激发到能量更高能级,这时称之为激发态或高能态。
被激发到高能态的原子是不稳定的,总是力图回到低能级去,原子从高能级到低能级的过程成为跃迁。
原子在跃迁时其能量差以光的形式辐射出来,这就是原子发光,又称荧光。
如果在原子跃迁时受到外来光子的诱发,原子就会发射一个与入射光子的频率.相位.传播方向.偏振方向完全相同的光子,这就是受激辐射的光。
原子被激发到高能级后会很快跃迁回低能级,它停在高能级的时间称为原子在该能级的平均寿命。
原子在外来能量的激发下,使处在高能级的原子数大于低能级的原子数,这种状态称为粒子数反转。
这是,在外来光子的刺激下产生受激辐射发光,这些光子光学谐振腔的作用产生放大,受激辐射越来越强,光束密度不断增大,形成了激光。
激光与其他光相比,具有以下的特点:高亮度,高方向性,高单色性和高干涉性。
这些特点使激光得到了广泛的应用,激光在材料加工中的应用就是其应用的一个重要领域。
由于这四大特性,因此,就给激光加工带来了如下传统加工所不具备的优势,由于是无接触加工,并且激光束的能量及移动速度均可调,因此可以实现多种加工。
还可用来加工多种金属.非金属,特别是可以加工高硬度.高脆性及高熔点的材料。
激光加工过程中无刀具磨损,无切削力作用于工件,加工的工件热影响区小,工件热变形小,后续加工量小。
激光可通过透明介质对密闭容器内的工件进行各种加工。
激光核聚变激光核聚变(laser nuclear fusion )是以高功率激光作为驱动器的惯性约束核聚变。
在探索实现受控热核聚变反应过程中,随着激光技术的发展,1963 年苏联科学家N.巴索夫和1964年中国科学家王淦昌分别独立提出了用激光照射在聚变燃料靶上实现受控热核聚变反应的构想,开辟了实现受控热核聚变反应的新途径激光核聚变。
激光核聚变要把直径为1毫米的聚变燃料小球均匀加热到1 亿度,激光器的能量就必须大于1亿焦,这在技术上是很难做到的。
直到1972 年美国科学家J.纳科尔斯等人提出了向心爆聚原理以后,激光核聚变才成为受控热核聚变研究中与磁约束聚变平行发展的研究途径。
1、基本原理激光核聚变中的靶丸是球对称的。
球的中心区域(半径约为3毫米)充有低密度(W 1克/厘米3)的氘、氚气体。
球壳由烧蚀层和燃料层组成:烧蚀层的厚度为200—300微米,材料是二氧化硅等低Z (原子序数)材料;燃料层的厚度约300微米,材料是液态氘、氚,其质量约5毫克。
有的靶丸的中心区域是真空, 球壳由含有氘、氚元素的塑料组成。
有的靶丸则用固体氘、氚燃料,球壳由玻璃组成当激光对称照射在靶丸表面上时,烧蚀层表面材料便蒸发和电离,在靶丸周围形成等离子体。
激光束的部分能量在临界密度层处(该处的等离子体频率与入射的激光频率相等)被反射掉,另一部分能量则被等离子体吸收并加热等离子体。
等离子体的热量通过热传导穿过临界密度层向烧蚀层内传递,烧蚀层材料蒸发并向四周飞散产生反作用力(类似火箭推进原理),将靶丸球壳向靶心压缩(爆聚)产生传播的球形激波,使靶丸内氘、氚燃料的密度和温度增加,这种效应称为向心爆聚。
如果激光脉冲的波形选得合适,则向心传播的球形激波可会聚到靶丸球心区域,使球心区域一部分氘、氚燃料优先加热,形成热斑。
当热斑中的温度高到足以产生聚变反应时,则释放出的聚变能量就可驱动通过靶丸径向向外传播的超声热核爆炸波,并在靶丸物质移动之前就能将燃料层的聚变燃料加热并产生聚变反应,最后将烧蚀层毁掉。
因此,激光束的能量仅用于产生向心爆聚和加热靶心的热斑燃料上,不需将整个靶丸均匀加热到热核聚变温度,从而降低了对激光器功率的要求。
#如激光如实现激光核聚变有直接驱动法和间接驱动法两种:①直接驱动法是将激光束直接照射在靶丸表面上,驱动器大多是钕玻璃激光器。
优点是激光束的能量利用效率高,运行可靠,且可进行时空控制。
缺点是必须要求激光束均匀照射在靶丸表面上,否则会造成向心爆聚的不对称,还可能在烧蚀层等离子体中产生不稳定性,使靶壳破坏,造成靶壳和核聚变燃料相互混合而降低压缩(爆聚)效果。
此外激光功率的耦合效率(5%^ 10%和重复发射脉冲的频率(每秒输出 1 —10 个激光脉冲)都不够高。
研究中的新型激光驱动器有KrF准分子激光器及用激光二极管泵浦的固体激光器等。
KrF准分子激光器的优点是:波长较短,激光吸收效率高,波形整形能力强,输出脉冲幅度可变动范围大等。
但还存在诸多技术问题,如激光器的效率、脉冲的重复频率、光学传输的复杂性、激光器的可靠性与耐用性及高成本等。
激光泵浦的固体激光器的优点是重复频率高、效率高,通过变频可使波长变短,获得高功率输出,运行可靠等。
存在的问题是激光二极管造价高,并需要找到长寿命荧光的激光材料。
②间接驱动法是将含有聚变燃料的靶丸悬在一个用高Z材料(如金)做成的小腔内,激光束通过腔壁上的小孔照射在腔的内壁上(不是直接照射在靶丸上)。
腔壁表面物质吸收激光束的能量温度升高,产生软X射线。
在薄壁层热材料内,辐射和材料之间几乎是热平衡的,因而形成软X射线的辐射场。
辐射热波向冷壁传输,高Z冷壁被加热并发射软X射线,成为软X射线的再发射区。
软X射线均匀地照射在腔内靶丸上将其烧蚀,经过向心爆聚等过程产生热核聚变反应。
间接法的优点是对激光束光斑的均匀性要求不高,且软X射线能均匀辐照在靶丸表面上,实现对称爆聚。
缺点是激光通过时等离子体会驱动参量不稳定性,而且激光束能量的利用效率不及直接驱动法高。
2、应用结果当今世界上最大的激光核聚变装置当属美国加州美国国家点火装置(NIF它从1997年工程正式开始建设,2009年基本竣工,投资约合24亿英镑,占地约一个足球场大小。
“国家点火装置”产生的激光能量将是世界第二大激光器、罗切斯特大学的激光器的60倍。
科学家希望该激光器能模仿太阳中心的热和压力,用以创造核聚变反应。
它在2010年10月完成了其首次综合点火实验,激光系统向低温靶室发射了1兆焦激光能量,这已经是当时世界第二大的罗切斯特大学激光实验能量的30倍之多。
而在2012年3月22日整个装置所发射出的激光在经过最后一个聚焦透镜后,达到了2.03兆焦,在一举打破纪录的同时,也成为世界上首个2兆焦能量的紫外激光,其最终投向靶室的192束激光束射出了1.875兆焦(MJ的能量。
尽管超过了其1.8兆焦的设计能力,但激光系统并未有多余的损坏。
然而,NIF的进展也并非一帆风顺,它在对氢同位素进行加温加压的过程麻烦不断。
在一个叫做间接传动的过程中,多束激光束会从橡皮擦大小的“辐射空腔”的两个开口射入,使其内部产生X射线。
之后,由X射线来加热并挤压辐射空腔内的核燃料(氢同位素标靶),触发核聚变。
然而,在辐射空腔内部,激光与等离子体之间发生了意料之外的涡流交互作用,吸收了来自激光束的能量。
这会抵消很多能量,使NIF的激光能量输出达不到点燃反应堆所必须的极限阈值,所以至今NIF的科研人员还在不断攻关中。
美国国家点火装置(NIF)尽管我国在ICF领域的研究起步较晚,但是自从1964年王淦昌等科学家独立提出了惯性约束核聚变的概念以来,经过近半个世纪几代人的不懈努力,在惯性约束核聚变研究和高功率激光技术等方面取得了巨大的成就,先后建成了“六路装置”、“星光”、“天光”和“神光”等大型高功率激光装置(如下表所示)。
下面以我国的神光装置进行具体说明:神光-11964年,我国著名核物理学家王淦昌院士独立地提出激光聚变思想,并建议了具体方案•按照这一创议,在我国第一个激光专业研究所-中国科学院上海光机所开始了高功率激光驱动器的研制和应用并于1971年获得氘-氘碰撞中子. 1978年中国工程物理研究院和中国科学院携手合作,ICF研究进入了全面发展的新阶段。
近廿年来,致力于研制和应用钕玻璃激光驱动器-“神光”系列装置,取得了显著进展,推动了我国惯性约束聚变实验和理论研究,并在国际上占有一席之地。
1977年,上海光机所利用1千亿瓦的6束激光系统装置,对充气玻壳靶照射获得了近百倍的体压缩。
使我国的激光聚变研究进入了逐级论证向心聚爆原理的重要发展阶段,为以后长期的持续发展奠定了基础。
1980年,王淦昌提出建造脉冲功率为1万亿瓦固体激光装置的建议,称为激光12号实验装置(神光I)o 激光12号实验装置是建立在中国科学院上海光机所的一台大型高功率激光实验装置,位于上海市嘉定区清河路390号光机所内,1983年由上海光机所设计,总建筑面积4612平方米,为4层钢筋混凝土框架结构,总高度15米。
该装置输出两束口径为200mm勺强光束,每束激光的峰功率达1万亿瓦,脉冲宽度有1ns 和100ps两种,波长为1.053卩m的红外光,可倍频到0.53卩m绿光。
实验室内配有物理实验靶室及全套诊断测量设备,能开展激光加热与压缩等离子物理现象的研究和激光X光谱等基础研究工作。
1985年7月,激光12号装置按时建成并投入试运行。
试运行中成功地进行了三轮激光打靶试验,取得了很有价值的结果,达到了预期目标。
该装置是中国规模最大的高功率钕玻璃激光装置,在国际上也是为数不多的大型激光工程。
它由激光器系统、靶场系统、测量诊断系统和实验环境工程系统组成。
输出激光总功率达1万亿瓦量级,而激光时间只有一秒钟的十亿分之一到百亿分之一。
可用透镜聚焦到50毫微米的尺寸上,能产生10万亿亿瓦/厘米2的功率密度。
将这样的光束聚焦在物质的表面,可以产生上千万度的高温,并由此产生强大的冲击波和反冲击压力。
该装置的高精度靶场系统,能适应0.1毫米量级的微球靶、黑洞靶、台阶靶、各类X光靶等多种靶型的实验需要,并具有单束、双束及两路并束激光打靶的功能,为进行激光核聚变新能源研究及其他多种物理研究得供了重要实验手段。
1987年6月通过国家级的鉴定。
它的建成为进行世界前沿领域的激光物理试验提供了有利的手段,对尖端科研和国民经济建设均具有重要意义。
1986年夏天,张爱萍将军为激光12号实验装置亲笔题词“神光”。
于是,该装置正式命名为神光-I。
1989年起,神光I 直接驱动获5000000中子产额,间接驱动获10000中子产额,冲击波压强达0.8TPa,获近衍射极限类氖锗X光激光增益饱和。
1990年,神光I获得国家科技进步奖一等奖。
神光-n1993年,国家“ 863”计划确立了惯性约束聚变主题,进一步推动了国家惯性约束聚变研究和高功率激光技术的发展。
1994年,神光-I退役。
神光-I连续运行8年,在激光惯性约束核聚变和X射线激光等前沿领域取得了一批国际一流水平的物理成果。
1994年5月18日,神光n装置立项,工程正式启动,规模比神光-I装置扩大4倍。
神光n装置采用了国产高性能元器件,独立自主解决了一系列的科学技术难题,达到国际最先进的高功率固体激光驱动器水平,实现我国这一领域新的跨越。
该系统由激光器系统、靶场系统、能源系统、光路自动准直系统、激光参数测量系统以及环境、质量保障等系统组成,集成了数百台套的各类激光单元或组件,在空间排成8路激光放大链,技术参数与当今世界上最先进的在运行的美国OMEG装置相当。
2000年,神光n装置8路基频功率达到8万亿瓦,开始试运行打靶。
2000年起,直接驱动获40亿中子产额,间接驱动获1亿中子产额,直接驱动冲击波压强达1.5TPa,间接驱动冲击波压强达3.7TPa。
2001年8月,神光n装置建成,总输出能量达到6千焦耳/纳秒,或8万亿瓦/ 100皮秒,总体性能达到国际同类装置的先进水平。
“神光n”的数百台光学设备集成在一个足球场大小的空间内。
神光n能同步发射8束激光,在约150米的光程内逐级放大:每束激光的口径能从5毫米扩为近240毫米,输出能量从几十个微焦耳增至750焦耳/束。
当8束强激光通过空间立体排布的放大链聚集到一个小小的燃料靶球时,在十亿分之一秒的超短瞬间内可发射出相当于全球电网电力总和数倍的强大功率,从而释放出极端压力和高温,辐照充满热核燃料气体的玻璃球壳,急速压缩燃料气体,使它瞬间达到极高的密度和温度,从而引发热核聚变。
神光n已实现“全光路自动准值定位”,实验中能及时纠正因震动和温度变化而带来的仪器微偏,使输出激光经聚焦后可精确穿过一个约0.3毫米的小孔,仅比一根头发丝略粗一点。