初二美术:全等三角形经典模型及例题详解
- 格式:docx
- 大小:36.86 KB
- 文档页数:4
专题03全等三角形的六种模型全梳理几何探究类问题一直属于考试压轴题范围,在三角形这一章,压轴题主要考查是证明三角形各种模型,或证明线段数量关系等,接来下我们针对其做出详细分析与梳理。
类型一、倍长中线模型目的:①构造出一组全等三角形;②构造出一组平行线。
将分散的条件集中到一个三角形中。
如图1,ABC 中,若86AB AC ==,,求BC 边上的中线小明在组内经过合作交流,得到了如下的解决方法:如图连接BE .请根据小明的方法思考:(1)如图2,由已知和作图能得到ADC EDB ≌△△A .SSS B .SAS C .AAS D .ASA(2)如图2,AD 长的取值范围是.(2)根据全等三角形的性质得到6AC BE ==,由三角形三边关系得到AB BE AE AB BE -<<+,即可求出17AD <<;(3)延长AD 到点M ,使AD DM =,连接BM ,证明ADC MDB △△≌,得到BM AC CAD M =∠=∠,,由AE EF =得到CAD AFE ∠=∠,进而推出BF BM =,即可证明AC BF =.【详解】解:(1)如图2,延长AD 到点E ,使DE AD =,连接BE .∵AD 为BC 的中线,∴BD CD =,又∵AD DE ADC BDE =∠=∠,,∴()SAS ADC EDB ≌△△,故答案为:B ;(2)解:∵ADC EDB ≌△△,∴6AC BE ==,在ABE 中,AB BE AE AB BE -<<+,∴86286AD -<<+,∴17AD <<,故答案为:C ;(3)证明:延长AD 到点M ,使AD DM =,连接BM ,∵AD 是ABC 中线,∴CD BD =,∵在ADC △和MDB △中,DC DB ADC MDB AD HD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS ADC MDB ≌△△,∴BM AC CAD M =∠=∠,,∵AE EF =,(1)如图1,求证:12BF AD =;(2)将DCE △绕C 点旋转到如图2所示的位置,连接,AE BD ,过C 点作CM ⊥①探究AE 和BD 的关系,并说明理由;②连接FC ,求证:F ,C ,M 三点共线.【答案】(1)见解析(2)①,AE BD AE BD =⊥,理由见解析②见解析【分析】(1)证明≌ACD BCE V V ,得到AD BE =,再根据点F 为BE 中点,即可得证;则:AGB CBD BHG ∠=∠+∠=∠∵CBD EAC ∠=∠,∴90BHG ACB ∠=∠=︒,∴AE BD ⊥,综上:,AE BD AE BD =⊥;②延长CF 至点P ,使PF CF =∵F 为BE 中点,∴BF FE =,∴()SAS BFP EFC ≌,∴,BP CE BPF ECF =∠=∠,∴CE BP ,∴180CBP BCE ∠+∠=︒,∵360180BCE ACD ACB DCE ∠+∠=︒-∠-∠=︒,∴CBP ACD ∠=∠,又,CE CD BP AC BC ===,∴()SAS PBC DCA ≌,∴BCP CAD ∠=∠,延长FC 交AD 于点N ,则:18090BCP ACN ACB ∠+∠=︒-∠=︒,∴90CAD ACN ∠+∠=︒,∴90ANC ∠=︒,∴CN AD ⊥,∵CM AD ⊥,∴点,M N 重合,即:F ,C ,M 三点共线.【点睛】本题考查全等三角形的判定和性质,等腰三角形判定和性质.熟练掌握手拉手全等模型,倍长中线法构造全等三角形,是解题的关键.【变式训练1】如图,ABC 中,BD DC AC ==,E 是DC 的中点,求证:2AB AE =.【答案】见解析【分析】利用中线加倍证DEF CEA △≌△(SAS ),可得DF AC BD ==,FDE C ∠=∠,由DC AC =,可得ADC CAD ∠=∠进而可证ADF ADB ∠=∠.,再证ADB ADF △≌△(SAS )即可.【详解】证明:延长AE 到F ,使EF AE =,连结DF ,∵E 是DC 中点,∴DE CE =,∴在DEF 和CEA 中,DE CE DEF CEA EF EA =⎧⎪∠=∠⎨⎪=⎩,∴DEF CEA △≌△(SAS ),∴DF AC BD ==,FDE C ∠=∠,∵DC AC =,∴ADC CAD ∠=∠,又∵ADB C CAD ∠=∠+∠,ADF FDE ADC ∠=∠+∠,∴ADF ADB ∠=∠,在ADB 和ADF △中,AD AD ADB ADF DB DF =⎧⎪∠=∠⎨⎪=⎩,∴ADB ADF △≌△(SAS ),∴2AB AF AE ==.【点睛】本题考查中线加倍构图,三角形全等判定与性质,等腰三角形性质,掌握中线加倍构图,三角形全等判定与性质,等腰三角形性质是解题关键.【变式训练2】(1)如图1,已知ABC 中,AD 是中线,求证:2AB AC AD +>;(2)如图2,在ABC 中,D ,E 是BC 的三等分点,求证:AB AC AD AE +>+;(3)如图3,在ABC 中,D ,E 在边BC 上,且BD CE =.求证:AB AC AD AE +>+.【答案】(1)见解析;(2)见解析;(3)见解析【分析】(1)利用“倍长中线”法,延长AD ,然后通过全等以及三角形的三边关系证明即可;(2)取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论;(3)同(2)处理方式一样,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,结合“倍长中线”思想证明全等后,结合三角形的三边关系建立不等式证明即可得出结论.【详解】证:(1)如图所示,延长AD 至P 点,使得AD =PD ,连接CP ,∵AD 是△ABC 的中线,∴D 为BC 的中点,BD =CD ,在△ABD 与△PCD 中,BD CD ADB PDC AD PD =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△PCD (SAS ),∴AB =CP ,在△APC 中,由三边关系可得AC +PC >AP ,∴2AB AC AD +>;(2)如图所示,取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,∵H 为DE 中点,D 、E 为BC 三等分点,∴DH =EH ,BD =DE =CE ,∴DH =CH ,在△ABH 和△QCH 中,BH CH BHA CHQ AH QH =⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≌△QCH (SAS ),同理可得:△ADH ≌△QEH ,∴AB =CQ ,AD =EQ ,此时,延长AE ,交CQ 于K 点,∵AC +CQ =AC +CK +QK ,AC +CK >AK ,∴AC +CQ >AK +QK ,又∵AK +QK =AE +EK +QK ,EK +QK >QE ,∴AK +QK >AE +QE ,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB AC AD AE +>+;(3)如图所示,取DE 中点M ,连接AM 并延长至N 点,使得AM =NM ,连接NE ,CE ,∵M 为DE 中点,∴DM =EM ,∵BD =CE ,∴BM =CM ,在△ABM 和△NCM 中,BM CM BMA CMN AM NM =⎧⎪∠=∠⎨⎪=⎩∴△ABM ≌△NCM (SAS ),同理可证△ADM ≌△NEM ,∴AB =NC ,AD =NE ,此时,延长AE ,交CN 于T 点,∵AC +CN =AC +CT +NT ,AC +CT >AT ,∴AC +CN >AT +NT ,又∵AT +NT =AE +ET +NT ,ET +NT >NE ,∴AT +NT >AE +NE ,∴AC +CN >AT +NT >AE +NE ,∵AB =NC ,AD =NE ,∴AB AC AD AE +>+.【点睛】本题考查全等三角形证明问题中辅助线的添加,掌握“倍长中线”的基本思想,以及熟练运用三角形的三边关系是解题关键.【答案】(1)1.5 6.5AE <<;(2)见解析;(3)BE DF EF +=,理由见解析【分析】(1)如图①:将ACD △绕着点D 逆时针旋转180 得到EBD △可得BDE ≅ 得出5BE AC ==,然后根据三角形的三边关系求出AE 的取值范围,进而求得AD 范围;(2)如图②:FDC △绕着点D 旋转180︒得到NDB 可得BND CFD ≅ ,得出BN∴1.5 6.5AD <<;故答案为1.5 6.5AD <<;(2)证明:如图②:FDC △绕着点D 旋转180︒得到NDB∴BND CFD ≅ (SAS ),∴BN CF =,DN DF=∵DE DF⊥∴EN EF =,在BNE 中,由三角形的三边关系得:BE BN EN +>,∴BE CF EF +>;(3)BE DF EF +=,理由如下:如图③,将DCF 绕着点C 按逆时针方向旋转100︒∴△DCF ≌△BCH ,∴100CH CF DCB FCH ∠∠=︒=,=∴HBC D DF BH∠∠==,∵180ABC D ∠+∠︒=∴180HBC ABC ∠+∠︒=,∴点A 、B 、H 三点共线∵100FCH ∠=︒,50FCE ∠=︒,∴50ECH ∠=︒∴FCE ECH ∠∠=,在HCE 和FCE △中,===CF CH ECF ECH CE CE ∠∠⎧⎪⎨⎪⎩,∴HCE FCE ≌ (SAS )∴EH EF =,∵BE BH EH DF BH+==,∴BE DF EF +=.【点睛】本题属于三角形综合题,主要考查对全等三角形的性质和判定、三角形的三边关系定理、旋转的性质等知识点,通过旋转得到构造全等三角形是解答本题的关键.类型二、截长补短模型截长补短法使用范围:线段和差的证明(往往需证2次全等)(1)求证:CD BC DE=+;(2)若75B∠=︒,求E∠的度数.【答案】(1)见解析(2)105︒【分析】(1)在CD上截取CF∵CA平分BCD∠,∴BCA FCA∠=∠.在BCAV和FCA△中,⎧⎪∠⎨⎪⎩,∠=︒BAC60【答案】(1)5.8;(2)4.3【分析】(1)由已知条件和辅助线的作法,证得△ACD≌△ECD,得到由于∠A=2∠B,推出∠DEC=2∠B,等量代换得到∠B=∠EDB形,得出AC =CE =3.6,DE =BE =2.2,相加可得BC 的长;(2)在BA 边上取点E ,使BE =BC =2,连接DE ,得到△DEB ≌△DBC (SAS ),在DA 边上取点F ,使DF =DB ,连接FE ,得到△BDE ≌△FDE ,即可推出结论.【详解】解:(1)如图2,在BC 边上取点E ,使EC =AC ,连接DE .在△ACD 与△ECD 中,AC CE ACD ECD CD CD =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△ECD (SAS ),∴AD =DE ,∠A =∠DEC ,∵∠A =2∠B ,∴∠DEC =2∠B ,∴∠B =∠EDB ,∴△BDE 是等腰三角形;∴BE =DE =AD =2.2,AC =EC =3.6,∴BC 的长为5.8;(2)∵△ABC 中,AB =AC ,∠A =20°,∴∠ABC =∠C =80°,∵BD 平分∠B ,∴∠1=∠2=40°,∠BDC =60°,在BA 边上取点E ,使BE =BC =2,连接DE ,在△DEB 和△DBC 中,12BE BC BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△DEB ≌△DBC (SAS ),∴∠BED =∠C =80°,∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF =DB ,连接FE ,同理可得△BDE ≌△FDE ,∴∠5=∠1=40°,BE =EF =2,∵∠A =20°,∴∠6=20°,∴AF =EF =2,∵BD =DF =2.3,∴AD =BD +BC =4.3.【点睛】本题考查了全等三角形的性质与判定,等腰三角形的性质,熟悉这些定理是解决本题的关键.类型三、一线三等角模型应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
专题全等三角形六种基本模型通用的解题思路:模型一:一线三等角模型一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。
或叫“K字模型”。
三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。
一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”模型二:手拉手模型--旋转型全等一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;题型三:倍长中线模型构造全等三角形倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。
常用于构造全等三角形。
中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明) (注:一般都是原题已经有中线时用)。
三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD题型四:平行线+线段中点构造全等模型题型五:等腰三角形中的半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。
解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。
(完整)人教版八年级上册12.2全等三角形常见模型讲义设计(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)人教版八年级上册12.2全等三角形常见模型讲义设计(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)人教版八年级上册12.2全等三角形常见模型讲义设计(word版可编辑修改)的全部内容。
全等三角形常见模型要点梳理要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边类型一:角平分线模型应用1.角平分性质模型:(利用角平分线的性质)辅助线:过点G 作GE ⊥射线AC一般三角形 直角三角形 判定边角边(SAS )角边角(ASA)角角边(AAS)边边边(SSS )两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL )性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等) 备注判定三角形全等必须有一组对应边相等例题解析例1:(1)如图1,在△ABC 中,∠C=90°,AD 平分∠CAB,BC=6cm ,BD=4cm ,那么点D 到直线AB 的距离是 cm 。
(2)如图2,已知,∠1=∠2,∠3=∠4,求证:AP 平分∠BAC 。
图1图2【答案】①2 (提示:作DE ⊥AB 交AB 于点E )②21∠=∠ ,PN PM =∴,43∠=∠ ,PQ PN =∴,BAC PA PQ PM ∠∴=∴平分,。
初二暑期·第2讲·尖子班·学生版爸爸怎么样啦?漫画释义满分晋级全等中的基本模型三角形5级 全等中的 基本模型三角形6级 特殊三角形之 等腰三角形 三角形7级 倍长中线与 截长补短暑期班 第二讲暑期班 第四讲秋季班 第二讲知识互联网模块一平移型全等知识导航把一个图形经过平移、翻折、旋转后,它们的位置虽然变化了,但是形状、大小都没有改变,即平移、翻折、旋转前后的图形全等. 我们把平移、翻折(轴对称)、旋转称为几何变换. 这一讲我们就来学习基本变换下的全等三角形.常见平移模型初二暑期·第2讲·尖子班·学生版初二暑期·第2讲·尖子班·学生版【引例】如图,A E F B 、、、四点在一条直线上,AC CE ⊥,BD DF ⊥,AE BF =,AC BD =.求证:CF DE =【解析】 ∵AC CE ⊥,BD DF ⊥∴90ACE BDF ∠=∠=︒ 在Rt ACE △和Rt BDF △中AC BD AE BF=⎧⎨=⎩ ∴()Rt Rt HL ACE BDF △≌△ ∴CE DF =,AEC BFD ∠=∠ ∴CEF DFE ∠=∠ 在CEF △和DFE △中 CE DF CEF DFE EF FE =⎧⎪∠=∠⎨⎪=⎩∴CEF DFE △≌△ ∴CF DE =【例1】 如图1,A 、B 、C 、D 在同一直线上,AB CD =,DE AF ∥,且.DE AF =求证:AFC DEB △≌△如果将BD 沿着AC 边的方向平行移动,图2,B 点与C 点重合时;图3,B 点在C 点右侧时,其余条件不变,结论是否成立,如果成立,请选择一种情况请予证明;如果不成立,请说明理由.图1F EDC BA图2FE D(C )B A图3FEDCB A夯实基础能力提升F ED C B A初二暑期·第2讲·尖子班·学生版常见轴对称模型【例2】 ⑴如图,△ABC 中,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,BD和CE 交于点O ,AO 的延长线交BC 于F ,则图中全等直角三角形的对数为( )A.3对B.4对C.5对D.6对⑵如图,ABE △和ADC △是ABC △分别沿着AB ,AC 翻折到同一平面内形成的.若1:2:315:2:1∠∠∠=,则4∠=________.【例3】 如图,AB AC =,D 、E 分别是AB 、AC 的中点,AM CD ⊥于M ,AN BE ⊥于N .求证:AM AN =.夯实基础能力提升知识导航模块二 对称型全等E D N M C B A 4321EDCBA D O FE CBA初二暑期·第2讲·尖子班·学生版常见旋转模型:【引例】如图,在ABC △中,::3:5:10A B ACB ∠∠∠=,若将ACB△绕点C 逆时针旋转,使旋转后的A B C ''△中的顶点B '在原三角形的边AC 的延长线上时,求BCA '∠的度数.【解析】 ∵::3:5:10A B ACB ∠∠∠=∴1018010018ACB ∠=︒⨯=︒ ∵由ACB △绕点C 旋转得到A'B'C △ ∴100A'CB'∠=︒∵180ACB A'CB'BCA'∠+∠-∠=︒ ∴100218020BCA'∠=︒⨯-︒=︒【教师铺垫】如图,点C 为线段AB 上一点,ACM △、CBN △是等边三角形.请你证明:⑴AN BM =; ⑵60MFA ∠=; ⑶DEC △为等边三角形; ⑷DE AB ∥.能力提升夯实基础知识导航模块三 旋转型全等A'B'CBAM D NEC BFA初二暑期·第2讲·尖子班·学生版【例4】 如图1,若△ABC 和△ADE 为等边三角形,M 、N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.⑴当把△ADE 绕A 点旋转到图2的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;⑵当把△ADE 绕A 点旋转到图3的位置时,△AMN 是否还是等边三角形?若是,请给出证明;若不是,请说明理由.图2图3图1MNMN N MA BCDE ABC D E ABC ED初二暑期·第2讲·尖子班·学生版【例5】 如图1,若四边形ABCD 、GFED 都是正方形,显然图中有AG =CE ,AG ⊥CE .⑴当正方形GFED 绕D 旋转到如图2的位置时,AG =CE 是否成立?若成立,请给出证明,若不成立,请说明理由;⑵当正方形GFED 绕D 旋转到B ,D ,G 在一条直线 (如图3)上时,连结CE ,设CE 分别交AG 、AD 于P 、H ,求证:AG ⊥CE .PHG GG图1图3图2FABCEF ABC DEABC DEF D辅助线:在几何学中用来帮助解答疑难几何图形问题,在原图基础之上另外所作的具有极大价值的直线或者线段. 添辅助线的作用:凸显和集散1. 揭示图形中隐含的性质:当条件与结论间的逻辑关系不明朗时,通过添加适当的辅助线,将条件中隐含的有关图形的性质充分揭示出来,以便取得过渡性的推论,达到推知识导航模块四 辅助线添加初步初二暑期·第2讲·尖子班·学生版导出结论的目的.2. 聚拢集中原则:通过添置适当的辅助线,将图形中分散、远离的元素,通过变换和转化,使他们相对集中,聚拢到有关图形上来,使题设条件与结论建立逻辑关系,从而推导出要求的结论.3. 化繁为简原则:对一类几何命题,其题设条件与结论之间在已知条件所给的图形中,其逻辑关系不明朗,通过添置适当辅助线,把复杂图形分解成简单图形,从而达到化繁为简、化难为易的目的.4. 发挥特殊点、线的作用:在题设条件所给的图形中,对尚未直接显现出来的各元素,通过添置适当辅助线,将那些特殊点、特殊线、特殊图形性质恰当揭示出来,并充分发挥这些特殊点、线的作用,达到化难为易、导出结论的目的.5. 构造图形的作用:对一类几何证明题,常须用到某种图形,这种图形在题设条件所给的图形中却没有发现,必须添置这些图形,才能导出结论,常用方法有构造出线段和角的和差倍分、新的三角形、直角三角形、等腰三角形等.【例6】 如图△ABC 中,AD 平分∠BAC ,DG ⊥BC 且平分BC ,DE ⊥AB 于E ,DF ⊥AC 于F .⑴说明BE =CF 的理由;⑵如果AB =a ,AC =b ,求AE 、BE 的长.能力提升GDABC EF初二暑期·第2讲·尖子班·学生版【例7】 如图1,已知ABC △中,1AB BC ==,90ABC =︒∠,把一块含30︒角的直角三角板DEF 的直角顶点D 放在AC 的中点上(直角三角板的短直角边为DE ,长直角边为DF ),将直角三角板DEF 绕D 点按逆时针方向旋转.直线DE 交直线AB 于M ,直线DF 交直线BC 于N . ⑴ 在图1中, ①证明DM DN =;②在这一旋转过程中,直角三角板DEF 与ABC △的重叠部分为四边形DMBN ,请说明四边形DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的?若不发生变化,求出其面积;⑵ 继续旋转至如图2的位置,DM DN =是否仍然成立?若成立,请给出证明;若不成立,请说明理由;⑶ 继续旋转至如图3的位置,DM DN =是否仍然成立?请写出结论,不用证明.图3图2图1FFFEEEDDCCBB AA初二暑期·第2讲·尖子班·学生版【例8】 如图所示:AF CD =,BC EF =,AB DE =,A D ∠=∠.求证:BC EF ∥.探索创新A BCD EF初二暑期·第2讲·尖子班·学生版训练1. 如图所示:AB AC =,AD AE =,CD 、BE 相交于点O .求证:AO 平分DAE ∠.训练2. 如图,BD CE 、分别是ABC △的边AC 和AB 边上的高,点P 在BD的延长线上,BP AC =,点Q 在CE 上,CQ AB =.求证:⑴AP AQ =;⑵AP AQ ⊥.训练3. 在凸五边形中,B E ∠=∠,C D ∠=∠,BC DE =, M 为CD 中点.求证:AM CD ⊥.训练4. 如图,AB AE =,ABC AED ∠=∠,BC ED =,点F 是CD 的中点.求证:AF CD ⊥.F EDC BA思维拓展训练(选讲)A B C DE OQ P EDCB A M E DC B A初二暑期·第2讲·尖子班·学生版题型一 平移型全等 巩固练习【练习1】 ⑴ 如图⑴,若AB CD =,A E F C 、、、在一条直线上,AE CF =,过E F 、分别作DE AC ⊥,BF AC ⊥.求证:BD 平分EF .⑵ 若将DEC △的边EC 沿AC 方向移动到图⑵的位置时,其他条件不变,上述结论是否成立?请说明理由.(2)(1)ABCDE F GGFEDC BA题型二 对称型全等 巩固练习【练习2】 如图,已知Rt △ABC ≌Rt △ADE ,90ABC ADE ∠=∠=︒,BC 与DE 相交于点F ,连接CD 、EB . ⑴图中还有几对全等三角形,请你一一列举; ⑵求证:CF=EF .实战演练F E D C B A初二暑期·第2讲·尖子班·学生版题型三 旋转型全等 巩固练习【练习3】 如图,在Rt ABC △中,AB AC AD BC =⊥,,垂足为D .E F 、分别是CD AD 、上的点,且CE AF =.如果62AED ∠=︒,那 么DBF ∠=__________.【练习4】 如图,已知ABD △和AEC △都是等边三角形,AF CD ⊥于F ,AH BE ⊥于H ,请问:AF 和AH 有何 关系?请说明理由.题型四 辅助线添加初步 巩固练习 【练习5】 如图①,一等腰直角三角尺GEF 的两条直角边与正方形ABCD 的两条边分别重合在一起.现正方形ABCD 保持不动,将三角尺GEF 绕斜边EF 的中点O (点O 也是BD 中点)按顺时针方向旋转.⑴ 如图②,当EF 与AB 相交于点M ,GF 与BD 相交于点N 时,通过观察或测量BM ,FN 的长度,猜想BM ,FN 满足的数量关系,并证明你的猜想;⑵ 若三角尺GEF 旋转到如图③所示的位置时,线段FE 的延长线与AB 的延长线相交于点M ,线段BD 的延长线与G 的延长线相交于点N ,此时,⑴中的猜想还成立吗?若成立,请证明;若不成立,请说明理由.③②①OOCB DAFGENMEGFADBCCA(G)F EDBA O H FED C B A。
模型构建专题:全等三角形中的常见七种解题模型【考点导航】目录【典型例题】【模型一平移型模型】【模型二轴对称型模型】【模型三四边形中构造全等三角形解题】【模型四一线三等角模型】【模型五三垂直模型】【模型六旋转型模型】【模型七倍长中线模型】【典型例题】【模型一平移型模型】1(2023秋·江苏淮安·八年级淮安市浦东实验中学校考开学考试)如图,点E,C在线段BF上,AB∥DE,AB=DE,BE=CF.(1)求证:△ABC≌△DEF;(2)若∠B=40°,∠D=70°,求∠ACF的度数.【变式训练】1(2023秋·浙江·八年级专题练习)如图,在△ACD和△CBE中,点A、B、C在一条直线上,∠D=∠E,AD⎳EC,AD=EC.求证:△ACD≌△CBE.2(2023秋·浙江·八年级专题练习)如图,已知△ABC≌△DEF,点B,E,C,F在同一条直线上.(1)若∠BED=140°,∠D=75°,求∠ACB的度数;(2)若BE=2,EC=3,求BF的长.3(2023春·山西太原·八年级统考期中)综合与实践--探索图形平移中的数学问题问题情境:如图1,已知△ABC是等边三角形,AB=6,点D是AC边的中点,以AD为边,在△ABC外部作等边三角形ADE.操作探究:将△ADE从图1的位置开始,沿射线AC方向平移,点A,D,E的对应点分别为点A ,D ,E .(1)如图2,善思小组的同学画出了BA =BD 时的情形,求此时△ADE平移的距离;(2)如图3,点F是BC的中点,在△ADE平移过程中,连接E F 交射线AC于点O,敏学小组的同学发现OE =OF始终成立!请你证明这一结论;拓展延伸:(3)请从A,B两题中任选一题作答,我选择题.A.在△ADE平移的过程中,直接写出以F,A ,D 为顶点的三角形成为直角三角形时,△ADE平移的距离.B.在△ADE平移的过程中,直接写出以F,D ,E 为顶点的三角形成为直角三角形时,△ADE平移的距离.【模型二轴对称型模型】1(2023秋·内蒙古呼伦贝尔·八年级校考期中)如图,AB=AD,BC=DC,求证:∠B=∠D.【变式训练】1(2023春·四川成都·七年级成都嘉祥外国语学校校考期中)如图,在中,,是的中点,,且,求证:.2(2023秋·河南南阳·八年级统考期末)如图,点E、F是线段上的两个点,与交于点M.已知,,.(1)求证:;(2)若.求证:是等边三角形.3(2023春·湖南益阳·八年级校考期中)两组邻边分别相等的四边形我们称它为筝形.如图,在筝形中,,,、相交于点,求证:(1);(2).【模型三四边形中构造全等三角形解题】中点.求证:DE=DF.【变式训练】这种两组邻边分别相等的四边形叫做筝形.根据学习平行四边形性质的经验,小文对筝形的性质进行了探究.(1)小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等”.请你帮他将证明过程补充完整.已知:如图,在筝形中,,.求证:.证明:(2)小文连接筝形的两条对角线,探究得到筝形对角线的性质是.(写出一条即可)2如图,在四边形ABCD中,CB⊥AB于点B,CD⊥AD于点D,点E,F分别在AB,AD上,AE =AF,CE=CF.(1)若AE=8,CD=6,求四边形AECF的面积;(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想.3在四边形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一点,F是AB延长线上一点,且CE=BF.(1)试说明:DE=DF:(2)在图中,若G在AB上且∠EDG=60°,试猜想CE,EG,BG之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB=60°,∠CDB=120°改为∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG满足什么条件时,(2)中结论仍然成立?【模型四一线三等角模型】1(2023春·广西南宁·七年级南宁市天桃实验学校校考期末)(1)问题发现:如图1,射线AE在∠MAN的内部,点B、C分别在∠MAN的边AM、AN上,且AB=AC,若∠BAC=∠BFE=∠CDE=90°,求证:△ABF≌△CAD;(2)类比探究:如图2,AB=AC,且∠BAC=∠BFE=∠CDE.(1)中的结论是否仍然成立,请说明理由;(3)拓展延伸:如图3,在△ABC中,AB=AC,AB>BC.点E在BC边上,CE=2BE,点D、F在线段AE上,∠BAC=∠BFE=∠CDE.若△ABC的面积为15,DE=2AD,求△BEF与△CDE的面积之比.【变式训练】1已知CD是经过∠BCA顶点C的一条直线,CA=CB.E、F分别是直线CD上两点,且∠BEC=∠CFA=∠α.(1)若直线CD经过∠BCA的内部,且E、F在射线CD上,请解决下面问题:①如图1,若∠BCA=90°,∠α=90°,求证:BE=CF;②如图2,若∠α+∠BCA=180°,探索三条线段EF,BE,AF的数量关系,并证明你的结论;(2)如图3,若直线CD经过∠BCA的外部,∠α=∠BCA,题(1)②中的结论是否仍然成立?若成立,请给予证明;若不成立,请你写出正确的结论再给予证明.2(2023春·上海·七年级专题练习)在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180°时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)应用:如图3,在△ABC中,∠BAC是钝角,AB=AC,∠BAD<∠CAE,∠BDA=∠AEC=∠BAC,直线m与CB的延长线交于点F,若BC=3FB,△ABC的面积是12,求△FBD与△ACE的面积之和.【模型五三垂直模型】1(2023春·辽宁本溪·七年级统考期末)已知∠ACB=90°,AC=BC,AD⊥NM,BE⊥NM,垂足分别为点D,E.(1)如图①,求证:AD=BE+DE(2)如图②,(1)中的结论还成立吗?如果不成立,请写出线段AD,BE,DE之间的数量关系,并说明理由.【变式训练】1(2023春·甘肃酒泉·八年级校联考期末)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD-BE;2如图,已知:在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,AD⊥MN,BE⊥MN.(1)当直线MN绕点C旋转到图(1)的位置时,求证:△ADC≅△CEB;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问DE、AD、BE具有怎样的等量关系?请直接写出这个等量关系:.【模型六旋转型模型】1在Rt△ABC中,∠ACB=90°,CA=CB,点D是直线AB上的一点,连接CD,将线段CD绕点C逆时针旋转90°,得到线段CE,连接EB.(1)操作发现如图1,当点D在线段AB上时,请你直接写出AB与BE的位置关系为;线段BD、AB、EB的数量关系为;(2)猜想论证当点D在直线AB上运动时,如图2,是点D在射线AB上,如图3,是点D在射线BA上,请你写出这两种情况下,线段BD、AB、EB的数量关系,并对图2的结论进行证明;(3)拓展延伸若AB=5,BD=7,请你直接写出△ADE的面积.【变式训练】2(2023秋·湖南长沙·八年级长沙市湘郡培粹实验中学校考开学考试)【问题初探】△ABC和△DBE是两个都含有45°角的大小不同的直角三角板(1)当两个三角板如图(1)所示的位置摆放时,D 、B ,C 在同一直线上,连接AD 、CE ,请证明:AD =CE 【类比探究】(2)当三角板ABC 保持不动时,将三角板DBE 绕点B 顺时针旋转到如图(2)所示的位置,判断AD 与CE 的数量关系和位置关系,并说明理由.【拓展延伸】如图(3),在四边形ABCD 中,∠BAD =90°,AB =AD ,BC =34CD ,连接AC ,BD ,∠ACD =45°,A 到直线CD 的距离为7,请求出△BCD 的面积.3(2023·全国·九年级专题练习)阅读以下材料,并按要求完成相应的任务:从正方形的一个顶点引出夹角为45°的两条射线,并连接它们与该顶点的两对边的交点构成的基本平面几何模型称为半角模型.半角模型可证出多个几何结论,例如:如图1,在正方形ABCD 中,以A 为顶点的∠EAF =45°,AE 、AF 与BC 、CD 边分别交于E 、F 两点.易证得EF =BE +FD .大致证明思路:如图2,将△ADF 绕点A 顺时针旋转90°,得到△ABH ,由∠HBE =180°可得H 、B 、E 三点共线,∠HAE =∠EAF =45°,进而可证明△AEH ≌△AEF ,故EF =BE +DF .任务:如图3,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,∠BAD =120°,以A 为顶点的∠EAF =60°,AE 、AF 与BC 、CD 边分别交于E 、F 两点.请参照阅读材料中的解题方法,你认为结论EF =BE +DF 是否依然成立,若成立,请写出证明过程;若不成立,请说明理由.4(2023·山西大同·校联考模拟预测)综合与实践课上,李老师让同学们以“等腰直角三角形的旋转”为主题开展数学活动.数学兴趣小组将两块大小不同的等腰直角三角形AOB 和等腰直角三角形COD 按图1的方式摆放,∠AOB =∠COD =90°,随后保持△AOB 不动,将△COD 绕点O 按逆时针方向旋转α0°<α<90° ,连接BC ,AD ,延长BC 交AD 于点M .该数学兴趣小组进行如下探究,请你帮忙解答:,【初步探究】(1)如图1,直接写出线段BC 和AD 的关系:.(2)如图2,当CD∥BO时,则α=.【深入探究】(3)如图3,当0°<α<90°时,连接OM,兴趣小组认为不仅(1)中的结论仍然成立,而且在△COD旋转过程中,∠CMO的度数不发生变化,请给出推理过程并求出∠CMO的度数.【拓展延伸】(4)如图3,试探究线段AM,BM,OM,之间是否存在某种特定的数量关系,若存在,直接写出数量关系式;若不存在,请说明理由.【模型七倍长中线模型】1(2023春·全国·七年级专题练习)[阅读理解]课外兴趣小组活动时,老师提出了如下问题:如图1,在ΔABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图2,延长AD到点E,使DE=AD,连结BE,请根据小明的方法思考:(1)由已知和作图能得到△ADC≌△EDB,其理由是什么?(2)AD的取值范围是什么?[感悟]解题时,条件中出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和结论转化到一个三角形中.[问题解决](3)如图3,AD是ΔABC的中线,BE交AC于点F,且AE=EF,试说明AC=BF.【变式训练】1(2023春·四川达州·七年级四川省大竹中学校考期末)(1)阅读理解:如图①,在△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE,这样就把AB,,集中在中,利用三角形三边的关系可判断线段的取值范围是;则中线的取值范围是;(2)问题解决:如图②,在中,是边的中点,于点,交于点,交于点,连接,此时:与的大小关系,并说明理由.(3)问题拓展:如图③,在四边形中,,,,以为顶点作,边,分别交,于,两点,连接,此时:、与的数量关系2(2023春·江苏泰州·七年级统考期末)【发现问题】(1)数学活动课上,王老师提出了如下问题:如图1,在中,,,求边上的中线的取值范围.【探究方法】第一小组经过合作交流,得到了如下的解决方法:①延长到E,使得;②连接,通过三角形全等把、、转化在中;③利用三角形的三边关系可得的取值范围为,从而得到的取值范围是.方法总结:解题时,条件中若出现“中点”、“中线”字样,可以考虑倍长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(2)如图2,是的中线,是的中线,且,,下列四个选项中:直接写出所有正确选项的序号是.①②③④【问题拓展】(3)如图3,,,与互补,连接、,E 是的中点,求证:.(4)如图4,在(3)的条件下,若,延长交于点F ,,,则的面积是.。
全等三角形模型及习题练习第一部分全等模型图一、平移模型特征:可看成是三角形在一边所在直线上移动构成的,故在同一直线上的对应边的相等关系一般可由加(减)公共边证得,对应角的相等关系可由平行线的性质证得。
二、平行模型(X型)特征:平行线所形成的同位角、内错角相等三、折叠轴对称模型(翻转型,部分X型)特征:图形关于某一条直线对称,则这条直线两边的部分能完全重合,重合的顶点就是全等三角形的对应点。
图①中有公共角∠A;图②中对顶角相等(∠AOC=∠BOD);图③④中分别有公共边AB,BD四、旋转模型特征:可看成是以三角形某一个顶点为中心旋转构成的,故一般有一对相等的角隐含在对顶角、某些角的和或差中五、角平分线模型旋转有重叠特征:角平分线形成的两个角相等,若把角平分线看成一条公共边,在角的两边再截取相等的线段,就可根据SAS得到全等三角形(如图①,ΔA1BD1≌ΔC1BD1),或者利用角平分线上的点到角两边的距离相等找到一组相等的边,就可根据HL得到全等三角形(如图②,ΔA2BD2≌ΔC2BD2)六、双直角三角形模型特征:证明多数可以用到同(等)角的余角相等这个定理,相等的角就是对应角七、一线三等角模型(K型)特征:如图①,,三个等角指的是α(图②中,α=90°),利用外角定理可证得∠1=∠2或∠3=∠4第二部分精选例题例1.如图,已知AB∥CD,AD∥BC,F在DC的延长线上,AM=CF,FM 交DA的延长线上于E.交BC于N,求证:AE=CN.思路分析:欲证AE=CN.看它们在哪两个三角形中,设法证这两个三角形全等即可.结合图形可发现△AME≌△FCN可证.题设告知AM=CF,AD∥BC,AB∥CD.由两平行条件,可找两对角相等.∵∠1=∠2(对顶角相等)∴∠2=∠E(等量代换)∴AE=CN (全等三角形的对应边相等)例2.△ABC中,∠ACB=90°,AC=BC,过C的一条直线CE⊥AE于E,BD⊥CE的延长线于D,求证:AE=BD+DE.思路分析:从本例的结论知是求线段和的问题,由此入手,很难找到突破口.此时可迅速调整思维角度,可仔细观察图形,正确的图形是证题的“向导”,由此可发现△ACE与△CBD好像(猜测)全等.那么AE=CD=CE+DE.又BD=CE.那么,此时已水落石出.AC=BC(已知)∠1=∠3 (已证)∠AEC=∠CDB(已证)∴△ACE≌△CBD(AAS)∴BD=CE,AE=CD(全等三角形的对应边相等)∵AE=CE=CE+DE∴AE=BD+DE(等量代换)例3.如图,AD是△ABC的中线,DE,DF分别平分∠ADB和∠ADC,连接EF,求证:EF<BE+CF. 定对象:△ABC定角度:三角形全等分析:由结论EF<BE+CF很容易与定理“三角形两边之和大于第三边”联系在一块,观察图形,BE,CF,EF 条件分散,不在一个三角形中,必须设法(平移,旋转,翻转等)把三者集中在一个三角形中,是打开本例思路的关键.由角的平分线这一线索,可将△BDE沿角平分线翻转180°,即B点落在AD的点B'上(如图)(也就是在DA上截取DB'=BD),连结EB',B'F,此时△BDE与△B'DE完全重合,所以△BDE≌△B'DE(两个三角形能够完全重合就是全等三角形,所以BE=B'E(全等三角形的对应边相等).在△EFB'中,EF<B'E+B'F(三角形的两边之和大于第三边).∴EF<BE+CF(等量代换).例4 如图,已知CD⊥AB于D,BE⊥AC于E,△ABE≌△ACD,∠C= 20°,AB=10,AD= 4, G为AB延长线上一点.求∠EBG的度数和CE的长.定对象:如图定角度:三角形全等分析:(1)图中可分解出四组基本图形:有公共角的Rt△ACD 和Rt△ABE;△ABE≌△ACD,△ABE的外角∠EBG或∠ABE的邻补角∠EBG.例5已知:如图,△ABC≌△ADE,BC的延长线交DA于F,交 DE于G,∠ACB=105°,∠CAD=10°,∠D=25°.求∠EAC,∠DFB,∠DGB的度数.例6.在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E,若AB=20 cm,则△DBE的周长等于多少?分析:对象:△DBE的周长角度:(1)BD,DE,BE的长解:因为DE⊥AB,所以AED ACD∠=∠因为AD是∠BAC的平分线,所以EAD CAD≅则AE=AC ∠=∠又因为AD为公共边所以AED ACD DE=DC所以△DBE的周长=BE+DE+BD=AB-AE+BC=20例7如图13—3—8所示,已知在△ABC中,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F.求证:EF⊥AD.分析:对象:△ABC 角度:(1)AD是∠BAC的平分线,(2)DE⊥AB于E,DF⊥AC于F证明:因为DE⊥AB于E,DF⊥AC于F,所以0∠=∠=又因AED AFD90为AD是∠BAC的平分线,所以EAD FAD∠=∠由于AD是公共边所以AED AFD≅则AE=AF 因为AD是∠BAC的平分线所以EF⊥AD。
模型介绍全等三角形的模型种类多,其中有关中点的模型与垂直模型在前面的专题已经很详细的讲解,这里就不在重复。
模型一、截长补短模型①截长:在较长的线段上截取另外两条较短的线段。
如图所示,在BF上截取BM=DF,易证△BMC≌△DFC(SAS),则MC=FC=FG,∠BCM=∠DCF,可得△MCF为等腰直角三角形,又可证∠CFE=45°,∠CFG=90°∠CFG=∠MCF,FG∥CM,可得四边形CGFM为平行四边形,则CG=MF,于是BF=BM+MF=DF+CG②补短:选取两条较短线段中的一条进行延长,使得较短的两条线段共线并寻求解题突破。
如图所示,延长GC至N,使CN=DF,易证△CDF≌△BCN(SAS)可得CF=FG=BN,∠DFC=∠BNC=135°又知∠FGC=45°,可证BN∥FG,于是四边形BFGN为平行四边形,得BF=NG所以BF=NG=NC+CG=DF+CG模型二、平移全等模型模型三、对称全等模型模型四、旋转全等模型模型五、手拉手全等模型例题精讲模型一、截长补短模型【例1】.如图,AD⊥BC,AB+BD=DC,∠B=54°,则∠C=27°解:在DC上截取DE=BD,连接AE∵AD⊥BC,DE=BD∴AD是BE的垂直平分线∴AB=AE∴∠B=∠AEB=54°∵AB+BD=DC,DE+EC=DC∴AB=EC∴AE=EC∴∠C=∠EAC∵∠C+∠EAC=∠AEB=54°∴∠C=∠EAC=∠AEB=27°故答案为:27°变式训练【变式1-1】.如图,点P是△ABC三个内角的角平分线的交点,连接AP、BP、CP,∠ACB =60°,且CA+AP=BC,则∠CAB的度数为()A.60°B.70°C.80°D.90°解:如图,在BC上截取CE=AC,连接PE∵∠ACB=60°∴∠CAB+∠ABC=120°∵点P是△ABC三个内角的角平分线的交点∴∠CAP=∠BAP=∠CAB,∠ABP=∠CBP=∠ABC,∠ACP=∠BCP ∴∠ABP+∠BAP=60°∵CA=CE,∠ACP=∠BCP,CP=CP∴△ACP≌△ECP(SAS)∴AP=PE,∠CAP=∠CEP∵CA+AP=BC,且CB=CE+BE∴AP=BE∴BE=PE∴∠EPB=∠EBP∴∠PEC=∠EBP+∠EPB=2∠PBE=∠CAP∴∠PAB=2∠PBA,且∠ABP+∠BAP=60°∴∠PAB=40°∴∠CAB=80°故选:C【变式1-2】.如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°证明:在线段BC上截取BE=BA,连接DE,如图所示∵BD平分∠ABC∴∠ABD=∠EBD在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED∵AD=CD∴ED=CD,∴∠DEC=∠C∵∠BED+∠DEC=180°,∴∠A+∠C=180°【变式1-3】.如图,△ABC为等腰直角三角形,AB=AC,∠BAC=90°,点D在线段AB 上,连接CD,∠ADC=60°,AD=2,过C作CE⊥CD,且CE=CD,连接DE,交BC 于F。
一网打尽全等三角形模型(10个模型)目录模型梳理题型一倍长中线模型题型二一线三等角模型题型三半角模型2022·山东日照真题题型四手拉手模型2022·张家界真题2022·贵阳中考题型五对角互补+邻边相等模型题型六平行线夹中点模型题型七截长补短模型题型八绝配角模型2023·深圳宝安区二模2023·深圳中学联考二模题型九婆罗摩笈模型2022武汉·中考真题2020·宿迁中考真题题型十脚蹬脚模型(海盗埋宝藏)模型梳理模型1倍长中线模型(一)基本模型已知:在△ABC中,AD是BC边上的中线,延长AD到点E,使ED=AD,连接BE.结论1:△ACD≌△EBD.已知:在△ABC中,点D是BC边的中点,点E是AB边上一点,连接ED,延长ED到点F,使DF=DE,连接CF.结论2:△BDE≌△CDF.(二)结论推导结论1:△ACD≌△EBD.证明:∵AD是BC边上的中线,∴CD=BD.∵∠ADC=∠EDB,AD=ED,∴△ACD≌△EBD.结论2:△BDE≌△CDF.证明:∵点D是BC边的中点,∴BD=CD.∵∠BDE=∠CDF,DE=DF,∴△BDE≌△CDF.(三)解题技巧遇到中点或中线,则考虑使用“倍长中线模型”,即延长中线,使所延长部分与中线相等,然后连接相应的顶点,构造出全等三角形.模型2一线三等角模型(一)基本模型已知:点P在线段AB上,∠1=∠2=∠3,AP=BD(或AC=BP或CP=PD).结论1:△CAP≌△PBD.已知:点P在AB的延长线上,∠1=∠2=∠3,AP=BD(或AC=BP或CP=PD).结论2:△APC≌△BDP.(二)结论推导结论1:△CAP≌△PBD.证明:∵∠1+∠C+∠APC=180°,∠2+∠BPD+∠APC=180°,∠1=∠2,∴∠C=∠BPD.∵∠1=∠3,AP=BD(或AC=BP或CP=PD),∴△CAP≌△PBD.结论2:△APC≌△BDP.证明:∵∠1=∠C+∠APC,∠2=∠BPD+∠D,∠3=∠BPD+∠APC,∠1=∠2=∠3,∴∠C=∠BPD,∠APC=∠D.∵AP=BD(或AC=BP或CP=PD),∴△APC≌△BDP.(三)解题技巧在一条线段上出现三个相等的角,且有一组边相等时,则考虑使用一线三等角全等模型.找准三个等角,再根据平角性质、三角形内角和进行等角代换,判定三角形全等,然后利用全等三角形的性质解题.一线三等角模型常以等腰三角形、等边三角形、四边形(正方形或矩形)为背景,在几何综合题中考查.模型3半角模型(一)基本模型等边三角形含半角已知:△ABC是等边三角形,D为△ABC外一点,∠BDC=120°,BD=CD,点E,F分别在AB,AC上,∠EDF=60°.结论1:EF=BE+CF,∠DEB=∠DEF,∠DFC=∠DFE.正方形含半角已知:四边形ABCD是正方形,点E,F分别在BC,CD上,∠EAF=45°.结论2:EF=BE+DF,∠AEB=∠AEF,∠AFD=∠AFE.等腰直角三角形含半角已知:△ABC是等腰直角三角形,∠BAC=90°,点D,E在BC上,∠DAE=45°.结论3:DE2=BD2+CE2.(二)结论推导结论1:EF=BE+CF,∠DEB=∠DEF,∠DFC=∠DFE.证明:延长AC到点G,使CG=BE,连接DG.∵△ABC是等边三角形,∴∠ABC=∠ACB=60°.∵∠BDC=120°,BD=CD,∴∠DBC=∠DCB=30°,∴∠DBE=∠DCF=90°,∴∠DBE=∠DCG=90°,∴△BDE≌△CDG,∴DE=DG,∠DEB=∠G,∠BDE=∠CDG.∵∠EDF=60°,∴∠BDE+∠CDF=60°,∴∠CDG+∠CDF=60°,即∠GDF=60°.∵DF=DF,∴△DEF≌△DGF,∴EF=FG,∠DEF=∠G,∠DFC=∠DFE.∴∠DEB=∠DEF.∵FG=CG+CF,∴EF=BE+CF.结论2:EF=BE+DF,∠AEB=∠AEF,∠AFD=∠AFE.证明:延长CB到点G,使BG=DF,连接AG.∵正方形ABCD,∴∠ABG=∠D=90°,AB=AD,∴△ABG≌△ADF,∴AG=AF,∠G=∠AFD,∠BAG=∠DAF.∵∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠BAE+∠BAG=45°,即∠EAG=45°.∵AE=AE,∴△AEF≌△AEG,∴EF=EG,∠AEB=∠AEF,∠AFE=∠G.∴∠AFD=∠AFE.∵EG=BE+BG,∴EF=BE+DF.结论3:DE2=BD2+CE2.证明:将△ABD绕点A逆时针旋转90°到△ACF,连接EF.∵△ABC是等腰直角三角形,∠BAC=90°,∴∠B=∠ACB=45°,∴∠ACF=∠B=45°,∴∠ECF=90°,∴EF2=CF2+CE2=BD2+CE2,∵∠DAE=45°,∴∠BAD+∠CAE=45°,∴∠CAF+∠CAE=45°,即∠FAE=45°.∵AE=AE,∴△AEF≌△AED,∴EF=DE,∴DE2=BD2+CE2.(三)解题技巧对于半角模型,一般情况下都需要做辅助线(延长或旋转),构造全等,通过等量代换得到相关的结论.模型4手拉手模型(一)基本模型已知:在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,连接BD,CE相交于O,连接OA.结论1:△ABD≌△ACE,BD=CE,结论2:∠BOC=∠BAC,结论3:OA平分∠BOE.(二)结论推导结论1:△ABD≌△ACE,BD=CE.证明:∵∠BAC=∠DAE,∴∠BAD=∠CAE.∵AB=AC,AD=AE,∴△ABD≌△ACE,∴BD=CE.结论2:∠BOC=∠BAC.证明:设OB与AC相交于点F.∵△ABD≌△ACE,∴∠ABD=∠ACE.∵∠AFB=∠OFC,∴∠BOC=∠BAC.结论3:OA平分∠BOE.证明:过点A分别做BD,CE的垂线,垂足为G,H.∵△ABD≌△ACE,∴S△ABD=S△ACE,∴12BD⋅AG=12CE⋅AH.∵BD=CE,∴AG=AH,∴OA平分∠BOE.(三)解题技巧如果题目中出现两个等腰三角形,可以考虑连接对应的顶点,用旋转全等模型;如果只出现一个等腰三角形,可以用旋转的方法构造旋转全等.模型5对角互补+邻边相等模型模型解读:通过做垂线或者利用旋转构造全等三角形解决问题。
.3全等三角形的经典模型(一)满分晋级三角形 7级倍长中线与截长补短三角形 8级秋天班第二讲全等三角形的经典模型(一)三角形 9级全等三角形的经典模型(二)秋天班第三讲秋天班第四讲漫画释义舞弊?知识互联网题型一:等腰直角三角形模型思路导航等腰直角三角形数学模型思路:⑴利用特别边特别角证题( AC=BC 或 90°,45 ,45 ) . 如图 1; ⑵常有协助线为作高,利用三线合一的性质解决问题 .如图 2;⑶补全为正方形 . 如图 3, 4.CC45° 45°BAABD图 1 图 2图3 图4典题精练【例 1】已知:以下图, Rt△ABC 中, AB=AC, BAC 90°, O 为 BC 的中点,⑴写出点 O 到△ ABC 的三个极点 A、 B、 C 的距离的关系(不要 B求证明)⑵假如点 M、 N 分别在线段 AC、 AB 上挪动,且在挪动中保持OAN=CM .试判断△ OMN 的形状,并证明你的结论 . N⑶假如点 M、 N 分别在线段 CA、 AB 的延伸线上挪动,且在挪动中保持 AN=CM,试判断⑵中结论能否依旧建立,假如是请给出证明.A CM【分析】⑴ OA=OB=OCB⑵连结 OA,∵OA=OCBAOC 45° AN=CMO ∴△ ANO ≌△ CMO∴ON=OM N∴NOA MOC∴NOA BONMOCBON 90 ∴NOM 90 A CM∴△ OMN 是等腰直角三角形⑶△ ONM 依旧为等腰直角三角形,证明:∵∠ BAC=90°, AB=AC,O 为 BC 中点∴∠ BAO=∠ OAC =∠ABC =∠ ACB=45°,∴AO=BO=OC,∵在△ANO 和△CMO 中,AN CMBAO C NBOAO COM AC ∴△ ANO≌△ CMO ( SAS)∴ON=OM,∠AON=∠COM ,又∵∠ COM∠ AOM =90°,∴△ OMN 为等腰直角三角形.M B 【例 2】两个全等的含 30o, 60o角的三角板ADE和三角板 ABC ,如 D图所示搁置, E, A,C 三点在一条直线上,连结BD ,取 BD的中点 M ,连结 ME ,MC.试判断△EMC的形状,并说明原因. ECA【分析】△ EMC 是等腰直角三角形..证明:连结AM .由题意,得DE AC , DAE BAC 90o , DAB90.oD ∴△DAB 为等腰直角三角形.∵DM MB,∴MA MB DM , MDA MAB 45o. E∴MDE MAC 105o,∴△EDM ≌ △CAM.∴EM MC, DME AMC .又EMC EMA AMC EMA DME 90o.∴CM EM,∴△ EMC 是等腰直角三角形.【例 3】已知:如图,△ ABC 中,AB AC ,BAC ,D 是AC 的中90°点, AF BD于E,交BC于F,连结 DF.求证:ADB CDF .【分析】证法一:如图,过点A作AN BC于 N,交BD于M.B ∵ AB AC ,BAC 90°,∴ 3 DAM 45°.∵ C ,∴ 3 C .45°∵ AF BD,∴ 1 BAE 90°∵BAC ,∴.90°2BAE 90°∴ 1 2 .在△ ABM 和△CAF 中,1B1 2AB AC3 C∴ △ ABM ≌△CAF .∴ AM CF .在△ ADM 和△CDF 中,AD CDDAM CAM CF∴△ADM ≌△CDF .∴ADB CDF .证法二:如图,作CM AC 交AF的延伸线于M.∵AF BD ,∴32 ,90°∵BAC ,90°∴ 1 2 90°,∴ 1 3 .3 在△ ACM 和△BAD 中,BM BA CADEFCA3 2DMEN FCA21DEC.1 3AC ABACM BAD90°∴△ACM ≌△BAD .∴ M ADB ,AD CM∵ AD DC ,∴ CM CD .在△CMF 和△CDF 中,CF CFMCF DCF 45°CM CD∴ △CMF ≌△ CDF .∴M CDF∴ADB CDF .【例 4】如图,等腰直角△ ABC中,AC BC , ACB 90°,P为△ ABC 内部一点,知足PB PC ,AP AC ,求证:BCP 15 .AD AP PB CB C【分析】补全正方形ACBD ,连结 DP,易证△ ADP 是等边三角形,DAP 60 ,BAD 45 ,∴BAP 15 ,PAC 30 ,∴ACP 75 ,∴BCP 15 .【研究对象】等腰直角三角形添加成正方形的几种常有题型在解相关等腰直角三角形中的一些问题,若碰到不易解决或解法比较复杂时,可将等腰直角三角形引协助线转变成正方形,再利用正方形的一些性质来解,经常能够起到化难为易的成效,进而顺利地求解。
全等三角形相关模型总结一、角平分线模型(一)角平分线的性质模型辅助线:过点G作GE⊥射线ACA、例题1、如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=6cm,BD=4cm,那么点D到直线AB 的距离是cm.2、如图,已知,∠1=∠2,∠3=∠4,求证:AP平分∠BAC.B、模型巩固1、如图,在四边形ABCD中,BC>AB,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.(二)角平分线+垂线,等腰三角形必呈现A、例题辅助线:延长ED交射线OB于F 辅助线:过点E作EF∥射线OB 例1、如图,在△ABC中,∠ABC=3∠C,AD是∠BAC的平分线,BE⊥AD于F .求证:1()2BE AC AB=-.例2、如图,在△ABC中,∠BAC的角平分线AD交BC于点D,且AB=AD,作CM⊥AD交AD的延长线于M. 求证:1()2AM AB AC=+.(三)角分线,分两边,对称全等要记全两个图形飞辅助线都是在射线ON上取点B,使OB=OA,从而使△OAC≌△OBC .A、例题1、如图,在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC 交AC于Q,求证:AB+BP=BQ+AQ .2、如图,在△ABC中,AD是∠BAC的外角平分线,P是AD上异于点A的任意一点,试比较PB+PC与AB+AC的大小,并说明理由.B、模型巩固1、在△ABC中,AB>AC,AD是∠BAC的平分线,P是线段AD上任意一点(不与A重合). 求证:AB-AC>PB-PC .2、如图,△ABC中,AB=AC,∠A=100°,∠B的平分线交AC于D,求证:AD+BD=BC .3、如图,△ABC中,BC=AC,∠C=90°,∠A的平分线交BC于D,求证:AC+CD=AB .二、等腰直角三角形模型(一)旋转中心为直角顶点,在斜边上任取一点的旋转全等:操作过程:(1)将△ABD逆时针旋转90°,得△ACM ≌△ABD,从而推出△ADM为等腰直角三角形. (2)辅助线作法:过点C作MC⊥BC,使CM=BD,连结AM.(二)旋转中心为斜边中点,动点在两直角边上滚动的旋转全等:操作过程:连结AD.(1)使BF=AE(或AF=CE),导出△BDF ≌△ADE.(2)使∠EDF+∠BAC=180°,导出△BDF ≌△ADE.A、例题1、如图,在等腰直角△ABC中,∠BAC=90°,点M、N在斜边BC上滑动,且∠MAN=45°,试探究BM、MN、CN之间的数量关系.2、两个全等的含有30°,60°角的直角三角板ADE和ABC,按如图所示放置,E、A、C三点在一条直线上,连接BD,取BD的中点M,连接ME、MC.试判断△EMC的形状,并证明你的结论.B、模型巩固1、已知,如图所示,Rt△ABC中,AB=AC,∠BAC=90°,O为BC中点,若M、N分别在线段AC、AB上移动,且在移动中保持AN=CM.(1)试判断△OMN的形状,并证明你的结论.(2)当M、N分别在线段AC、AB上移动时,四边形AMON的面积如何变化?2、在正方形ABCD中,BE=3,EF=5,DF=4,求∠BAE+∠DCF为多少度.(三)构造等腰直角三角形(1)利用以上(一)和(二)都可以构造等腰直角三角形(略);(2)利用平移、对称和弦图也可以构造等腰直角三角形.(四)将等腰直角三角形补全为正方形,如下图:A、例题应用1、如图,在等腰直角△ABC中,AC=BC,∠ACB=90°,P为三角形ABC内部一点,满足PB=PC,AP=AC,求证:∠BCP=15°.三、三垂直模型(弦图模型)A、例题已知:如图所示,在△ABC中,AB=AC,∠BAC=90°,D为AC中点,AF⊥BD于点E,交BC于F,连接DF .求证:∠ADB=∠CDF .变式1、已知:如图所示,在△ABC中,AB=AC,AM=CN,AF⊥BM于E,交BC于F,连接NF .求证:(1)∠AMB=∠CNF;(2)BM=AF+FN .变式2、在变式1的基础上,其他条件不变,只是将BM和FN分别延长交于点P,求证:(1)PM=PN;(2)PB=PF+AF .林老师编辑整理四、手拉手模型1、△ABE和△ACF均为等边三角形结论:(1)△ABF≌△AEC .(2)∠BOE=∠BAE=60°.(3)OA平分∠EOF .(四点共圆证)拓展:△ABC和△CDE均为等边三角形结论:(1)AD=BE;(2)∠ACB=∠AOB;(3)△PCQ为等边三角形;(4)PQ∥AE;(5)AP=BQ;(6)CO平分∠AOE;(四点共圆证)(7)OA=OB+OC;(8)OE=OC+OD .((7),(8)需构造等边三角形证明)林老师编辑整理例、如图①,点M为锐角三角形ABC内任意一点,连接AM、BM、CM.以AB为一边向外作等边三角形△ABE,将BM绕点B逆时针旋转60°得到BN,连接EN.(1)求证:△AMB≌△ENB;(2)若AM+BM+CM的值最小,则称点M为△ABC的费尔马点.若点M为△ABC的费尔马点,试求此时∠AMB、∠BMC、∠CMA的度数;(3)小翔受以上启发,得到一个作锐角三角形费尔马点的简便方法:如图②,分别以△ABC 的AB、AC为一边向外作等边△ABE和等边△ACF,连接CE、BF,设交点为M,则点M 即为△ABC的费尔马点.试说明这种作法的依据.2、△ABD 和△ACE 均为等腰直角三角形结论:(1)BE =CD ;(2)BE ⊥CD .3、四边形ABEF 和四边形ACHD 均为正方形结论:(1)BD =CF ;(2)BD ⊥CF .变式1、四边形ABEF 和四边形ACHD 均为正方形,AS ⊥BC 交FD 于T ,求证:(1)T 为FD 中点;(2)ABC ADF SS .变式2、四边形ABEF和四边形ACHD均为正方形,T为FD中点,TA交BC于S,求证:AS⊥BC .4、如图,以△ABC的边AB、AC为边构造正多边形时,总有:360 12180n︒∠=∠=︒-五、半角模型条件:1,+=1802αββθβ=︒且,两边相等.思路:1、旋转辅助线:①延长CD到E,使ED=BM,连AE或延长CB到F,使FB=DN,连AF②将△ADN绕点A顺时针旋转90°得△ABF,注意:旋转需证F、B、M三点共线结论:(1)MN=BM+DN;(2)=2CMNC AB;(3)AM、AN分别平分∠BMN、∠MND .2、翻折(对称)辅助线:①作AP⊥MN交MN于点P②将△ADN、△ABM分别沿AN、AM翻折,但一定要证明M、P、N三点共线 .A、例题例1、在正方形ABCD中,若M、N分别在边BC、CD上移动,且满足MN=BM+DN,求证:(1)∠MAN=45°;C AB;(2)=2CMN(3)AM、AN分别平分∠BMN和∠DNM .变式:在正方形ABCD中,已知∠MAN=45°,若M、N分别在边CB、DC的延长线上移动,AH⊥MN,垂足为H,(1)试探究线段MN、BM、DN之间的数量关系;(2)求证:AB=AH例2、在四边形ABCD中,∠B+∠D=180°,AB=AD,若E、F分别为边BC、CD上的点,且满足EF=BE+DF,求证:12EAF BAD ∠=∠.变式:在四边形ABCD中,∠B=90°,∠D=90°,AB=AD,若E、F分别为边BC、CD上的点,且12EAF BAD∠=∠,求证:EF=BE+DF .。
初二美术:全等三角形经典模型及例题详
解
全等三角形是初中数学中的重要内容,也是美术中绘画和造型
的基础。
本文将详解全等三角形的经典模型及例题,帮助学生更好
地理解和运用全等三角形的知识。
全等三角形的定义
全等三角形是指具有相等边长和相等角度的三角形。
当两个三
角形的三条边分别相等,或者两个三角形的两边长相等且夹角相等,我们就可以判定这两个三角形是全等三角形。
全等三角形的经典模型
1. 直角三角形
直角三角形是最简单的全等三角形模型。
当两个直角三角形的
两条直角边分别相等,即为全等三角形。
2. 等腰三角形
等腰三角形也是常见的全等三角形模型。
当两个等腰三角形的两条腰边和底边分别相等,即为全等三角形。
3. 等边三角形
等边三角形是全等三角形中最特殊的模型。
只要两个三角形的三条边长相等,即为全等三角形。
全等三角形的例题详解
例题一
已知∠ABC = ∠DEF,AB = DE,BC = EF,证明△ABC ≌
△DEF。
根据题意,我们已知两个三角形的对应角相等和对应边相等,因此可以使用全等三角形的基本条件进行证明。
解答过程如下:
1. 根据全等三角形的基本条件,需要证明三个条件:∠ABC =
∠DEF,AB = DE,BC = EF。
2. 我们已知∠ABC = ∠DEF,因此第一个条件已经满足。
3. 又已知AB = DE,BC = EF,因此第二个和第三个条件也已
经满足。
4. 综上所述,根据全等三角形的基本条件,可以得出结论:
△ABC ≌△DEF。
例题二
已知△ABC ≌△DEF,AC = DF,∠B = ∠E,证明AB = DE。
根据题意,我们已知两个三角形全等,需要证明另外一个对应
边相等。
同样可以使用全等三角形的基本条件进行证明。
解答过程如下:
1. 根据全等三角形的基本条件,已知△ABC ≌△DEF,需要证明AB = DE。
2. 我们已知AC = DF,∠B = ∠E,根据全等三角形的基本条件,可以得出∠A = ∠D,BC = EF。
3. 由于∠B = ∠E,且∠A = ∠D,根据三角形内角和定理,我们可以得出∠C = ∠F。
4. 因为三角形ABC和三角形DEF满足全等条件,并且∠C = ∠F,我们可以得出结论:AB = DE。
通过以上例题的详解,相信学生们对全等三角形的经典模型和应用有了更深入的理解。
希望本文能够帮助学生成功掌握全等三角形的知识。