高三立体几何习题(含答案)
- 格式:doc
- 大小:2.10 MB
- 文档页数:14
高三数学立体几何复习一、填空题1. 分别在两个平行平面内的两条直线间的地址关系不可以能为.... ①平行 ②订交③异面④垂直【答案】②【剖析】两平行平面没有公共点,因此两直线没有公共点,因此两直线不可以能订交2.已知圆锥的母线长为 8,底面周长为 6π,则它的体积为【答案】 3 55【剖析】设底面半径为r, 2 r 6 , r 3 , 设圆锥的高为 h ,那么 h823255 ,那么圆锥的体积 V1 r2 h 1 955 3 55 ,故填: 3 55 .3 33.已知平面/ / 平面 , P且 P ,试过点 P 的直线 m 与 , 分别交于 A , C ,过点 P 的直线 n 与 ,分别交于 B , D 且 PA6 , AC9, PD 8 ,则 BD 的长为 ___________.【答案】24 或 245【剖析】 第一种情况画出图形以以下列图所示,由于“若是两个平行平面同时和第三个平面订交,那么它们的交线相互平行 . ”因此 AB / /CD ,设 BD x ,依照平行线分线段成比率,有6 8x, x249 x5第二种情况画出图形以以下列图所示,由于“若是两个平行平面同时和第三个平面订交, 那么它们的交线相互平行. ”因此 AB / /CD ,设 BDx ,依照平行线分线段成比率,有PBA DCB A6X8, x 24 .384.半径为 R 的球 O 中有一内接圆柱,当圆柱的侧面积最大时,圆柱的侧面积与球的表面积之比是 ____________.【答案】 1: 2PCDr 2h2rhr2h 2h时取等号,【剖析】 R2,圆柱的侧面积2 rh 44 242 R 2,当且仅当 r42 2此时圆柱的侧面积与球的表面积之比为 2 R 2 : 4 R 2 1: 25.以下列图, G 、N 、M 、 H 分别是正三棱柱(两底面为正三角形的直棱柱)的极点或所在棱的中点,则表示直线 GH 、MN 是异面直线的图形有 ____________(填上所有正确答案的序号) .【答案】②④【剖析】由题意得,可知( 1)中,直线 GH // MN ;图( 2)中,G , H , N 三点共面,但M 面 GHN ,因此直线 GH 与 MN 异面;图( 3)中,连接 MG , GM // HN ,因此 GH 与MNG ,因此直线 GH 与 MN 共面;图( 4)中, G , M , N 共面,但 H面 GHN ,因此直线 GH 与 MN试卷第 1 页,总 9 页异面.6.已知 m, n 为直线,,m, n // ;②为空间的两个平面,给出下列命题:①m nm m mn,,m // n .其中的正确命题为, m // n ;③// ;④.m n//【答案】③④【剖析】关于① , 也会有n的结论 , 因此不正确;关于②, 也会有m, n异面的可能的结论, 因此不正确;简单考据关于③④都是正确的, 故应填答案③④ .7.设 a,b 是两条不同样的直线, , 是两个不同样的平面,则以下四个命题①若a b, a,b则,②若 a b, a则 b / /,③若 a,,则 a / /④若a / /, a,则其中正确的命题序号是.【答案】①④【剖析】① a b ,不如设a, b订交(如异面平移到订交地址),确定一个平面,设平面与平面的交线为 c ,则由 b,得 b c ,从而 a // c ,于是有 c,因此,①正确;②若a b, a,b 可能在内,②错;③若 a,, a 可能在内,③错;④若 a / / ,则由线面平行的性质定理,在内有直线 b 与a平行,又a,则 b,从而,④正确.故答案为①④.8.已知三棱锥 P ABC 的所有极点都在球 O 的球面上,ABC 是边长为1的正三角形,PC 为球 O 的直径,该三棱锥的体积为2,则球 O 的表面积为__________.6【答案】4【剖析】设 ABC 的中心为O1,由题意得 S ABC3212OO1SABC OO12, 因此球O的;6334半径 R 满足R2OO12( 3)2211,球O的表面积为 4R2 4 .3339.以下列图 ,在直三棱柱 ABC A1 B1C1中, AB BC CC11,AB BC, E 为CC1的中点,则三棱锥 C1ABE 的体积是.【答案】112【剖析】由于 E 是 CC1中点,因此 V C ABE 1V C ABC11(11 1)11.1212321210. 以下列图,在直三棱柱ABC A1 B1C1中,ACB90 , AA12, AC BC1 ,则异面直线A1 B 与AC所成角的余弦值是.【答案】66【剖析】由于AC / / A1C1,因此BA1C1(或其补角)就是所求异面直线所成的角,在 BA1C1中,A1 B6 ,A1C11, BC15, cos BAC11615 6 .261611.如图,在棱长为 1 的正方体ABCD - A1B1C1D1中,M , N分别是BB1, BC的中点,则图中阴影部分在平面 ADA1D1上的投影的面积为.【答案】1 8【剖析】图中点 M 在平面的投影是AA1的中点,点N在平面的投影是AD 的中点,点 D 的投影还是点 D ,连接三点的三角形的面积是1111,故填: 1 .2228812. 如图 , 正方体ABCD A1 B1C1D1中 ,AB 2 ,点 E 为 AD 的中点,点 F 在D F CECD 上,若 EF // 平面AB1C,则 EF________.A B【答案】 EF2D 1C1【剖析】依照题意,由于 EF // 平面AB1C ,因此EF // AC.又由于点E是AD中A1B1点,因此点 F 是 CD 中点.由于在 Rt DEF 中, DE DF 1,故EF2.13. 在棱长为 1 的正方体ABCD A B C D 中, E 为 AB 的中点,在面ABCD11111D 1C1中取一点 F ,使 EF FC1最小,则最小值为__________.A 1B 1【答案】142D E C 【剖析】如图,将正方体ABCD A1B1C1D1关于面ABCD对称,则 EC1就是所A BD1C1A1N B132114 .求的最小值, EC1EN 2NC121242D1C1 14.点 M 是棱长为3 2 的正方体ABCD A1B1C1D1的内切球 O球面上的动 A 1NB1点,点 N 为B1C1上一点,2NB1NC1, DM BN ,则动点M的轨迹的长度为 __________ .DM C【答案】310A B 5【剖析】由于DM BN ,因此 M 在过 D 且垂直于 BN 的平面上,以以下列图( 1 ),取BS 1SB1,2AT 1TA1,则BN平面 DTSC ,因此 M 在一个圆周上,如图以下列图(2),正方体的中心O 到该平面的2距离即为 O1F,在直角三角形 O1FC中, O1F O1C sin O1CF 3sin O1CF ,而111,故 sin5 3 5tan O CF tan BCS3O1CF,O1 F, M 所在的圆周的半径1411255322为 3 2353 30,故其轨迹的长度为 3 1025105D 1C 1B1C1NA 1NB 1O1OD STM S CA B图( 1)二、解答题FB C图( 2)15.如图,四棱锥P ABCD 中,底面 ABCD 为平行四边形,DAB60o,AB 2 AD , PD底面ABCD .( 1)证明:PA BD ;( 2)设PD AD 2 ,求点 D 到面 PBC 的距离.解析:( 1 )证明:因为DAB60o,AB2AD ,由余弦定理得BD3AD .从而BD2AD 2AB2,∴ BD AD ,又由 PD 底面EABCD , BD面 ABCD ,可得 BDPD . ∴ BD 面 PAD , PA面 PAD ,∴ PABD .( 2)法 1:在平面 PDB 内作 DEPB ,垂足为 E . ∵ PD 底面 ABCD ,BC 面 ABCD ,∴ PD BC ,由( 1 )知 BDAD ,又 BC / / AD ,∴ BC BD ,又 AD I BD D , . ∴ BC 平面 PBD ,又AD I BD D ∴ BC DE . 则 DE 平面 PBC . 由题设知, PD 2 ,则 BD2 3 , PB 4,依照DE gPB PD gBD ,得 DE3 ,即点 D 到面 PBC 的距离为3 .法2 : 设 点 D到平 面 PBC 的 距 离 为 d , 由 ( 1 ) 得 BD AD , ∴ AB4 ,V P BCD1V PABCD 11S Y ABCD PD1 2 43 24 3 , 又 V 1 S PBCd , 由2236 23 P BCD 3PD 底 面ABCD , BD 面 ABCD , DC面 ABCD ,PBD , PCD 为 Rt, ∴PCPD 2 CD 22 5 , PBPD 2CD 2 4 , 又 BCAD2 , ∴PBC 为 Rt且SPBC1 2 44 ,∴ d3 .216. 已知直角梯形 ABCD 中, AB / /CD , AB AD , CD2, AD2 , AB 1 ,如图 1所示,将ABD 沿 BD 折起到 PBD 的地址,如图2 所示 .( 1)当平面 PBD平面 PBC 时,求三棱锥 P BCD 的体积;( 2)在图 2 中, E 为 PC 的中点,若线段BQ / /CD ,且 EQ / / 平面 PBD ,求线段 BQ 的长;剖析 :( 1)当平面PBD 平面 PBC 时,由于 PB PD ,且平面 PBD I 平面 PBCPB , PD平面PBD ,因此 PD平面 PBC ,由于 PC 平面 PBC ,因此 PD PC . 由于在直角梯形ABCD 中,AB / /CD , AB AD , CD 2 , AD 2 , AB 1 , 所 以 BD BC3 , DP2 . 所 以CPCD 2 PD 22 . 又 因 为 BP1 , 所 以 BP 2CP 2 BC 2 , 所 以 BPCP . 所 以S PBC1PB PC2. 因此三棱锥PBCD 的体积等于VD PBC1S PBCgPD1221.223323(2)取 PD 的中点 F ,连接 EF , BF ,如上图所示 . 又由于 E 为 PC 的中点,因此EF / /CD ,且EF1CD . 又由于 BQ / /CD ,因此 EF / / BQ . 因此 B , F , E , Q 共面 .2因 为 EQ / / 平 面 PBD , EQ平 面 BFEQ , 且 平 面 BFEQ I 平 面试卷第 5 页,总 9 页PBD BF , 所 以 EQ / / FB . 又 因 为 EF / / BQ , 所 以 四 边 形 BFEQ 是 平 行 四 边 形 . 所 以 BQEF1CD 1 .2ACDF 所在平面与梯形BCDE 所在平面垂直,且BC 2DE , DE / / BC ,17. 如图几何体中,矩形BD AD , M 为 AB 的中点 .( 1)证明: EM / / 平面 ACDF ; ( 2)证明: BD 平面 ACDF .剖析 :( 1)法 1:延长 BE 交 CD 与 G ,连接 AG ,∵ E, M 为中点,∴EM // AG , EM 平面 AFDC , AG 平面 AFDC ,∴ EM / / 面 ACDF .G法 2:如图,取 BC 的中点 N ,连接 MN 、 EN .在 ABC 中, M 为 AB 的中点, N 为 BC 的中点,∴ MN / / AC ,又由于 DE / / BC ,且 DE1 CN ,∴四边形 CDEN 为平行四边形,BC2∴ EN / / DC ,又∵ MN I EN N , AC I CD C . ∴平面 EMN / / 平面 ACDF ,又∵ EM面EMN ,∴ EM / / 面 ACDF .法 3:如图,取 AC 的中点 P ,连接 PM , PD . 在 ABC 中, P 为 AC 的中点, M 为 AB 的中点,∴PM / / BC ,且 PM11BC ,又∵ DE / /BC , DEBC , ∴ PM / / DE ,故四边形 DEMP 为平行四22边形,∴ ME / / DP ,又∵ DP 平面 ACDF , EM平面 ACDF ,∴ EM / / 面 ACDF .( 2)∵平面 ACDF平面 BCDE ,平面 ACDF I平面 BCDEDC ,又 AC DC ,∴ AC平面BCDE ,∴ AC BD ,又 BD AD , BD I ADA ,∴ BD 平面 ACDF .18. 如图,在四棱锥 P - ABCD 中,四边形 ABCD 为矩形, AB ⊥ BP , M 为 AC 的中点, N 为 PD 上一点 .( 1)若 MN ∥平面 ABP ,求证: N 为 PD 的中点;( 2)若平面 ABP ⊥平面 APC ,求证: PC ⊥平面 ABP.【剖析】( 1)连接 BD ,由四边形 ABCD 为矩形得: M 为 AC 和 BD 的中点,∵ MN ∥平面 ABP , MN 平面 BPD ,平面 BPD I 平面 ABP = BP ,∴MN ∥ BP ,∵ M 为 AC 的中点,∴ N 为 PD 的中点 .( 2)在△ ABP 中,过点 B 作 BE ⊥ AP 于 E ,∵平面 ABP ⊥平面 APC ,平面 ABP ∩平面 APC =AP ,BE 平面 ABP , BE ⊥ AP∴ BE ⊥平面 APC ,又 PC 平面 APC ,∴ BE ⊥ PC.∵ ABCD 为矩形,∴ AB ⊥ BC ,又 AB ⊥ BP , BC ∩BP= B ,BC ,BP 平面 BPC ,∴ AB ⊥平面 BPC , ∴AB ⊥PC ,又 BE ⊥ PC , AB 平面 ABP ,BE 平面 ABP ,AB ∩BE =B , ∴ PC ⊥平面 ABPP ABCD∥1 是线段的中点 .19. 如图 ,在四棱锥AB, MPA中,AB DC , AD DC2( 1)求证: DM ∥ 平面 PCB ;( 2)若AD AB ,平面 PAC 平面 PBC ,求证: PA BC .【剖析】(1)如图,取PB中点N , 连接CN , MN . 由于M是线段PA的中点 ,因此 MN∥ AB, MN 1AB , 2因为 DC∥ AB, CD 1CD ,所以四边形 CDFM 为平行四边形,所以AB ,所以 MN∥DC , MN2CN∥DM ,由于 CN平面PCB,DM平面PCB,因此DM∥平面PCB.P( 2)连接AC , 在四边形ABCD中,由于AD AB,CD∥AB ,因此 AD CD ,设MNAD a ,因为 AD DC1AB ,所以 CD a, AB2a ,在ADC中,A2B ADC 90 , AD DC,所以DCA DAC45,从而D CAC2a,CAB45,在ACB中,AB2a, AC2a,CAB45 ,所以BC AC 2AB2 2 AB AC cos CAB2a, 所以AC 2BC 2AB2, 即AC BC .在平面PAC 中,过点 A 作 AE PC ,垂足为 E ,由于平面PAC平面 PBC ,因此 AE平面 PBC ,又由于BC平面 PBC ,因此 AE BC ,由于 AE平面PAC ,AC平面 PAC ,因此BC平面 PAC .因为PA 平面 PAC ,因此 PA BC .20. 如图 , 在直三棱柱ABC A B C 中,ACB 900,E, F ,G 分别是 AA , AC , BB 的中点,且1 1 111CG C1G .(1)求证:CG //平面BEF;( 2)求证:平面BEF平面 AC1 1G .【剖析】证 :( Ⅰ ) 连接AG交BE于D , 连接DF , EG . ∵E,G分别是AA1, BB1的中点,∴ AE ∥BG且 AE =BG,∴四边形AEGB 是矩形.∴D是 AG 的中点,又∵F是AC 的中点,∴ DF ∥CG,则由 DF面 BEF , CG面 BEF ,得CG∥面 BEF( Ⅱ ) ∵在直三棱柱ABC A1 B1C1中, C1C ⊥底面 A1B1C1,∴ C1C ⊥ A1C1.又∵A1C1B1ACB900,即 C1B1⊥ A1C1,∴ A1C1⊥面 B1C1CB ,而CG面 B1C1CB ,∴ A1C1⊥CG,又 CG C1G ,由(Ⅰ)DF∥CG ,AC DF , DF C G DF AC G,Q DF BEF BEF11 1 ,∴平面1 1平面,∴平面平面AC G .1 1三、提高练习21.在三棱锥P ABC 中,AB BC ,AB 6 ,BC 2 3 ,O 为 AC 的中点,过 C 作 BO 的垂线,交 BO 、 AB 分别于 R 、 D ,若DPR CPR ,则三棱锥 P ABC 体积的最大值为 __________.【答案】 3 3【剖析】在 Rt ABC 中, ACB 60,OCB 为等边三角形,DCB 30 ,因此 CD 4 , CR 3 , 因此 DR1,在 PDC 中, DPRCPR ,因此PDDR1 ,以以下列图( 2),设 P x, y , D 0,0 ,PC RC32则 C 4,0 ,从而有 9 x2y2x2y 2,整理获取 x1 y29,故 PCD 的边 CD 上的高424的最大值为3,从而 PABC 体积的最大值为 1 31 2 3 63 323 22PbPAODRCBD R C x图 (1)图( 2)22. 如图,直三棱柱 ABCA 1B 1C 1 中,D 、E 分别是棱 BC 、AB的中点,点F 在棱 CC 1 上,已知AB AC , AA 1 3 ,BC CF2 .( 1)求证: C 1E // 平面 ADF ;( 2)设点 M 在棱 BB 1 上,当 BM 为何值时, 平面 CAM 平面 ADF ?【剖析】( 1)连接 CE 交 AD 于 O ,连接 OF .由于 CE , AD 为ABC 中线,因此 O 为 ABC 的重心,CFCO 2.从而CC 1CE3OF // C 1E . OF 面 ADF , C 1E平面 ADF ,因此 C 1 E // 平面 ADF .( 2)当 BM 1 时,平面 CAM 平面 ADF .在直三棱柱ABC A 1 B 1C 1 中,由于 B 1 B 平面 ABC , B 1B 平面 B 1BCC 1 ,因此平面 B 1BCC 1 平面 ABC .由于 ABAC , D 是 BC 中点,因此 AD BC .又平面 B 1BCC 1 ∩平面 ABC BC , 因此 AD 平面(完满版)高三数学立体几何复习测试题含答案B1BCC1.而CM平面B1BCC1,于是AD CM .由于BM CD 1,BC CF 2 ,因此Rt CBM Rt FCD ,因此 CM DF DF , AD 订交,因此CM平面ADF,CM平面CAM ,因此平面CAM平面ADF.试卷第 9 页,总 9 页11 / 11。
立体几何练习题与答案篇一:立体几何练习题多套(含答案)立几测001试一、选择题:1.a、b是两条异面直线,下列结论正确的是2.空间不共线的四点,可以确定平面的个数为 ( )A.0 B.1 C.1或4D.无法确定 A.过不在a、b上的任一点,可作一个平面与a、b都平行 B.过不在a、b上的任一点,可作一条直线与a、b都相交 C.过不在a、b上的任一点,可作一条直线与a、b都平行 D.过a可以且只可以作一个平面与b平行()M、N分别为棱AA1、BB1的中点,则异面直线CM和D1N 所成角3.在正方体ABCD?A1BC11D1中,的正弦值为 ( ) A.12 B.C.934.已知平面??平面?,m是?内的一直线,n是?内的一直线,且m?n,则:①m?③m??;②n??;?或n??;④m??且n??。
这四个结论中,不正确的三个是...( )A.①②③B.①②④C.①③④D.②③④5.一个简单多面体的各个面都是三角形,它有6个顶点,则这个简单多面体的面数是( ) A. 4B. 5 C. 6 D. 8 ( ) A.6. 在北纬45°的纬度圈上有甲、乙两地,两地经度差为90°,则甲、乙两地最短距离为(设地球半径为R)?2?R?RB. R C. R D.24337. 直线l⊥平面α,直线m?平面β,有下列四个命题(1)?//??l?m (2)????l//m (3)l//m????(4)l?m??//? 其中正确的命题是()A. (1)与(2)B. (2)与(4)C. (1)与(3)D. (3)与(4)8. 正三棱锥的侧面均为直角三角形,侧面与底面所成角为α,则下列不等式成立的是( ) A. 0????6B.?6????4C.?4????3D.?3????29.?ABC中,AB?9,AC?15,?BAC?120?,?ABC所在平面?外一点P到点A、B、C的距离都是14,则P到平面?的距离为( )A.7B.9 C.11 D.1310.在一个45?的二面角的一个平面内有一条直线与二面角的棱成角45?,则此直线与二面角的另一个平面所成角的大小为( )A.30?B.45? C.60? D.90?11. 如图,E, F分别是正方形SD1DD2的边D1D,DD2的中点,沿SE,SF,EF将其折成一个几何体,使D1,D,D2重合,记作 D.给出下列位置关系:①SD⊥面DEF; ②SE⊥面DEF;③DF⊥SE; ④EF⊥面SED,其中成立的有: ()A. ①与② B. ①与③ C. ②与③ D. ③与④12. 某地球仪的北纬60度圈的周长为6?cm,则地球仪的表面积为()A. 24?cmB. 48?cmC. 144?cmD. 288?cm2222二、填空题(本大题共4小题,每小题4分,共16分) 13. 直二面角α—MN—β中,等腰直角三角形ABC的斜边BC?α,AC?β,BC与β所成角的正弦值是__________。
高三数学立体几何专项练习题及答案一、选择题1. 下列哪个几何体的所有面都是三角形?A. 正方体B. 圆柱体C. 正六面体D. 球体答案:C2. 一个有8个面的多面体,其中6个面是正方形,另外2个面是等边三角形,它的名字是?A. 正八面体B. 正十二面体C. 正二十面体D. 正二十四面体答案:C3. 空间中任意一点到四个角落连线的垂直距离相等的四棱锥称为?A. 正四棱锥B. 圆锥台C. 四棱锥D. 无法确定答案:C4. 任意多面体的面数与顶点数、棱数的关系是?A. 面数 + 顶点数 = 棱数 + 2B. 面数 + 棱数 = 顶点数 + 2C. 顶点数 + 棱数 = 面数 + 2D. 顶点数 + 面数 = 棱数 + 2答案:A5. 求下列多面体的棱数:(1)正六面体(2)正八面体(3)正十二面体答案:(1)正六面体的棱数为 12(2)正八面体的棱数为 24(3)正十二面体的棱数为 30二、填空题1. 下列说法正确的是:一棱锥没有底面时,它的底面是一个______。
答案:点2. 铅垂线是指从一个多面体的一个顶点到与它相对的棱上所作的垂线,它与该棱垂足的连线相交于该多面体的______上。
答案:中点3. 对正八面体,下列说法不正确的是:_____条对角线与_____两两垂直。
答案:六,相邻面三、计算题1. 一个棱锥的底面是一个边长为6cm的正三角形,其高为8cm。
求棱锥体积。
解答:底面积 S = (1/2) ×底边长 ×高 = (1/2) × 6 × 8 = 24 cm²棱锥体积 V = (1/3) × S ×高 = (1/3) × 24 × 8 = 64 cm³所以,棱锥的体积为64 cm³。
2. 一个正四棱锥的底面是一个边长为10cm的正方形,其高为12cm。
求四棱锥的体积。
解答:底面积 S = 边长² = 10² = 100 cm²四棱锥体积 V = (1/3) × S ×高 = (1/3) × 100 × 12 = 400 cm³所以,四棱锥的体积为400 cm³。
高三数学立体几何多选题练习题及解析 一、立体几何多选题 1.已知正方体1111 ABCDABCD的棱长为2,M为1DD的中点,N为正方形ABCD所在
平面内一动点,则下列命题正确的有( )
A.若2MN,则MN的中点的轨迹所围成图形的面积为
B.若N到直线1BB与直线DC的距离相等,则N的轨迹为抛物线
C.若1DN与AB所成的角为3,则N的轨迹为双曲线
D.若MN与平面ABCD所成的角为3,则N的轨迹为椭圆
【答案】BC 【分析】 对于A,连接MN,ND,DP,得到直角MDN△,且P为斜边MN的中点,所以1PD,进而得到P点的轨迹为球面的一部分,即可判断选项A错误;对于B,可知1NBBB,即NB是点N到直线1BB的距离,在平面ABCD中,点N到定点B的距离与到定直线DC的距离相等,利用抛物线定义知B正确;对于C,建立空间直角坐标系,设(,,0)Nxy,
利用空间向量求夹角知122121cos3224DNAByxyDNAB,化简可知N的轨迹
为双曲线;对于D,MN与平面ABCD所成的角为3MND,33ND,可知N的轨迹是以D为圆心,33为半径的圆周; 【详解】 对于A,如图所示,设P为MN的中点,连接MN,ND,DP,由正方体性质知MDN△为直角三角形,且P为MN的中点,2MN,根据直角三角形斜边上的中线为斜边的一半,知MDN△不管怎么变化,始终有1PD,即P点的轨迹与正方体的面围城的几何
体是一个以D为球心,1为半径的球的18,其面积214182S,故A错误; 对于B,由正方体性质知,1BB平面ABCD由线面垂直的性质定理知1NBBB,即NB是点N到直线1BB的距离,在平面ABCD中,点N到定点B的距离与到定直线DC的距离相等,所以点N的轨迹是以点B为焦点,直线DC为准线的抛物线,故B正确; 对于C,如图以D为直角坐标系原点,建立空间直角坐标系,(,,0)Nxy,1(0,0,2)D,(0,2,0)A,(2,2,0)B,则1(,,2)DNxy,(0,2,0)AB,利用空间向量求夹角知
高三数学立体几何练习题及答案第一题:已知一个长方体的长、宽、高分别为3cm、4cm、5cm,求该长方体的体积和表面积。
解答:长方体的体积可以通过公式V = lwh 计算,其中l、w、h分别为长、宽、高。
根据题目给出的数据,代入公式可得 V = 3cm × 4cm × 5cm = 60cm³。
因此,该长方体的体积为60立方厘米。
长方体的表面积可以通过公式 S = 2lw + 2lh + 2wh 计算。
根据题目给出的数据,代入公式可得 S = 2 × 3cm × 4cm + 2 × 3cm ×5cm + 2 × 4cm × 5cm = 94cm²。
因此,该长方体的表面积为94平方厘米。
答案:体积:60立方厘米表面积:94平方厘米第二题:一个正方体的棱长为a,求该正方体所有顶点到一个固定点之间的最短距离之和。
解答:正方体的每个顶点到固定点的最短距离为正方体的对角线长。
对于正方体而言,其对角线的长度可以通过勾股定理求解。
设每个边长为a,则对角线长d满足 d² = a² + a² + a² = 3a²。
因此,每个顶点到固定点的最短距离之和为 8 × 3a² = 24a²。
答案:每个顶点到固定点的最短距离之和为24a²。
第三题:一个球体的直径为10cm,求该球体的体积和表面积(结果保留π)。
解答:球体的体积可以通过公式V = 4/3πr³ 计算,其中r为球体的半径。
根据题目给出的数据,直径d为10cm,因此半径r = d/2 = 5cm。
代入公式可得V = 4/3 × π × (5cm)³ ≈ 523.6cm³。
因此,该球体的体积约为523.6立方厘米。
球体的表面积可以通过公式S = 4πr² 计算,其中r为球体的半径。
高考数学理数立体几何大题训练(含答案)1.(2020·新课标Ⅲ·理)在长方体中,点P、Q分别在棱AB、CD上,且AP=CQ.(1)证明:点PQ平分长方体的体对角线;(2)若PQ在平面BCFE内,求二面角的正弦值.2.(2020·新课标Ⅱ·理)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M、N分别为BC、B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B1E与平面A1AMN 所成角的正弦值.3.(2020·新课标Ⅰ·理)如图,D为圆锥的顶点,O是圆锥底面的圆心,底面是内接正三角形ABC,P为上一点,AP为底面直径,DP⊥底面.(1)证明:DP平分∠ADC;(2)求二面角平面APD与平面ABC的余弦值.4.(2020·新高考Ⅰ)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.5.(2020·天津)如图,在三棱柱ABC-A1B1C1中,点P、Q分别在棱AB、A1B1上,且AP=A1Q,平面PQC1为棱BC1的中垂面,M为棱AC的中点.(Ⅰ)求证:PM∥B1Q,且PM=B1Q;(Ⅱ)求二面角平面PQC1与直线PM所成角的正弦值;(Ⅲ)求直线B1Q与平面PQC1所成角的正弦值.6.(2020·江苏)在三棱锥ABCD中,已知CB=CD=1,AC=2,BD=2,O为BD的中点,AO⊥平面BCD,AO=2,E为AC上一点,DE⊥平面BCD,DE=1.(1)求直线AB与DE所成角的余弦值;(2)若点F在BC上,满足BF=BC,设二面角F-DE-C的大小为θ,求sinθ的值.7.(2020·北京)如图,正方体ABCD-EFGH中,E为AD的中点,P为BF上一点.(Ⅰ)求证:PE∥CG;(Ⅱ)求直线PE与平面CGH所成角的正弦值.8.(2020·浙江)如图,三棱台DEF-ABC中,面ADFC⊥面ABC,∠ACB=∠ACD=45°,XXX.(Ⅰ)证明:EF⊥DB;(Ⅱ)求DF与面DBC所成角的正弦值.9.(2020·扬州模拟)如图,在等边三角形ABC的三棱锥ABCD中,D为底面的中点,E为线段AD上一动点,记DE=λAD.(1)当λ=1时,求证:DE与平面ABC垂直;(2)当λ=2时,求直线BE与平面ACD所成角的正弦值.求证:直线AD与平面BCD垂直;2)若平面ABD与平面ACD所成二面角为,求二面角ABC与平面BCD所成二面角的正弦值。
高三理科数学《立体几何》测试题(带答案)1、如图,在C ∆AB 中,C 45∠AB =,点O 在AB 上,且2C 3OB =O =AB ,PO ⊥平面C AB ,D //A PO ,1D 2A =AO =PO . ()1求证://PB 平面C D O ;()2求二面角CD O --A 的余弦值.(1)证明:因为ABC PO 平面⊥,D//A PO,DA AB PO AB ⊥⊥所以4,21π=∠==AOD PO AO DA 所以又……………………2分 ,//4,,21PB OD OBP OP OB PO AO ,即所以即又π=∠==……………….4分 COD PB COD OD COD PB 平面所以平面平面又//,,⊂⊄。
……………….6分(2)解:过A 作,,,AN N CD MN M M DO AM 连接于作,过垂足为⊥⊥ 则的平面角。
即为二面角A CD O ANM --∠……………….8分,中,得,在直角中,得,在等腰直角设a MN COD a AM AOD a AD 3322=∆=∆=510cos 630=∠=∆ANM a AN AMN ,所以中,得在直角……………….12分2、如图,在棱长为2的正方体1111CD C D AB -A B 中,E 、F 分别为11D A 和1CC 的中点.()1求证:F//E 平面1CD A ;()2求异面直线F E 与AB 所成的角的余弦值;()3在棱1BB 上是否存在一点P ,使得二面角C P -A -B 的大小为30?若存在,求出BP 的长;若不存在,请说明理由.解:如图分别以DA 、DC 、DD 1所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系D-xyz ,由已知得D (0,0,0)、A (2,0,0)、B (2,2,0)、C (0,2,0)、B 1(2,2,2)、D 1(0,0,2)、E (1,0,2 )、F (0,2,1).(1)取AD 1中点G ,则G (1,0,1),CG -→=(1,-2,1),又EF -→=(-1,2,-1),由EF -→=-→-CG ,∴EF -→与CG -→共线.从而EF∥CG,∵CG ⊂平面ACD 1,EF ⊄平面ACD 1,∴EF ∥平面ACD 1. ………………………………………………………………4分 (2) ∵AB =(0,2,0), cos<EF ,AB>=||||2EF AB EF AB ⋅==⋅, ∴异面直线EF 与AB 所成角的余弦值为36.…………………………………………………8分 (3)假设满足条件的点P 存在,可设点P (2,2,t )(0<t ≤2),平面ACP 的一个法向量为n =(x ,y ,z ),则0,0.n AC n AP ⎧⋅=⎪⎨⋅=⎪⎩ ∵AP =(0,2,t ), AC =(-2,2,0),∴220,20,x y y tz -+=⎧⎨+=⎩取2(1,1,)n t =-.易知平面ABC 的一个法向量1(0,0,2)BB =, 依题意知,<1BB ,n >=30°或<1BB ,n >=150°,∴|cos<1BB ,n4||-=,即22434(2)4t t =+,解得3t =∵(0,2]3∴在棱BB 1上存在一点P ,当BPP -AC -B 的大小为30°……………13分3、如图所示,在四棱锥CD P -AB 中,底面CD AB 为矩形,PA ⊥平面CD AB ,点E 在线段C P 上,C P ⊥平面D B E . ()1求证:D B ⊥平面C PA ;()2若1PA =,D 2A =,求二面角C B -P -A 的余弦值.(1) 证明:∵PA ABCD ⊥平面,BD ABCD ⊂平面 ∴PA BD ⊥.同理由PC BDE ⊥平面,可证得PC BD ⊥. 又PAPC P =,∴BD PAC ⊥平面.(2)解:如图,分别以射线AB ,AD ,AP 为x 轴,y 轴,z 轴的正半轴建立空间直角坐标系A xyz -.由(1)知BD PAC ⊥平面,又AC P A C ⊂平面, ∴BD AC ⊥.故矩形ABCD 为正方形,∴2AB BC CD AD ====. ∴00020022()()00(20001)()()A B C D P ,,,,,,,,,,,,,,. ∴ ()()()2,0,1,0,2,0,2,2,0PB BC BD ===-.设平面PBC 的一个法向量为(,,)n x y z =,则0n PB n BC ⎧⋅=⎪⎨⋅=⎪⎩,即2000200x y z x y z +⋅-=⎧⎨⋅++⋅=⎩,∴20z xy =⎧⎨=⎩,取1x =,得(1,0,2)n =.∵BD PAC ⊥平面,∴(2,2,0)BD =-为平面PAC 的一个法向量.所以10cos ,10n BD n BD n BD⋅<>==-. 设二面角B PC A --的平面角为α,由图知02πα<<,则10cos cos ,D 10n α=B=∴二面角C B -P -A4、如图,平面CD AB ⊥平面D F A E ,其中CD AB 为矩形,D F A E 为梯形,F//D A E ,F F A ⊥E ,F D 2D 2A =A =E =.()1求异面直线F E 与C B 所成角的大小;()2若二面角F D A -B -的平面角的余弦值为13,求AB 的长.解:(1) 延长AD ,FE 交于Q .因为ABCD 是矩形,所以BC ∥AD ,所以∠AQF 是异面直线EF 与B C 所成的角.在梯形ADEF 中,因为DE ∥AF ,AF ⊥FE ,AF =2,DE =1得∠AQF =30°.………………………5分(2) 方法一:设AB =x .取AF 的中点G .由题意得 DG ⊥AF .因为平面ABCD ⊥平面ADEF ,A B ⊥AD ,所以AB ⊥平面ADEF ,所以AB ⊥DG .所以DG ⊥平面ABF . 过G 作GH ⊥BF ,垂足为H ,连结DH ,则DH ⊥BF , 所以∠DHG 为二面角A -BF-D 的平面角. 在直角△AGD 中,AD =2,AG =1,得DG 在直角△BAF中,由AB BF =sin ∠AFB =GH FG ,得GHx,所以GH.在直角△DGH 中,DGGH ,得DH =因为cos ∠DHG =GH DH =13,得x AB 15分方法二:设AB =x .以F 为原点,AF ,FQ 所在的直线分别为x 轴,y 轴建立空间直角坐标系Fxyz .则 F (0,0,0),A (-2,0,0),E (3,0,0),D (-10),B (-2,0,x ),所以DF =(10),BF =(2,0,-x ). 因为EF ⊥平面ABF所以平面ABF 的法向量可取1n =(0,1,0).设2n =(x 1,y 1,z 1)为平面BFD的法向量,则111120,0,x z x x -=⎧⎪⎨=⎪⎩所以,可取2n =1.因为cos<1n ,2n >=1212||||n n n n ⋅⋅=13,得xAB .5、如图,已知AB ⊥平面CD A ,D E ⊥平面CD A ,C ∆AB 为等边三角形, D D 2A =E =AB ,F 为CD 的中点. ()1求证:F//A 平面C B E ;()2求证:平面C B E ⊥平面CD E ;()3求直线F B 和平面C B E 所成角的正弦值.(1)证明:取CE 的中点G,连FG 、BG .可证得四边形GFAB 为平行四边形,则AF//BG即可证得AF//平面BCE. …………………………..(4分)(2)依题意证得BG ⊥平面CDE ,即可证得平面BCE ⊥平面CDE …….(8分) (3)解:设AD=DE=2AB=2,建立如图所示的坐标系A —xyz, 则A(0,0,0),C(2,0,0),B(0,0,1),D(1,3,0),E(1,3,2),F ()0,23,23 设平面BCE 的法向量为),,,(z y x =由0,0=⋅=⋅可取)2,3,1(-=,)1,23,23(-= 设BF 和平面BCE 所成的角为θ,则: sin θ42=……………………………(12分)6、如图,三棱柱111C C AB -A B 的底面是边长为4的正三角形,1AA ⊥平面C AB ,1AA =M 为11A B 的中点.()1求证:C M ⊥AB ;()2在棱1CC 上是否存在点P ,使得C M ⊥平面ABP ?若存在,确定点P 的位置;若不存在,请说明理由.()3若点P 为1CC 的中点,求二面角C B -AP -的余弦值.(1)解:取AB 中点O ,连结OM ,C O . M 为11A B 的中点 ∴1//MO A A1AA ⊥平面C AB ∴MO ⊥平面C AB∴MO ⊥AB …………2分7、如图,已知111C C AB -A B 是正三棱柱,它的底面边长和侧棱长都是2,D 为侧棱1CC 的中点,E 为11A B 的中点.()1求证:D AB ⊥E ;()2求直线11A B 到平面D AB 的距离;()3求二面角D C A -B -的正切值.(1)证明:连结C 1E,则C 1E ⊥A 1B 1, 又∵A 1B 1⊥C 1C ∴A 1B 1⊥平面EDC 1 ∴A 1B 1⊥DE, 而A 1B 1//AB ∴AB ⊥DE.(2) 取AB 中点为F,连结EF,DF,则EF ⊥AB ∴AB ⊥DF过E 作直线EH ⊥DF 于H 点,则EH ⊥平面DAB ∴EH 就是直线A 1B 1到平面DAB 的距离在矩形C 1EFC 中,∵AA 1=AB=2,∴EF=2,C 1E=3,DF=2, ∴在△DEF 中,EH=3,故直线A 1B 1到平面DAB 的距离为 3(3)过A 作AM ⊥BC 于M 点,则AM ⊥平面CDB 过M 作MN ⊥BD 于N 点,连结AN,则AN ⊥BD ∴∠ANM 即为所求二面角的平面角 在Rt △DCB 中,BC=2,DC=1,M 为BC 中点∴MN=55在Rt △AMN 中,tan ∠ANM=AMMN =158、如图,在直三棱柱111C C A B -AB 中,C AB ⊥A ,C 2AB =A =,14AA =,点D 是C B 的中点.()1求异面直线1A B 与1C D 所成角的余弦值;()2求平面1DC A 与平面1ABA 所成二面角的正弦值.(1)以},,{1→→→AA AC AB 为单位正交基底建立空间直角坐标系xyz A -, 则)0,0,0(A ,)0,0,2(B ,)0,2,0(C ,)4,0,0(1A ,)0,1,1(D ,)4,2,0(1C .)4,0,2(1-=∴→B A ,)4,1,1(1--=→D C10103182018,cos 111111==⋅>=<∴→→→→DC B A DC B AD C B A ∴异面直线B A 1与D C 1所成角的余弦值为10103. 6分(2))0,2,0(=→AC 是平面1ABA 的的一个法向量 设平面1ADC 的法向量为),,(z y x m =→,)0,1,1(=→AD ,)4,2,0(1=→AC ,由→→⊥AD m ,→→⊥1AC m 得 ⎩⎨⎧=+=+0420z y y x取1=z ,得2-=y ,2=x ,所以平面1ADC 的法向量为)1,2,2(-=→m . 设平面1ADC 与1ABA 所成二面角为θ .32324,cos cos =⨯-=⋅>=<=∴→→→→→mAC m AC m AC θ, 得35sin =θ. 所以平面1ADC 与1ABA 所成二面角的正弦值为35. 12分。
高三数学立体几何试题答案及解析1.已知三棱锥的三视图,则该三棱锥的体积是()A.B.C.D.【答案】B【解析】如图所示,,点P在侧面ABC的射影为O,.∴该三棱锥的体积.故选:B.【考点】由三视图求面积、体积.2.(本小题满分12分)直三棱柱中,,,分别是、的中点,,为棱上的点.(1)证明:;(2)是否存在一点,使得平面与平面所成锐二面角的余弦值为?若存在,说明点的位置,若不存在,说明理由.【答案】(1)证明见解析;(2)存在,点为中点.【解析】(1)先证明AB⊥AC,然后以A为原点建立空间直角坐标系A-xyz,则能写出各点坐标,由共线可得D(λ,0,1),所以,即DF⊥AE;(2)通过计算,面DEF的法向量为可写成,=(3,1+2λ,2(1-λ)),又面ABC的法向量=(0,0,1),令,解出λ的值即可.试题解析:(1)证明:,又,面又面以为原点建立如图所示的空间直角坐标系则,,,,设,且,即:(2)假设存在,设面的法向量为,则即:令由题可知面的法向量平面与平面所成锐二面角的余弦值为即:或(舍)当点为中点时,满足要求.【考点】1、二面角的平面角及求法;2、直线与平面垂直的性质.【方法点晴】本题考查空间中直线与直线的位置关系、空间向量及其应用,建立空间直角坐标系是解决问题的关键,属中档题.解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.3.已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.B.C.D.【答案】C【解析】设正四棱锥的高为,则,则,,所以四棱锥的体积,,由得,所以体积函数在区间上单调递增,在区间上单调递减,所以当时,体积有最大值,故选C.【考点】1.多面体体积;2.导数与函数最值.【方法点睛】本题主要考查本题主要考查立体几何中的最值问题,多面体体积公式、导数与函数等知识,属中档题.解决此类问题的两大核心思路:一是将立体问题转化为平面问题,结合平面几何的相关知识求解;二是建立目标函数的数学思想,选择合理的变量,利用导数、基本不等式或配方法求其最值.4.设三棱锥的三条侧棱两两互相垂直,且长度分别为,则其外接球的表面积为()A.B.C.D.【答案】B【解析】由题意可知其外接球的直径,所以外接球的表面积为.【考点】球的表面积公式.5.某几何体的三视图如图所示,则该几何体的体积为.【答案】【解析】该几何体为一个四棱锥,高为,底面为矩形,长宽分别为,因此体积为【考点】三视图6.已知是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A.若B.若C.若D.若【答案】C【解析】垂直于同一平面的两个平面可能平行,也可能相交,所以A选项不正确;两个平面内存在两条平行的直线时,两平面可能相交,也可能平行,所以B选项不正确;,又,,所以C选项正确;若,则或,所以D不正确.故D正确.【考点】1线面位置关系;2面面位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于容易题.解题时一定要抓住题目中的重要字眼“真命题”,否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理.7.已知直线平面,直线平面,给出下列命题,其中正确的是()①;②;③;④A.②④B.②③④C.①③D.①②③【答案】C【解析】对①,因为直线平面,∥,则,又直线,所以,①对;对②,与的关系是:平行、相交或异面,②错;对③,因为直线平面,∥,所以,又由面面垂直的判定定理得,③对;对④,与可以平行或相交,④错,所以选C.本题可借助于长方体去判定.【考点】1.空间直线、平面的位置关系.【易错点晴】本题主要考查的是空间点、线、面的位置关系,属于中档题.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形或长方体作为载体进行检验,也可作必要的合情推理.8.利用一个球体毛坯切削后得到一个四棱锥P—ABCD,其中底面四边形ABCD是边长为1的正方形,,且,则球体毛坯体积的最小值应为()A.B.C.D.【答案】D【解析】若使得球体毛坯体积最小,则四棱锥各顶点应都在球上,由题意,将四棱锥补成一个长方体,则转化为求长方体外接球体积,长方体体对角线为外接球直径,体对角线长为,所以球的半径为,体积为.【考点】多面体的外接球.9.(2007•山东)下列几何体各自的三视图中,有且仅有两个视图相同的是()A.①②B.①③C.①④D.②④【答案】D【解析】利用三视图的作图法则,对选项判断,A的三视图相同,圆锥,四棱锥的两个三视图相同,棱台都不相同,推出选项即可.解:正方体的三视图都相同,而三棱台的三视图各不相同,圆锥和正四棱锥的,正视图和侧视图相同,所以,正确答案为D.故选D【考点】简单空间图形的三视图.10.如图是某几何体的三视图,其中正视图为正方形,俯视图是腰长为的等腰直角三角形,则该几何体的体积为_________________;表面积为________________.【答案】体积为;表面积为【解析】由题意可知三视图复原的几何体如图为四棱锥,是正方体的一部分,正方体的棱长为2;所以几何体的体积是正方体体积的一半减去,所求几何体的体积为;表面积为【考点】三视图,几何体的体积,表面积11.已知某几何体的三视图如图,其中正视图中半圆的半径为1,则该几何体的体积为()A.B.C.D.【答案】A【解析】根据该几何体的三视图可知几何体的形状是一个长为,宽为,高为的长方体挖去一个直径为高为的圆柱,该几何体的体积为,选A.【考点】1、三视图;2、组合体的体积.12.如图是一建筑物的三视图(单位:米),现需将其外壁用油漆刷一遍,若每平方米用漆千克,则共需油漆的总量为()A.千克B.千克C.千克D.千克【答案】B【解析】由三视图可知可间房由底部长宽高分别为的长方体与底面半径.母线长分别为圆锥体组合而成,所以其可刷漆的表面积为,则需要漆的总量为千克,故正确选项为B.【考点】空间几何体的表面积.13.若=(2,﹣1,0),=(3,﹣4,7),且(λ+)⊥,则λ的值是()A.0B.1C.﹣2D.2【答案】C【解析】利用(λ+)⊥⇔即可得出.解:∵=λ(2,﹣1,0)+(3,﹣4,7)=(3+2λ,﹣4﹣λ,7),(λ+)⊥,∴,∴2(3+2λ)﹣(﹣4﹣λ)+0=0,解得λ=﹣2.故选C.【考点】向量的数量积判断向量的共线与垂直.14.如图,在四棱锥P﹣ABCD中,AD∥BC,AB⊥AD,AB⊥PA,BC=2AB=2AD=4BE,平面PAB⊥平面ABCD,(Ⅰ)求证:平面PED⊥平面PAC;(Ⅱ)若直线PE与平面PAC所成的角的正弦值为,求二面角A﹣PC﹣D的平面角的余弦值.【答案】(Ⅰ)证明见解析(Ⅱ)【解析】(I)由面面垂直的性质定理证出PA⊥平面ABCD,从而得到AB、AD、AP两两垂直,因此以AB、AD、AP为x轴、y轴、z轴,建立坐标系o﹣xyz,得A、D、E、C、P的坐标,进而得到、、的坐标.由数量积的坐标运算公式算出且,从而证出DE⊥AC且DE⊥AP,结合线面垂直判定定理证出ED⊥平面PAC,从而得到平面PED⊥平面PAC;(II)由(Ⅰ)得平面PAC的一个法向量是,算出、夹角的余弦,即可得到直线PE与平面PAC所成的角θ的正弦值,由此建立关于θ的方程并解之即可得到λ=2.利用垂直向量数量积为零的方法,建立方程组算出=(1,﹣1,﹣1)是平面平面PCD的一个法向量,结合平面PAC的法向量,算出、的夹角余弦,再结合图形加以观察即可得到二面角A ﹣PC﹣D的平面角的余弦值.解:(Ⅰ)∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AB⊥PA∴PA⊥平面ABCD结合AB⊥AD,可得分别以AB、AD、AP为x轴、y轴、z轴,建立空间直角坐标系o﹣xyz,如图所示可得A(0,0,0)D(0,2,0),E(2,1,0),C(2,4,0),P(0,0,λ)(λ>0)∴,,得,,∴DE⊥AC且DE⊥AP,∵AC、AP是平面PAC内的相交直线,∴ED⊥平面PAC.∵ED⊂平面PED∴平面PED⊥平面PAC(Ⅱ)由(Ⅰ)得平面PAC的一个法向量是,设直线PE与平面PAC所成的角为θ,则,解之得λ=±2∵λ>0,∴λ=2,可得P的坐标为(0,0,2)设平面PCD的一个法向量为=(x0,y,z),,由,,得到,令x0=1,可得y=z=﹣1,得=(1,﹣1,﹣1)∴cos<,由图形可得二面角A﹣PC﹣D的平面角是锐角,∴二面角A﹣PC﹣D的平面角的余弦值为.【考点】用空间向量求平面间的夹角;平面与平面垂直的判定;二面角的平面角及求法.15.已知正三棱锥的底面边长为,侧棱长为,则正三棱锥的体积为.【答案】【解析】∵正三棱锥的底面边长为,∴底面正三角形的高为,可得底面中心到三角形顶点的距离为,∵正三棱锥侧棱长为,∴正三棱锥的高,所以三棱锥的体积.所以答案应填:.【考点】棱柱、棱锥、棱台的体积.16.在等腰梯形中,,,,是的中点,将梯形绕旋转,得到(如图).(I)求证:;(II)求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(I)由题意容易证明四边形是平行四边形,.又为等腰梯形,,四边形是菱形,可证得,根据面面垂直的性质定理可证得平面,从而证得;(II)易证平面,以为坐标原点,建立空间直角坐标系,分别求出平面的法向量和平面的法向量,根据向量的夹角公式求得二面角的余弦值.试题解析:(I)证明:,是的中点,.又,四边形是平行四边形,.又为等腰梯形,,,四边形是菱形,,,即.平面平面,平面平面,平面.又平面,.(II)解:平面,同理平面.如图建立空间直角坐标系,设,则,,,,则,.设平面的法向量为,.设平面的法向量为,,设二面角的平面角为,,二面角的余弦值为.【考点】空间中垂直关系的证明及空间向量的应用.17.如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的正(主)视图与侧(左)视图的面积的比为.【答案】【解析】因为三棱锥的主视图与左视图都是三角形, 正视图和侧视图三角形的底边长都是正方体的棱长,高都是到底面的距离(都是正方体的棱长),所以,三棱锥的主视图与左视图的面积相等,即比值为,故答案为.【考点】1、几何体的三视图;2、三角形面积公式.18.如图,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则几何体的体积为()A.B.C.D.【答案】B【解析】如图所示,该几何体是一个底面为平行四边形,高为的棱柱,体积为,故选B.【考点】几何体的体积.19.如图,矩形O′A′B′C′是水平放置的一个平面图形的直观图,其中O′A′=6,O′C′=2,则原图形OABC的面积为________.【答案】【解析】因为矩形是水平放置的一个平面图形的直观图,所以根据画直观图的基本原理知原图形是底边长为的平行四边形,其高是,因此面积是,故答案为.【考点】1、画直观图的基本原理;2、平行四边形的面积公式.20.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】D【解析】由三视图知几何体是由正方体截取两个角得到,如图所示,故体积为.【考点】三视图.21.如图所示,四棱锥的底面是梯形,且,平面,是中点,.(Ⅰ)求证:平面;(Ⅱ)若,,求直线与平面所成角的大小.【答案】(I)证明见解析;(II).【解析】(I)取的中点,连结,证得,从而证得平面,根据平行四边形的性质,得,即可证明平面;(II)分别以的方向为轴的正方向,建立空间直角坐标系,求解出平面和向量,即可利用向量所成的角,得到直线与平面所成角的大小.试题解析:(Ⅰ)证明:取的中点,连结,如图所示.因为,所以.因为平面,平面,所以.又因为,所以平面.因为点是中点,所以,且.又因为,且,所以,且,所以四边形为平行四边形,所以,所以平面.(Ⅱ)解:设点O,G分别为AD,BC的中点,连结,则,因为平面,平面,所以,所以.因为,由(Ⅰ)知,又因为,所以,所以所以为正三角形,所以,因为平面,平面,所以.又因为,所以平面.故两两垂直,可以点O为原点,分别以的方向为轴的正方向,建立空间直角坐标系,如图所示.,,,所以,,,设平面的法向量,则所以取,则,设与平面所成的角为,则,因为,所以,所以与平面所成角的大小为.【考点】直线与平面垂直的判定与证明;直线与平面所成角的求解.22.如图,在三棱台中,平面平面,,BE=EF=FC=1,BC=2,AC=3.(Ⅰ)求证:BF⊥平面ACFD;(Ⅱ)求二面角B-AD-F的平面角的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ).【解析】(Ⅰ)先证,再证,进而可证平面;(Ⅱ)方法一:先找二面角的平面角,再在中计算,即可得二面角的平面角的余弦值;方法二:先建立空间直角坐标系,再计算平面和平面的法向量,进而可得二面角的平面角的余弦值.试题解析:(Ⅰ)延长,,相交于一点,如图所示.因为平面平面,且,所以平面,因此.又因为,,,所以为等边三角形,且为的中点,则.所以平面.(Ⅱ)方法一:过点作于Q,连结.因为平面,所以,则平面,所以.所以是二面角的平面角.在中,,,得.在中,,,得.所以二面角的平面角的余弦值为.方法二:如图,延长,,相交于一点,则为等边三角形.取的中点,则,又平面平面,所以,平面.以点为原点,分别以射线,的方向为,的正方向,建立空间直角坐标系.由题意得,,,,,.因此,,,.设平面的法向量为,平面的法向量为.由,得,取;由,得,取.于是,.所以,二面角的平面角的余弦值为.【考点】线面垂直,二面角.【方法点睛】解题时一定要注意二面角的平面角是锐角还是钝角,否则很容易出现错误.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.23.直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,则下列说法正确的是()A.c至少与a、b中的一条相交B.c至多与a、b中的一条相交C.c与a、b都相交D.c与a、b都不相交【答案】A【解析】利用空间中线线、线面、面面间的位置关系判断求解.解:由直线a、b是异面直线,α、β是平面,若a⊂α,b⊂β,α∩β=c,知:对于B,c可以与a、b都相交,交点为不同点即可,故B不正确;对于C,a∥c,b∩c=A,满足题意,故C不正确;对于D,c与a、b都不相交,则c与a、b都平行,所以a,b平行,与异面矛盾,故D不正确;对于A,由B,C、D的分析,可知A正确故选:A.24.已知某几何体的三视图如图所示,则该几何体的体积等于()A.B.160C.D.【答案】A【解析】由三视图知该几何体是由一个直三棱柱和一个四棱锥组合的组合体,其中直三棱柱的底面为左视图,高为,故体积.四棱锥的底面为边长为的正方形,高为,所以体积,所以该几何体的体积为.故选A.【考点】1、几何体的三视图;2、几何体的体积.【方法点睛】本题主要考查三视图及空间几何体的体积,属于中档题.空间几何体体积问题的常见类型及解题策略:(1)求简单几何体的体积时若所给的几何体为柱体椎体或台体,则可直接利用公式求解;(2)求组合体的体积时若所给定的几何体是组合体,不能直接利用公式求解,则常用转换法、分割法、补形法等进行求解. (3)求以三视图为背景的几何体的体积时应先根据三视图得到几何体的直观图,然后根据条件求解.25.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若π取3,其体积为12.6(立方寸),则图中的x为()A.1.2B.1.6C.1.8D.2.4【答案】B【解析】由题意得,即,解得,故选B.【考点】几何体的三视图及体积.26.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于()cm3A.4+B.4+C.6+D.6+【答案】D【解析】由三视图还原原几何体如图,是一个半圆柱与一个直三棱柱的组合体,半圆柱的底面半径为,高为;直三棱柱底面是等腰直角三角形(直角边为),高为.∴.故本题选D.【考点】空间几何体的三视图.27.在正方体中,是的中点,则异面直线与所成角的余弦值等于_______,若正方体边长为1,则四面体的体积为_________.【答案】;【解析】异面直线与所成角为,,.【考点】立体几何中异面直线所成角的余弦值的求法以及三棱锥的体积的求法.28.如图,在四棱锥中,底面,,,,,点为棱的中点.(1)证明:;(2)若为棱上一点,满足,求二面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)以点为原点建立空间直角坐标系(如图),求得,,可得,即可证结论;(2)先根据确定的位置,在求出平面的一个法向量,可证平面一个的法向量为,利用空间向量夹角余弦公式即可得结论.试题解析:(1)证明:依题意,以点为原点建立空间直角坐标系(如图),可得,,,.由为棱的中点,得.向量,,故.所以.(2)向量,,,.由点在棱上,设,.故.由,得,因此,,解得.即.设为平面的法向量,则,即.不妨令,可得为平面的一个法向量.取平面的法向量,则.易知,二面角是锐角,所以其余弦值为.【考点】1、空间直线垂直的判定;2、空间向量夹角余弦公式.29.如图,在三棱锥中,底面,且,点是的中点, 交于点.(1)求证:平面;(2)当时, 求三棱锥的体积.【答案】(1)详见解析(2)【解析】(1)证明线面垂直,一般利用线面垂直判定定理,即从线线垂直出发给予证明,而线线垂直的证明与寻找,往往从两个方面,一是利用线面垂直性质定理转化为线线垂直,另一是结合平几条件,如本题利用等腰三角形底边中线性质得(2)求三棱锥体积,关键在于确定高,即线面垂直.由(1)得平面,因此,这样只需在对应三角形中求出对应边即可.试题解析:(1)底面,面,又因为是的中点, 面由已知平面.(2)平面,平面,而,又又平面而.【考点】线面垂直判定与性质定理,三棱锥体积【思想点睛】垂直、平行关系证明中应用转化与化归思想的常见类型.(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.30.过球表面上一点引三条长度相等的弦,且两两夹角都为60°,若球半径为,求弦的长度___________.【答案】【解析】依题意可知,这是一个正四面体的外接球. 若一个正四面体边长为,其外接球半径公式为:,即.【考点】球的内接几何体.【思路点晴】对棱相等的三棱锥,设三对棱长分别为,如下图所示三棱锥,请同学们推导其外接球半径公式,特别地,若一个正四面体边长为,其外接球半径公式为:.设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.2.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.31.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】D【解析】由题意得,根据给定的三视图可知,原几何体表示,左侧是一个底面半径为,高为半个圆锥,几何体的右侧是一个底面为底边为,高为的等腰三角形三棱锥,其中三棱锥的高为,所以几何体的体积为,故选D.【考点】几何体的三视图及体积的计算.32.已知直线与平面平行,是直线上的一定点,平面内的动点满足:与直线成.那么点轨迹是()A.两直线B.椭圆C.双曲线D.抛物线【答案】C【解析】题意画图如下,是直线上的定点,有一平面与直线平行,平面内的动点满足的连线与成角,因为空间中过与成角的直线组成两个相对顶点的圆锥,即为平行于圆锥轴的平面,点可理解为是截面与圆锥侧面的交点,所以点的轨迹为双曲线,故选C.【考点】1、空间点、线、面的位置关系;2、圆锥曲线的定义.33.三棱锥内接于球,,当三棱锥的三个侧面积和最大时,球的体积为.【答案】【解析】由于三角形的面积公式,当时取得最大值,所以当两两垂直时,侧面积和取得最大值.此时,由于三棱锥三条侧棱两两垂直,所以可以补形为正方体,三棱锥的外接球即正方体的外接球,其直径等于正方体的体对角线即,故求的体积为.【考点】几何体的外接球.【思路点晴】设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为: .34.如图,在直三棱柱中,,过的中点作平面的垂线,交平面于,则与平面所成角的正切值为()A.B.C.D.【答案】C【解析】连接,则,由直三棱柱得,因此,因此为的中点,过作于,则为与平面所成角, ,选C.【考点】线面角35.如图,在四棱锥中,底面,底面是直角梯形,(1)在上确定一点,使得平面,并求的值;(2)在(1)条件下,求平面与平面所成锐二面角的余弦值.【答案】(1)(2)【解析】(1)由线面平行的性质定理,可得线线平行,再根据平行得相似,即得比例关系:取。
选择题若一个正方体的棱长为a,则其体对角线长为:A. aB. √2aC. √3a(正确答案)D. 2a下列说法中正确的是:A. 三角形的三条高都在三角形内部B. 三角形的三条中线交于一点,且该点一定在三角形内部(正确答案)C. 三角形的三条角平分线都在三角形内部D. 三角形的三条垂直平分线都在三角形内部设一个棱柱有10个顶点,且所有侧棱长的和为30,则每条侧棱长为:A. 3B. 4C. 5D. 6(正确答案)一个圆锥的底面半径为2,高为3,则其母线长为:A. √5B. √13(正确答案)C. 5D. 13下列关于球的说法中正确的是:A. 球的半径是唯一的B. 球的直径是球面上任意两点间距离的最大值(正确答案)C. 球的表面积与半径成正比D. 球的体积与半径的平方成正比一个长方体的长、宽、高分别为3、4、5,则其体对角线长为:A. 5B. 5√2(正确答案)C. 5√3D. 12下列关于平面的说法中错误的是:A. 两点确定一条直线,且这条直线唯一确定一个平面B. 不共线的三点确定一个平面C. 两条平行直线确定一个平面D. 两条相交直线可能确定两个不同的平面(正确答案)一个圆柱的底面半径为r,高为h,则其侧面积为:A. 2πr²B. πrhC. 2πrh(正确答案)D. πr²h下列关于空间几何体的说法中正确的是:A. 圆锥的侧面展开图一定是半圆B. 棱柱的底面一定是平行四边形C. 棱锥的底面一定是三角形D. 球面是空间中到定点的距离等于定长的所有点的集合(正确答案)。
高三数学立体几何试题答案及解析1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】几何体为一个三棱柱,底面为直角三角形,直角边长分别为6,8;三棱柱高为12.得到的最大球为直角三角形的内切球,其半径为,选B.【考点】三视图2.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形,则该几何体的体积等于()A.B.C.D.【答案】A【解析】由三视图知:,,∴.【考点】三视图.3.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)()A.133B.100C.66D.166【答案】D【解析】由三视图知,该几何体为底面半径为3,搞为8的圆柱.其外接球时半径为5的球.则剩余几何体的表面积是球的表面积与该圆柱表面积的和,即.故选D.【考点】多面体及与其外接球的关系及几何体表面积计算问题.4.(本小题满分12分)如图,已知五面体,其中内接于圆,是圆的直径,四边形为平行四边形,且平面.(1)证明:;(2)若,,且二面角所成角的正切值是,试求该几何体的体积.【答案】(1)见解析;(2)8.【解析】(1)将问题转化为证明平面,再转化为证明(由直径可证)与(由平面可证);(2)考虑建立空间直角坐标系,通过求两个法向量的夹角来确定二面角所成角的正切值,并确定的长,进而可求得几何体的体积.试题解析:(1)证明:是圆的直径,,又平面,又平面,且,平面又平面,(2)设,以所在直线分别为轴,轴,轴,如图所示则,,,由(Ⅰ)可得,平面,平面的一个法向量是设为平面的一个法向量由条件得,,即不妨令,则,,.又二面角所成角的正切值是,,得该几何体的体积是【考点】1、空间直线与直线、直线与平面的垂直的判定与性质;2、二面角;3、空间几何体的体积.【方法点睛】用空间向量处理某些立体几何问题时,除要有应用空间向量的意识外,关键是根据空间图形的特点建立恰当的空间直角坐标系.若坐标系选取不当,计算量就会增大.总之树立用数解形的观念,即用数形结合的思想解决问题,而建立空间直角坐标系通常考虑以特殊点为坐标原点(如中点、正方体的顶点),特殊直线(如有两两垂直的直线)为坐标轴来建立.5.如图,在多面体中,为菱形,,平面,平面,为的中点,若平面.(1)求证:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】(1)证明线面垂直,只要证明这条直线与平面内两条相交直线垂直即可,取中点,连接,可证,先证,即可证明,即可证明结论成立;(2)建立空间直角坐标系,求出平面与平面的法向量,由空间向量公式直接计算即可.试题解析:(1)取AB的中点M,连结GM,MC,G为BF的中点,所以GM //FA,又EC面ABCD, FA面ABCD,∵CE//AF,∴CE//GM,∵面CEGM面ABCD=CM,EG// 面ABCD,∴EG//CM,∵在正三角形ABC中,CM AB,又AF CM∴EG AB, EG AF,∴EG面ABF.(2)建立如图所示的坐标系,设AB=2,则B()E(0,1,1) F(0,-1,2)=(0,-2,1),=(,-1,-1),=(,1, 1),设平面BEF的法向量=()则令,则,∴=()同理,可求平面DEF的法向量 =(-)设所求二面角的平面角为,则=.【考点】1.线面垂直的判定与性质;2.空间向量的应用.【方法点睛】本题主要考查线面垂直的判定与性质、空间向量的应用,属中档题.解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.6.三棱锥及其三视图中的正视图和侧视图如下图所示,,则棱的长为.【答案】.【解析】由已知三视图可知,平面,且底面为等腰三角形.在中,,边上的高为,所以.在中,由可得,故应填.【考点】1、三视图.【易错点晴】本题主要考查了空间几何体的三视图及其空间几何体的面积、体积的计算,考查学生空间想象能力和计算能力,属中档题.其解题过程中容易出现以下错误:其一是不能准确利用已知条件的三视图得出原几何体的空间形状,即不能准确找出该几何体中线线关系、线面关系,导致出现错误;其二是计算不仔细,导致结果出现错误.解决这类问题的关键是正确地处理三视图与原几何体之间的关系.7.在三棱锥中,平面为侧棱上的一点,它的正视图和侧视图如图所示,则下列命题正确的是()A.平面且三棱锥的体积为B.平面且三棱锥的体积为C.平面且三棱锥的体积为D.平面且三棱锥的体积为【答案】C【解析】∵平面,∴,又,∴平面,∴,又由三视图可得在中,为的中点,∴平面.又平面.故.故选:C.【考点】1.直线与平面垂直的判定;2.命题的真假判断与应用;3.简单空间图形的三视图.8.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.【答案】C【解析】题设三视图是下图中几何体的三视图,由三视图中的尺寸,知其体积为,故选C.【考点】三视图与几何体的体积.9.如图,在三棱柱ABC A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:(Ⅰ)DE∥平面ABC1;(Ⅱ)B1C⊥DE.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)取AA1的中点F,连DF,FE,根据中点易证线线平行,从而平面DEF∥平面ABC1,又因为DE平面DEF,所以B1C⊥DE;(Ⅱ)在菱形中B1C⊥BC1,又B1C⊥AB,易证B1C⊥平面ABC1,再根据面面平行的性质,得:B1C⊥平面DEF,从而证明B1C⊥DE.试题解析:(Ⅰ)如图,取AA1的中点F,连DF,FE.又因为D,E分别为A1C1,BB1的中点,所以DF∥AC1,EF∥AB.因为DF平面ABC1,AC1平面ABC1,故DF∥平面ABC1.同理,EF∥平面ABC1.因为DF,EF为平面DEF内的两条相交直线,所以平面DEF∥平面ABC1.因为DE平面DEF,所以DE∥平面ABC1.(Ⅱ)因为三棱柱ABC A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.……9分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,所以B1C⊥平面ABC1.而平面DEF∥平面ABC1,所以B1C⊥平面DEF,因为DE平面DEF,所以B1C⊥DE.【考点】1、线面平行;2、面面平行;3、线面垂直;4、三角形中位线.【方法点晴】本题主要考查的是线面平行、线线平行、线线垂直和线面垂直,属于中档题.解题时一定要注意得线线平行的常用证明方法,构造中位线和平行四边形是最常用方法.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.10.已知,是两个不同的平面,,是两条不同的直线,则下列正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则【答案】C.【解析】A:或者,异面,故A错误;B:根据面面垂直的判定可知B错误;C:正确;D:或,故D错误,故选C.【考点】空间中直线平面的位置关系.11.已知三条不重合的直线和两个不重合的平面,下列命题正确的是()A.若,,则B.若,,且,则C.若,,则D.若,,且,则【答案】D【解析】A.若,,则,错,有可能;B.若,,且,则,错,有可能;C.若,,则,错,有可能,或异面;D.若,,且,则,正确【考点】空间直线与平面,平面与平面的位置关系12.如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求直线和平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由底面,可得,又,可证的平面,问题得证;(2)在第一问证明的基础上,应用面面垂直的性质定理容易作出平面的垂线,即得斜线的射影,找出角,解直角三角形可得线面角的正弦.试题解析:(1)证明∵底面,底面,∴,又,,∴平面.又平面,∴平面平面.(2)解:过点作,连结.平面平面,平面平面,平面,∴平面,∴为直线和平面所成角.∵是边长为的正三角形,∴,.又∵,∴,,∴.即直线和平面所成角的正弦值为.【考点】空间垂直关系的应用和证明,直线与平面所成的角.【方法点晴】证明面面垂直只能证明线面垂直,而要证明线面垂直就得证明线线垂直,结合题中已知的垂直条件,分析容易找到哪个平面的垂线,逐步完成证明,组织步骤时一定要思路条理;对于直线与平面所成的角遵循作—证(指)—求—答的解题步骤,应当结合条件和前面证明的结论找到平面的垂线是解题的关键,本题中在第一问证明的基础上有了平面的垂面,利用面面垂直的性质定理过直线上一点作交线的垂线即为平面的垂线,连接垂足和斜足即得射影,找到线面角后解直角三角形得解.13.一个几何体的三视图如图所示,则这个几何体的外接球表面积为()A.B.C.D.【答案】A【解析】几何体为一个三棱锥S-ABC,其中D为AC中点,且SD垂直平面ABC,BD垂直AC,则球心在SD上,设球半径为R,则外接球表面积为,选A.【考点】三视图【方法点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.已知正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是_________.【答案】【解析】因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值.设正三角形的外接圆圆心为,在中,,所以.在中,,所以,所以截面面积为【考点】1、多面体的外接球;2、球的截面圆性质.【方法点睛】“切”“接”问题的处理规律:①“切”的处理:解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决;②“接”的处理:把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.15.(2015•金家庄区校级模拟)如图正方形BCDE的边长为a,已知AB=BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE;③VB﹣ACE的体积是a2;④平面ABC⊥平面ADC;⑤直线EA与平面ADB所成角为30°.其中正确的有.(填写你认为正确的序号)【答案】①③④⑤【解析】①由于BC∥DE,则∠ABC(或其补角)为AB与DE所成角;②AB和CE是异面直线;③根据三棱锥的体积公式即可求VB ﹣ACE的体积;④根据面面垂直的判定定理即可证明;⑤根据直线和平面所成角的定义进行求解即可.解:由题意,AB=BC,AE=a,AD⊥平面BCDE,AD=a,AC= a①由于BC∥DE,∴∠ABC(或其补角)为AB与DE所成角∵AB=a,BC=a,AC=a,∴BC⊥AC,∴tan∠ABC=,故①正确;②由图象可知AB与CE是异面直线,故②错误.③VB﹣ACE的体积是S△BCE×AD=×a3=,故③正确;(4)∵AD⊥平面BCDE,BC⊂平面BCDE,∴AD⊥BC,∵BC⊥CD,AD∩CD=D,∴BC⊥平面ADC,∵BC⊂平面ABC,∴平面ABC⊥平面ADC,故④正确;⑤连接CE交BD于F,则EF⊥BD,∵平面ABD⊥平面BDE,∴EF⊥平面ABD,连接F,则∠EAF为直线AE与平面ABD所成角,在△AFE中,EF=,AE=a,∴sin∠EAF==,则∠EAF=30°,故⑤正确,故正确的是①③④⑤故答案为:①③④⑤【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.16.已知某几何体的三视图,则该几何体的体积是_______.【答案】.【解析】该几何体是一个四棱锥,底面是边长为2的正方形,高为,所以.【考点】1.空间几何体的表面积与体积;2.空间几何体的三视图与直观图.17.设三棱柱的侧棱垂直于底面,,且三棱柱的所有顶点都在同一球面上,则该球的表面积是.【答案】【解析】由题意可得:把三棱柱补成底面以2为边长的正方形,以为高的长方体,长方体的体对角线就是球的直径,所以,所以该球的表面积是;故填.【考点】空间几何体的表面积.18.某几何体的正视图与侧视图都是等腰梯形,则该几何体可以是下列几何体中的()①三棱台,②四棱台,③五棱台,④圆台.A.①②B.③④C.①③D.②④【答案】D【解析】由题意得,几何体的正视图和侧视图都是等腰梯形,则根据几何体的三视图的规则可知,该几何体可能为四棱台或圆台,故选D.【考点】空间几何体的三视图.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,只是给出了几何体的正视图和侧视图都是等腰梯形,从而可得这个几何体可能是四棱台或圆台.19.在直三棱柱中,,,且异面直线与所成的角等于,设.(1) 求的值;(2) 求三棱锥的体积.【答案】(1); (2)【解析】(1)由BC ∥B 1C 1可得∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,从而∠A 1BC =60°,再由AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,△A 1BC 为等边三角形, 由已知可得,即可求得 (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积,△的面积, 又可得平面,利用三棱锥的体积公式可求得.试题解析:(1)∵BC ∥B 1C 1,∴∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,即∠A 1BC =60°,又AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,∴△A 1BC 为等边三角形, 由,, ∴; (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积, 即:, △的面积,又平面,所以,所以.【考点】异面直线所成的角及三棱锥的体积的求法.20. 如图,在四棱锥中,已知棱,,两两垂直,长度分别为1,2,2.若(),且向量与夹角的余弦值为.(1)求的值;(2)求直线与平面所成角的正弦值.【答案】(1);(2).【解析】(1)以为坐标原点,、、分别为、、轴建立空间直角坐标系,写出,的坐标,根据空间向量夹角余弦公式列出关于的方程可求;(2)设岀平面的法向量为,根据,进而得到,从而求出,向量的坐标可以求出,从而可根据向量夹角余弦的公式求出,从而得和平面所成角的正弦值.试题解析:(1)依题意,以为坐标原点,、、分别为、、轴建立空间直角坐标系 ,因为,所以,从而,则由,解得(舍去)或. (2)易得,,设平面的法向量, 则,,即,且,所以,不妨取,则平面的一个法向量,又易得,故,所以直线与平面所成角的正弦值为.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.21.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析(2)详见解析【解析】(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与证明,往往需结合平面几何条件,如本题利用三角形中位线性质定理得(2)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,需多次利用线面垂直的判定与性质定理:先由平行四边形为菱形得,再由平面得,即,从而得平面试题解析:(1)设,连结,因为,为的中点,所以,所以四边形为平行四边形,所以为的中点,所以又因为平面,平面,所以平面.(2)(方法一)因为平面,平面所以,由(1)同理可得,四边形为平行四边形,所以,所以因为,所以平行四边形为菱形,所以,因为平面,平面,所以平面因为平面,所以平面平面.(方法二)连结,因为平面,平面,所以因为,所以,因为平面,平面,所以因为为的中点,所以,由(1),所以又因为为的中点,所以因为,平面,平面所以平面,因为平面,所以平面平面.【考点】线面平行判定定理,面面垂直判定定理22.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】A【解析】因为网格纸上小正方形的边长为,有三视图可知,该几何体是下面为底面半径为高为的圆柱体的一半、上面是底面半径为高为的圆锥体的一半,所以体积为,故选A.【考点】1、几何体的三视图;2、圆柱及圆锥的体积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.23.已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的体积为()A.B.C.D.【答案】C【解析】因为,,,所以的中点为的外心,连接,则,又和所在的平面互相垂直,所以平面,上的每一点到距离相等,因此正三角形的中心即是外接球球心,其半径也是外接球半径,所以球半径,求体积为,故选C.【考点】1、外接球的性质及勾股定理;2、面面垂直及球的体积公式.【方法点睛】本题主要考查外接球的性质及勾股定理、面面垂直及三棱锥外接球体积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题是根据方法④直接找出球心并求出半径进而得到求体积的.24.四棱锥的底面是正方形,,分别是的中点(1)求证:;(2)设与交于点,求点到平面的距离【答案】(1)证明见解析;(2).【解析】(1)要证明线面垂直,一般先证明线线垂直,本题中,由于是中点,因此有,而与垂直,从而与平面垂直,结论得证;(2)要求点到平面的距离,考虑三棱锥,的面积易求(为面积的一半),另外由(1)的结论,此三棱锥以为底时,是高,体积易求,从而所求距离易得.试题解析:(1)证明:连接,由于分别是的中点,所以,又,平面,故,又为正方形,故故,故(2)连接交于点,连接,则交线为,又,故,由于分别是的中点,故为的中点,又,故为三棱锥的高又故,又设点到平面的距离为,,所以【考点】线面垂直的判断,点到平面的距离.25.某几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】C【解析】由题意得,由几何体的三视图,知该几何体是上下底面为梯形的直棱柱,所以该几何体的体积为,故选C.【考点】几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,该几何体是上下底面为梯形的直棱柱是解答本题的关键,属于基础题.26.一个几何体的三视图如图,则这个几何体的表面积是()A.B.C.D.【答案】C【解析】由题意得,根据给定的几何体的三视图,可知,原几何体为正方体的一部分,如图所示的红线部分,是一个棱长为的正四面体,所以此几何体的表面积为,故选C.【考点】几何体的三视图与表面积.27.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,,.【考点】三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.28.如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)存在,.【解析】(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值.试题解析:(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面.(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(Ⅲ)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.【考点】空间线面垂直的判定定理与性质定理;线面角的计算;空间想象能力,推理论证能力【名师】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.29.如图,在四棱锥中,底面是菱形,,平面,,点分别为和中点.(1)求证:直线平面;(2)求三棱锥的表面积.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,一般先证线线平行,考虑到,是中点,因此取的中点,可证得且,从而得平行四边形,因此有,最终得线面平行;(2)要求三棱锥的表面积,必须求得它的各个面的面积,由平面,得,三角形和的面积可求,由题设又可证,这样就有,另两个面的面积又可求得.试题解析:(1)证明:作FM∥CD交PC于M.∵点F为PD中点,∴. ∴,∴AEMF为平行四边形,∴AF∥EM,∵,∴直线AF平面PEC.(2)连结可知,,由此;;;;因此三棱锥的表面积.【考点】线面平行的判断,多面体的表面积.30.在棱长为3的正方体中,在线段上,且,为线段上的动点,则三棱锥的体积为()A.1B.C.D.与点的位置有关【答案】B【解析】由于是定值,点到平面的距离是,因此点平面的距离是.所以三棱锥的体积,应选B.【考点】三棱锥体积的运算.31.如图,在多面体中,底面是边长为2的正方形,四边形是矩形,且平面平面,,和分别是和的中点.(1)求证:平面;(2)求.【答案】(1)证明见解析;(2).【解析】(1)运用线面平行的判定定理求证;(2)借助题设条件及转化化归的思想求解即可. 试题解析:(1)证明:设,连接,在中,因为,,所以,又因为平面,平面,所以平面.(2)因为四边形是正方形,所以,又因为平面平面,平面平面,且平面,所以平面,则到平面的距离为的一半,又因为,所以,所以.【考点】直线与平面的位置关系及棱锥公式的运用.32.如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.(1)证明:平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)设为的中点,连接,依题意有,,故平面.根据分析有,故平面;(2)以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,利用向量法求得余弦值为.试题解析:(1)设为的中点,连接.由题意得:平面,所以.因为,所以,,故平面.由分别为的中点,得且,从而且,所以为平行四边形,故,又因为平面,所以平面.(2)方法一:作,且,连结.由,,得,由,,得与全等.由,得,因此为二面角的平面角.由,,,得,,由余弦定理得.方法二:以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,如图所示,由题意知各点坐标如下:,因此,,,设平面的法向量为,平面的法向量为,由,即,可取.由,即,可取,于是.由题意可知,所求二面角的平面角是钝角,故二面角的平面角的余弦值为.【考点】空间向量与立体几何.33.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,从左往右为半个圆锥,一个圆柱,一个半圆,故体积为.【考点】三视图.34.如图,在四棱柱中,底面,为线段上的任意一点(不包括两点),平面与平面交于.(1)证明:;(2)证明:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)要证线线垂直,一般可证线面垂直,观察题中垂直条件,平面,则有,题中又有,从而有平面,因此结论得证;(2)要证线面平行,就是要证线线平行,直线是平面与平面的交线,因此要得平行,就要有线面平行,而这由可得平面,从而,结论得证.试题解析:(1)证明:因为平面,平面,所以.又,所以平面,而平面,所以.(2)在四棱柱中,,平面,平面,所以平面,又平面,平面与平面交于,所以,因为,所以,而平面,平面,所以平面.【考点】线面垂直的判定与性质,线面平行的判定与性质.【名师】证明线面(面面)平行(垂直)时要注意以下几点:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。
[在此处键入] 1 CBA
C1
B
1
A1
高三立体几何习题 一、 填空题 1.已知AB是球O的一条直径,点1O是AB上一点,若14OO,平面过点1O且垂直AB,截得圆1O,当圆
1O的面积为9时,则球O的表面积是 .
【答案】100p 2.把一个大金属球表面涂漆,共需油漆2.4公斤.若把这个大金属球熔化制成64个大小都相同的小金属球,
不计损耗,将这些小金属球表面都涂漆,需要用漆 公斤. 【答案】9.6 3.已知球的表面积为642cm,用一个平面截球,使截面圆的半径为2cm,则截面与球心的距离是 cm 【答案】23 4.一个圆锥与一个球体积相等且圆锥的底面半径是球半径的2倍,若圆锥的高为1,则球的表面积为 .
【答案】4p
5.一个底面置于水平面上的圆锥,若主视图是边长为2的正三角形,则圆锥的侧面积为 .
【答案】4p
6.如图所示:在直三棱柱111ABCABC中,ABBC,1ABBCBB,则平面11ABC与平面ABC所成的
二面角的大小为 .
【答案】4
二、选择题 1.如图,已知圆锥的底面半径为10r,点Q为半圆弧AB的中点, 点P为母线SA的中点.若PQ与SO所成角为4,则此圆锥的 全面积与体积分别为( ) A.100051006,3 B.10005100(16),3
C.100031003,3 D.10003100(13),3 【答案】B 2.如图,取一个底面半径和高都为R的圆柱,从圆柱中挖去一个以圆柱的上底面为底面,下底面圆心为顶点的圆锥,把所得的几何体与一个半径为R的半球放在同一水平面上.用一平行于平面的平面去截这两个几何体,截面分别为圆面和圆环面(图中阴影部分).设截面面积分别为S圆和S圆环,那么( ) A.S圆>S圆环 B.S圆<S圆环 C.S圆=S圆环 D.不确定
P S A Q O
B 3.如图所示,PAB所在平面和四边形ABCD所在的平面互相垂直,且AD,BC,4AD,8BC,6AB,若tan2tan1ADPBCP,则动点P
在平面内的轨迹是( ) A.线段 B.椭圆的一部分 C.抛物线 D.双曲线的一部分 【答案】D
4.在空间中,下列命题正确的是( ) A.若两直线,ab与直线l所成的角相等,那么//ab B.空间不同的三点A、B、C确定一个平面 C. 如果直线//l平面且//l平面,那么// D.若直线a与平面M没有公共点,则直线//a平面M 【答案】D
5.如图,已知直线l平面,垂足为O,在ABC△中,2,2,22BCACAB,点P是边AC上的动点.该三角形在空间按以下条
件作自由移动:(1)Al,(2)C.则OPPB的最大值为( ) (A) 2. (B) 22. (C) 15. (D) 10. 【答案】C
6.平面上存在不同的三点到平面的距离相等且不为零,则平面与平面的位置关系为( ) )(A 平行 )(B 相交 )(C 平行或重合 )(D 平行或相交
【答案】D
7.abc、、表示直线,表示平面,下列命题正确的是( ) A.若//,//aba,则//b B. 若,abb,则a C.若,acbc,则//ab D .若,ab,则//ab 【答案】D
8.下列命题中,正确的个数是【 】 ① 直线上有两个点到平面的距离相等,则这条直线和这个平面平行; ② a、b为异面直线,则过a且与b平行的平面有且仅有一个; ③ 直四棱柱是直平行六面体; ④ 两相邻侧面所成角相等的棱锥是正棱锥. A、0 B、1 C、2 D、3 【答案】B
9.在四棱锥ABCDV中,1B,1D分别为侧棱VB,VD的中点,则四面体11CDAB的体积与四棱锥 ABCDV的体积之比为( ) A.6:1 B.5:1 C.4:1 D.3:1 【答案】C
P
BADC
A B
l
C N
P O [在此处键入]
3 三、解答题 1.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCDABCD中,11ADAA,2AB,点E在棱AB上移动. (1)证明:11DEAD; (2)AE等于何值时,二面角1DECD的大小为4.
【答案】解:(1)在如图所示的空间直角坐标系中,11(1,0,1),(0,0,0),(0,0,1)ADD 设(1,,0)([0,2])Eyy 则11(1,,1),(1,0,1)DEyDA…所以110DEDA……所以11DEAD…… (2)方法一:设(,,)nuvw为平面1DCE的一个法向量
由1100nCDnDE,得200vwuyvw,所以(2)2uyvwv…
因为二面角1DECD的大小为4,所以2222(0,0,1)(,,)22cos||42(2)5uvwuvwy 又[0,2]y,所以23y,即当23AE时二面角1DECD的大小为4
2.(本题满分14分)本题共有2小题,第(1)小题满分6分,第(2)小题满分8分. 如图,在长方体1111ABCDABCD中,11ADAA,2AB,点E在棱AB上移动. (1)当E为AB的中点时,求四面体1EACD的体积; (2)证明:11DEAD.
【答案】解:(1)1122ACESAEBC… 因为1DDACE平面,所以1111136EACDDACEACEVVSDD… (2)正方形11ADDA中,11ADAD…… 因为11ABADDA平面,所以1ABAD…所以11ADADE平面…所以11DEAD……
D1 C1
A1
A E
D
B1
B C O
x y
z
D1 C1
A1
A E
D
B1 B C 3.三棱柱111CBAABC中,它的体积是315,底面ABC中,090BAC,3,4ACAB,1B在底面的射影是D,且D为BC的中点. (1)求侧棱1BB与底面ABC所成角的大小;(7分) (2)求异面直线DB1与1CA所成角的大小.(6分)
【答案】解:(1)依题意,DB1面ABC,BDB1就是侧棱1BB与底面ABC所成的角 2分
111111431532ABCABCABCVSBDBD
4分
1532BD
5分 计算25BD,tan25tan1BDDB, tan3,3 7分 (2)取11CB的中点E,连EAEC1,, 则1ECA(或其补角)为所求的异面直线的角的大小 9分 DB1面ABC,DB1‖CE,面ABC‖面111CBACE面111CBA,
EACE1 11分
33325tan251ECAECEA 12分
所求异面直线DB1与1CA所成的角6 13分 4.在如图所示的几何体中,四边形CDPQ为矩形,四边形ABCD为直角梯形, 且90BADADC,平面CDPQ平面ABCD,112ABADCD,2PD. (1)若M为PA的中点,求证:AC//平面DMQ; (2)求平面PAD与平面PBC所成的锐二面角的大小.
【答案】解:(1)如图,设CP与M的交点为N,连接MN. 易知点N是CP的中点,又M为PA的中点,故//ACMN.…4分 于是,由MN平面DMQ,得//AC平面DMQ.……………6分 (2)如图,以点D为原点,分别以DADBDC、、为x轴,y轴,z轴, 建立空间直角坐标系,则(0,0,0),(1,0,0),(1,1,0),(0,2,0),(0,0,2)DABCP. 易知1(0,1,0)n为平面PAD的一个法向量,设2(,,)nxyz为平面PBC的一个法向量.
则220220nBCxynPCyz2xyzy,令1y,得2(1,1,2)n.…………………10分
设平面PAD与平面PBC所成的锐二面角为,则12121cos2nnnn,…………………12分
1AAB
C
QP
DM