测量误差理论的基本知识习题答案
- 格式:docx
- 大小:65.83 KB
- 文档页数:5
5测量误差的基本知识一、填空题:1、真误差为观测值减去真值。
2、观测误差按性质可分为粗差、和系统误差、和偶然误差三类。
3、测量误差是由于仪器误差、观测者(人的因素)、外界条件(或环境)三方面的原因产生的。
4、距离测量的精度高低是用_相对中误差___来衡量的。
5、衡量观测值精度的指标是中误差、相对误差和极限误差和容许误差。
6、独立观测值的中误差和函数的中误差之间的关系,称为误差传播定律。
7、权等于1的观测量称单位权观测。
8、权与中误差的平方成反比。
9、用钢尺丈量某段距离,往测为112.314m,返测为112.329m,则相对误差为1/7488。
10、用经纬仪对某角观测4次,由观测结果算得观测值中误差为±20″,则该角的算术平均值中误差为___10″__.11、某线段长度为300m,相对误差为1/3200,则该线段中误差为__9.4 mm ___。
12、设观测一个角度的中误差为±8″,则三角形内角和的中误差应为±13.856″。
13、水准测量时,设每站高差观测中误差为±3mm,若1km观测了15个测站,则1km的高差观测中误差为11.6mm,1公里的高差中误差为11.6 mm二、名词解释:1、观测条件----测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏,通常我们把这三个方面综合起来,称为观测条件。
2、相对误差K----是误差m的绝对值与相应观测值D的比值。
它是一个不名数,常用分子为1的分式表示。
3、等精度观测----是指观测条件(仪器、人、外界条件)相同的各次观测。
4、非等精度观测---- 是指观测条件不同的各次观测。
5、权----是非等精度观测时衡量观测结果可靠程度的相对数值,权越大,观测结果越可靠。
三、选择题:1、产生测量误差的原因有(ABC)。
A、人的原因B、仪器原因C、外界条件原因D、以上都不是2、系统误差具有的性质是( ABCD )。
第一章1、熟悉误差、精度、有效数字的基本概念和相关计算方法。
答案:略2、用两种方法分别测量L1=50mm,L2=80mm。
测得值各为50.004mm,80.006mm。
试评定两种方法测量精度的高低。
解:两种测量方法进行的测量绝对误差分别为:δ1=50.004-50=0.004(mm);δ2=80.006-80=0.006(mm);两种测量方法的相对误差分别为:δ1/L1=0.004/50=0.008%;和δ2/L2=0.006/80=0.0075 %;显然,测量L2尺寸的方法测量精度高些。
3、若某一量值Q用乘积ab表示,而a与b是各自具有相对误差f a和f b的被测量,试求量值Q的相对误差。
解:∵相对误差=绝对误差/真值=(测得值-真值)/真值∴ a = a0(1+f a);b = b0(1+f b);式中a0、b0分别为a、b的真值。
则Q =ab = a0(1+f a) b0(1+f b)≈a0 b0(1+f a+ f b)因此,Q的相对误差约为(f a+ f b)第二章1、在立式测长仪上测量某校对量具,重复测量5次,测得数据(单位为mm)为20.0015,20.0016,20.0018,20.0015,20.0011。
若测量值服从正态分布,试以99%的置信概率确定测量结果。
解:①求算术平均值②求残余误差:各次测量的残余误差依次为 0,0.0001,0.0003,0,-0.0004。
③求测量列单次测量的标准差用贝塞尔公式计算:用别捷尔斯公式计算:④求算术平均值的标准差⑤求单次测量的极限误差和算术平均值的极限误差因假设测量值服从正态分布,并且置信概率P=2Φ(t)=99%,则Φ(t)=0.495,查附录表1 正态分布积分表,得置信系数t=2.6。
故:单次测量的极限误差:算术平均值的极限误差:⑥求得测量结果为:2、甲、乙两测试者用正弦尺对一锥体的锥角α个各重复测量 5 次,测得值如下:α甲:7°2’20”,7°3’0”,7°2’35”,7°2’20”,7°2’15”,α乙:7°2’25”,7°2’25”,7°2’20”,7°2’50”,7°2’45”;试求其测量结果。
误差分析试题及答案1. 误差的定义是什么?答案:误差是指测量值与真实值之间的差异。
2. 误差的来源有哪些?答案:误差的来源包括系统误差、随机误差和疏忽误差。
3. 请简述系统误差和随机误差的区别。
答案:系统误差是指在相同条件下重复测量时,误差值保持恒定或按一定规律变化的误差;随机误差则是指在相同条件下重复测量时,误差值随机变化,没有固定规律。
4. 什么是绝对误差和相对误差?答案:绝对误差是指测量值与真实值之间的绝对差值;相对误差是指绝对误差与真实值之比。
5. 如何减小测量误差?答案:减小测量误差的方法包括:使用更精确的测量工具、改进测量方法、多次测量取平均值、使用误差补偿技术等。
6. 误差分析中常用的统计方法有哪些?答案:误差分析中常用的统计方法包括:平均值、标准偏差、方差、置信区间等。
7. 请解释误差传播的概念。
答案:误差传播是指当一个物理量由多个测量值通过某种函数关系计算得到时,各个测量值的误差如何影响最终结果的误差。
8. 误差传播的一般公式是什么?答案:误差传播的一般公式为:Δf = √((∂f/∂x1)²Δx1² + (∂f/∂x2)²Δx2² + ... + (∂f/∂xn)²Δxn²),其中f是函数,x1, x2, ..., xn是变量,Δx1, Δx2, ..., Δxn是变量的误差。
9. 什么是误差限?答案:误差限是指测量值在一定置信水平下,真实值可能落在的区间范围。
10. 误差分析在实际工程中的意义是什么?答案:误差分析在实际工程中的意义在于:确保测量结果的准确性和可靠性,为设计、生产和质量控制提供科学依据。
第6章误差理论的基本知识题⽬第六章误差理论的基本知识⼀、填空题1、观测条件与精度的关系是 B 。
A.观测条件好,观测误差⼩,观测精度⼩。
反之观测条件差,观测误差⼤,观测精度⼤B.观测条件好,观测误差⼩,观测精度⾼。
反之观测条件差,观测误差⼤,观测精度低C.观测条件差,观测误差⼤,观测精度差。
反之观测条件好,观测误差⼩,观测精度⼩2、防⽌系统误差影响应该 C 。
A.严格检验仪器⼯具;对观测值进⾏改正;观测中削弱或抵偿系统误差影响B.选⽤合格仪器⼯具;检验得到系统误差⼤⼩和函数关系;应⽤可⾏的预防措施等C.严格检验并选⽤合格仪器⼯具;对观测值进⾏改正;以正确观测⽅法削弱系统误差影响3、系统误差具有的特点为(C )。
A.偶然性B.统计性C.累积性D.抵偿性4、⽔平⾓测量时视准轴不垂直于⽔平轴引起的误差属于(B )。
A.中误差B.系统误差C.偶然误差D.相对误差5、下列误差中(A)为偶然误差A.照准误差和估读误差B.横轴误差和指标差C.⽔准管轴不平⾏与视准轴的误差6、经纬仪对中误差属(A)A.偶然误差B.系统误差C.中误差7、尺长误差和温度误差属(B)A.偶然误差B.系统误差C.中误差8、测量的算术平均值是 B 。
A. n次测量结果之和的平均值B. n次等精度测量结果之和的平均值C.是观测量的真值9、算术平均值中误差按 C 计算得到。
A. ⽩塞尔公式B. 真误差△。
C. 观测值中误差除以测量次数n的开⽅根10、⾓度测量读数时的估读误差属于( C )。
A.中误差B.系统误差C.偶然误差D.相对误差11、边长测量往返测差值的绝对值与边长平均值的⽐值称为( D )。
A.系统误差B.平均中误差C.偶然误差D.相对误差12、距离测量中的相对误差通过⽤( B )来计算。
A .往返测距离的平均值B .往返测距离之差的绝对值与平均值之⽐值C .往返测距离的⽐值D .往返测距离之差13、衡量⼀组观测值的精度的指标是( A )A.中误差B.允许误差C.算术平均值中误差14、对某⼀量进⾏观测后得到⼀组观测值,则该量的最或是值为这组观测值的( C )。
.测量偏差的基本知识一、填空题:1、真偏差为观察值减去真值。
2、观察偏差按性质可分为粗差、和系统偏差、和有时偏差三类。
3、测量偏差是因为仪器偏差、观察者(人的要素)、外界条件(或环境)三方面的原因产生的。
4、距离测量的精度高低是用_相对中偏差___来权衡的。
5、权衡观察值精度的指标是中偏差、相对偏差和极限偏差和允许偏差。
6、独立观察值的中偏差和函数的中偏差之间的关系,称为偏差流传定律。
7、权等于1的观察量称单位权观察。
8、权与中偏差的平方成反比。
9、用钢尺测量某段距离,往测为,返测为,则相对偏差为1/7488。
10、用经纬仪对某角观察4次,由观察结果算得观察值中偏差为±20″,则该角的算术均匀值中偏差为___10″__.11、某线段长度为300m,相对偏差为1/3200,则该线段中偏差为mm___。
12、设观察一个角度的中偏差为±8″,则三角形内角和的中偏差应为±″。
13、水平测量时,设每站高差观察中偏差为±3mm,若1km观察了15个测站,则1km的高差观察中偏差为,1公里的高差中偏差为mm二、名词解说:1、观察条件---- 测量是观察者使用某种仪器、工具,在必定的外界条件下进行的。
观察者视觉鉴识能力和技术水平;仪器、工具的精细程度;观察时外界条件的利害,往常我们把这三个方面综合起来,称为观察条件。
2、相对偏差K----是偏差m的绝对值与相应观察值D的比值。
它是一个不名数,常用分子为1的分式表示。
3、等精度观察---- 是指观察条件(仪器、人、外界条件)同样的各次观察。
4、非等精度观察---- 是指观察条件不一样的各次观察。
5、权---- 是非等精度观察时权衡观察结果靠谱程度的相对数值,权越大,观察结果越靠谱。
三、选择题:1、产生测量偏差的原由有(ABC )。
A、人的原由B、仪器原由C、外界条件原由D、以上都不是2、系统偏差拥有的性质是(ABCD)。
A、累积性B、抵消性C、可除去或减弱性D、规律性..3、权衡精度高低的标准有(ABC )。
第一章作业1. 若用两种测量方法测量某零件的长度,其测量误差分别为和,而用第三种测量方法测量另一零件的长度为,其测量误差为,试比较三种测量方法精度的高低。
解:对于:第一种方法的相对误差为:第二种方法的相对误差为:对于:第三种方法的相对误差为:因为,故第三种方法的测量精度高。
2. 用两种方法测量,。
分别测得50.004mm;80.006mm。
试评定两种方法测量精度的高低。
解:因被测量不同,故用相对误差的大小来评定其两种测量方法之精度高低。
相对误差小者,其测量精度高。
第一种方法的相对误差为:第二种方法的相对误差为:因为,故第二种方法的测量精度高。
3.若某一被测件和标准器进行比对的结果为,现要求测量的正确度、精密度及准确度均高,下述哪一种方法测量结果符合要求?b5E2RGbCAPA. B.C. D.解:D第三章作业1. 测量某电路电流共5次,测得数据<单位mA)为168.41,168.54,168.59,168.40,168.50。
试求算术平均值及其标准差<贝塞尔公式法,极差法、最大误差法和别捷尔斯法)、或然误差和平均误差?p1EanqFDPw解:<1)算术平均值为:<2)标准差的计算:①贝塞尔公式②极差法由测量数据可知:通过查表可知,,所以标准差为:③最大误差法因为真值未知,所以应该是用最大残差法估算,那么最大残差为:查表可得:④别捷尔斯法0.093<3)或然误差<4)平均误差2. 用某仪器测量工件尺寸,已知该仪器的标准差,若要求测量的允许极限误差不超过,假设测量误差服从正态分布,当置信概率时,应该测量多少次?DXDiTa9E3d解:由测量误差服从正态分布,置信概率,知其置信系数为3. 应用基本尺寸为30mm的3等量块,检定立式测长仪的示值稳定性,在一次调整下做了9次重复测量,测得数据<单位:mm)为:30.0011,30.0088,30.0006,30.0008,30.0013,30.0008,30.0006,30.0004,30.0008,若测量值服从正态分布,试确定该仪器的示值稳定性。
误差试题及答案一、选择题1. 测量误差的来源不包括以下哪一项?A. 仪器误差B. 环境误差C. 人为误差D. 计算误差答案:D2. 绝对误差和相对误差的关系是?A. 绝对误差是相对误差的倍数B. 相对误差是绝对误差的倍数C. 两者之间没有直接关系D. 相对误差是绝对误差与测量值的比值答案:D3. 在测量中,误差的减小可以通过以下哪种方式实现?A. 增加测量次数B. 使用更精确的仪器C. 改进测量方法D. 所有以上选项答案:D二、填空题1. 误差是测量值与_________之间的差异。
答案:真值2. 误差可以分为系统误差和_________误差。
答案:随机3. 误差的表示方法有绝对误差和_________误差。
答案:相对三、简答题1. 请简述如何减小测量误差。
答案:减小测量误差可以通过以下方法实现:使用更精确的测量仪器、改进测量方法、增加测量次数以进行平均、控制环境条件以减少环境误差、对测量人员进行培训以减少人为误差。
2. 什么是系统误差?请举例说明。
答案:系统误差是指在重复测量过程中,误差值保持恒定或按照一定规律变化的误差。
例如,使用一个校准不准确的温度计测量室温,每次测量结果都会比实际温度高0.5摄氏度,这就是系统误差。
四、计算题1. 假设一个测量值的真值为100,测量值为102,计算绝对误差和相对误差。
答案:绝对误差 = 102 - 100 = 2相对误差 = (2 / 100) * 100% = 2%2. 如果一个测量值的相对误差为3%,真值为500,求测量值。
答案:测量值 = 500 * (1 + 3%) = 500 * 1.03 = 515。
习题五一、填空题1、真误差是指,其表达式为。
2、误差的来源有、、三个方面,按误差的性质不同,可分为和两种。
3、评定观测值精度主要采用、和。
4、用6″级经纬仪按测回法测量某一角度,欲使测角精度达到±5″,则测回数不得少于。
5、在等精度观测中,设观测值中误差为m,观测次数为n,则最可靠值的中误差为。
6、水准测量中,设一测站的高差观测中误差为±5mm,若1km有15个测站,则1km的高差中误差为。
7、误差传播定律是描绘和中误差关系的定律,它的表达式为。
8、在等精度观测平差中,最可靠值采用,其表达式为,在不等精度观测平差中,最可靠值采用,其表达式为。
9、在一组观测值中,单位权中误差为±3mm,某观测值的权为4,则该观测值中误差为。
二、简答题1、何为系统误差?它有什么特性?在测量工作中如何消除或削弱?2、何为偶然误差?偶然误差能否在测量工作中消除?它的统计特性有哪些?3、什么叫中误差?为什么中误差能够作为衡量精度的标准?在一组等精度观测中,中误差和真误差有何区别?4、试用偶然误差的特性来证明:在等精度观测中,算术平均值作为最可靠值。
5、设有Z1=X1+X2,Z2=2X3,若X1、X2、X3均独立,且中误差相等,问Z1、Z2的中误差是否相等,说明原因。
6、什么叫做权?它有什么含义?权与中误差之间的关系怎样?7、已知某正方形,若用钢尺丈量一条边,其中误差为m=±3mm,则正方形的周长中误差为多少?若用钢尺丈量4条边,则周长的中误差又是多少?试计算说明。
8、什么叫做权倒数传播定律?它描绘的是一种什么关系?它与误差传播定律有什么联系?三、选择题1、用水准仪观测时,若前、后视距不相等,此因素对高差的影响表现为(),在一条水准线路上的影响表现为()A 、偶然误差,偶然误差B 、偶然误差,系统误差C 、系统误差,偶然误差D 、系统误差,系统误差2、当误差的大小与观测量的大小无关时,此时不能用()来衡量精度A 、相对误差B 、中误差C 、绝对误差D 、容许误差()3、用30 米长的钢尺丈量距离(该尺经过检验后其实长度为29.995m ),用此尺每量一整尺就有0.005m 的尺长误差,则这种误差属于A 、偶然误差,且符号为(-)B 、系统误差,且符号为(-)C 、偶然误差,且符号为(+ )D 、系统误差,且符号为(+ )4、由于测量人员的粗心大意,在观测、记录或计算时读错、记错、算错所造成的误差,称为()A 、偶然误差B 、系统误差C 、相对误差D 、过失误差5、在相同条件下,对任何一个量进行重复观测,当观测次数增加到无限多时,偶然误差的算术平均值为零,这说明偶然误差具有A、对称性B、有界性 C 、大小性D、抵偿性6、中误差反映的是()。
第六章 误差理论的基本知识一、选择题1、B2、C3、C4、B5、A6、A7、B8、B9、C 10、C11、D 12、B 13、A 14、C 15、B 16、C 17、A 18、B 19、B 20、B 21、C 22、A 23、C 24、B 25、A 26、A 27、C二、填空题1、 系统误差 偶然误差2、 仪器本身误差 观测误差 外界自然条件影响3、 相对误差4、 读m 25、 中误差 容许误差 相对误差6、n17、 相同 8、[]nlnm9、 提高仪器的等级 10、相对误差 11、极限误差 12、±10″ 13、±0.2m 14、101-''±n 15、观测值的算术平均值 16、Nmm x =三、问答计算题1、可分为系统误差和偶然误差系统误差特点:误差在符号和数值上都相同,或按一定的规律变化。
如果规律性能够被到,则系统误差对观测值的影响可以改正,或者用一定的测量方法加以抵消或者削弱。
偶然误差特点:误差出现的符号和数值大小都不相同,表面上看没有任何规律性,多次观测和平均可以抵消一些偶然误差。
2、产生测量误差的原因:仪器原因 人的原因 外界环境的影响偶然误差具有四个基本特性,即:(1) 在一定观测条件下,偶然误差的绝对值不会超过一定的限值(有界性) (2) 绝对值小的误差比绝对值大的误差出现的机会多(密集性)(3) 绝对值相等的正负误差出现的机会相等(对称性);(4) 在相同条件下同一量的等精度观测,其偶然偶然误差的算术平均值随着观测次数的无限增大而趋于零(抵偿性)。
3、测量中的误差是不可避免的,只要满足规定误差要求,工作中可以采取措施加以减弱或处理。
粗差的产生主要是由于工作中的粗心大意或观测方法不当造成的,错误是可以也是必须避免的,含有粗差的观测成果是不合格的,必须采取适当的方法和措施剔除粗差或重新进行观测。
4、这两种误差主要在含义上不同,另外系统误差具有累积性,对测量结果的影响很大,但这种影响具有一定的规律性,可以通过适当的途径确定其大小和符号,利用计算公式改正系统误差对观测值的影响,或采用适当的观测方法、提高测量仪器的精度加以消除或削弱。
电子测量技术第二章(一)填空题1、相对误差定义为测量值与真值的比值,通常用百分数表示。
2、绝对误差是指由测量所得到的真值与测量值之差。
3、测量误差就是测量结果与被测量____真值____的差别,通常可以分为__ 绝对误差_____和____相对误差___两种。
4、根据测量的性质和特点,可将测量误差分为随机误差、系统误差、粗大误差。
5、精密度用以表示随机误差的大小,准确度用以表示系统误差的大小,精确度用以表示系统误差与随机误差综合影响的大小。
6、可以用____系统误差_____来作为衡量测量是否正确的尺度,称为测量的准确度。
7、随机误差的大小,可以用测量值的___精密度___来衡量,其值越小,测量值越集中,测量的___密集度___越高。
8、误差的基本表示方法有_绝对误差_、_相对误差_和最大引用误差(满度误差)9、消弱系统误差的典型测量技术有零示法、替代法、补偿法、对照法、微差法和交叉读数法。
10、多次测量中随机误差具有___有界_____性、____对称____性和___抵偿_____性。
11、满度(引用)误差表示为绝对误差与满量程之比,是用量程满度值代替测量真值的相对误差。
12、测量仪器准确度等级一般分为7级,其中准确度最高的为_0.1_级,准确度最低的为_5.0_级。
13、1.5级100mA的电流表,引用相对误差为±1.5% ,在50mA点允许的最大绝对误差为___±1.5mA 。
14、为保证在测量80V电压时,误差≤±1%,应选用等于或优于0.5 级的100V量程的电压表。
15、___马利科夫_____判据是常用的判别累进性系差的方法。
16、____阿贝一赫梅特____判据是常用的判别周期性系差的方法。
三种,在工程上凡是要求计算测量结果的误差时,一般都要用__相对误差__。
17、对以下数据进行四舍五入处理,要求小数点后只保留2位。
4.850=__4.85__;200.4850000010=_____200.48___。
5测量误差的基本知识一、填空题:1、真误差为观测值减去真值。
2、观测误差按性质可分为粗差、和系统误差、和偶然误差三类。
3、测量误差是由于仪器误差、观测者(人的因素)、外界条件(或环境)三方面的原因产生的。
4、距离测量的精度高低是用_相对中误差___来衡量的。
5、衡量观测值精度的指标是中误差、相对误差和极限误差和容许误差。
6、独立观测值的中误差和函数的中误差之间的关系,称为误差传播定律。
7、权等于1的观测量称单位权观测。
8、权与中误差的平方成反比。
9、用钢尺丈量某段距离,往测为112.314m,返测为112.329m,则相对误差为1/7488。
10、用经纬仪对某角观测4次,由观测结果算得观测值中误差为±20″,则该角的算术平均值中误差为___10″__.11、某线段长度为300m,相对误差为1/3200,则该线段中误差为__9.4 mm ___。
12、设观测一个角度的中误差为±8″,则三角形内角和的中误差应为±″。
13、水准测量时,设每站高差观测中误差为±3mm,若1km观测了15个测站,则1km 的高差观测中误差为11.6mm,1公里的高差中误差为11.6 mm二、名词解释:1、观测条件----测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏,通常我们把这三个方面综合起来,称为观测条件。
2、相对误差K----是误差m的绝对值与相应观测值D的比值。
它是一个不名数,常用分子为1的分式表示。
3、等精度观测----是指观测条件(仪器、人、外界条件)相同的各次观测。
4、非等精度观测---- 是指观测条件不同的各次观测。
5、权----是非等精度观测时衡量观测结果可靠程度的相对数值,权越大,观测结果越可靠。
三、选择题:1、产生测量误差的原因有(ABC)。
A、人的原因B、仪器原因C、外界条件原因D、以上都不是2、系统误差具有的性质是(ABCD)。
A、积累性B、抵消性C、可消除或减弱性D、规律性3、衡量精度高低的标准有( ABC )。
A 、中误差B 、相对误差C 、容许误差D 、绝对误差4、误差传播定律包括哪几种函数( ABCD )。
A 、倍数函数B 、和差函数C 、一般线性函数D 、一般函数5、用钢尺丈量两段距离,第一段长1500m ,第二段长1300m ,中误差均为+22mm ,问哪一段的精度高( A )。
A 、第一段精度高,B 、第二段精度高。
C 、两段直线的精度相同。
6、在三角形ABC 中,测出∠A 和∠B ,计算出∠C 。
已知∠A 的中误差为+4″,∠B 的中误差为+3″,求∠C 的中误差为( C )A 、 +3″B 、+4″C 、+5″D 、 +7″7、 一段直线丈量四次,其平均值的中误差为+10cm ,若要使其精度提高一倍,问还需要丈量多少次( C )A 、4次B 、8次C 、12次D 、16次8、用经纬仪测两个角,∠A=10°′∠B=81°′中误差均为±′,问哪个角精度高( C )A.、第一个角精度高 B 、第二个角精度高 C 、两个角的精度相同9、观测值L 和真值X 的差称为观测值的( D )A 、最或然误差B 、中误差C 、相对误差D 、真误差10、一组观测值的中误差m 和它的算术平均值的中误差M 关系为:( C )A 、m M =B 、n Mm = C 、n m M = D 、1-=n m M 11、在误差理论中,公式[]n m ∆⋅∆±=中的△表示观测值的:( C )A 、最或然误差B 、中误差C 、真误差D 、容许误差四、判断题:(正确的在括号内打√,打错误的打×)( √ )1、测量成果不可避免地存在误差,任何观测值都存在误差。
( × )2、观测条件好,则成果精度就高;观测条件差,则成果精度就低。
( √ )3、观测误差与观测成果精度成反比。
( √ )4、产生系统误差的主要原因是测量仪器和工具构造不完善或校正不完全准确。
(× )5、系统误差和偶然误差通常是同时产生的,当系统误差消除或减弱性后,决定观测精度的主要是偶然误差。
(√ )6、偶然误差不能用计算改正或一定的观测方法简单地消除,只能根据其特性来改进观测方法并合理地处理数据,加以减少影响。
( ×)7、在相同观测条件下,对某一量进行一系列观测,若误差的大小和符号保持不变,或按一定的规律变化,这种误差称为偶然误差。
( √ )8、误差的绝对值与观测值之比称为相对误差。
( √ )9、中误差、容许误差、闭合差都是绝对误差。
( √ )10、用经纬仪测角时,不能用相对误差来衡量测角精度,因为测角误差与角度大小无关。
( √ )11、在相同的观测条件下,算术平均值的中误差与观测次数的平方根成反比。
( √ )12、误差传播定律是描述直接观测量的中误差与直接观测量函数中误差之间的关系。
( √ )13、在观测条件不变的情况下,为了提高测量的精度,其唯一方法是增加测量次数。
五、简答题1、什么叫观测误差?产生观测误差的原因有哪些?答:(1)、观测值与其真实值(简称为真值)之间的差异,这种差异称为测量误差或观测误差。
(2)、测量是观测者使用某种仪器、工具,在一定的外界条件下进行的。
观测误差来源于以下三个方面:观测者视觉鉴别能力和技术水平;仪器、工具的精密程度;观测时外界条件的好坏。
通常我们把这三个方面综合起来,称为观测条件。
观测条件将影响观测成果的精度。
2、什么是粗差?什么是系统误差?什么是偶然误差?答:粗差:是疏忽大意、失职造成的观测误差,通过认真操作检核是可消除的。
系统误差:在相同的观测条件下作一系列的观测,如果误差在大小、方向、符号上表现出系统性并按一定的规律变化或为常数,这种误差称为系统误差。
偶然误差:在相同的观测条件下作一系列的观测,如果误差表现出偶然性,单个误差的数值、大小和符号变化无规律性,事先不能预知,产生的原因不明显,这种误差为偶然误差。
3、偶然误差有哪些特性?答:(1)、在一定条件下,偶然误差的绝对值不会超过一定的界限(有限性);(2)、绝对值较小的误差比绝对值较大的误差出现的机会多(单峰性);(3)、绝对值相等的正误差与负误差出现的机会相等,(对称性);(4)、偶然误差的平均值,随着观测次数的无限增加而趋近于零,(抵偿性)。
4、举例说明如何消除或减小仪器的系统误差?答:在测量工作中,应尽量设法消除和减小系统误差。
方法有两种:一是在观测方法和观测程序上采用必要的措施,限制或削弱系统误差的影响,如角度测量中采取盘左、盘右观测,水准测量中限制前后视视距差等,另一种是找出产生系统误差的原因和规律,对观测值进行系统误差的改正,如对距离观测值进行尺长改正、温度改正和倾斜改正,对竖直角进行指标差改正等。
5、写出衡量误差精度的指标。
答:(1)、平均误差:在一定条件下的观测系列中,各真误差的绝对值的平均数, 即:θ=[|△|]/n(2)、中误差:在一定条件下的观测系列中,各真误差平方和的平均数的平方根: m =±n VV /][(3)、允许误差(极限误差):在一定的观测条件下,偶然误差的绝对值不会超过某一定限值,通常以三倍中误差或二倍中误差为极限值,称此极限值为允许误差。
(4)、相对误差:是误差的绝对值与相应观测值之比。
6、等精度观测中为什么说算术平均值是最可靠的值?答:这是因为:设对某量进行了n 次观测,其观测值分别为Ll ,L2,……Ln(1)、其算术平均值为L =(Ll +L2+……+Ln)/n =[L]/n ,设该量的真值为X ;(2)、真误差为:△1=L1-X ,△2=L2-X ,……△n =Ln -X ,等式两边相加并各除以n ,即:[△]/n =[L]/n -X ; (3)、当观测次数无限增加时.有∞→n Lim [△]/n =0; (4)、所以:L Lim n ∞→=X ;所以说算术平均值是真值的最优估值。
7、从算术平均值中误差(M )的公式中,使我们在提高测量精度上能得到什么启示?答:从公式可以看出,算术平均值的中误差与观测次数的平方根成反比。
因此增加观测次数可以提高箕术平均值的精度。
当观测值的中误差m =1时,算术平均值的中误差M 与观测次数n 的关系如图5-4所示。
由图可以看出,当n 增加时,M 减小。
但当观测次数n 达到一定数值后(如n =10),再增加观测次数,工作量增加,但提高精度的效果就不太明显了。
故不能单纯以增加观测次数来提高测量成果的精度,应设法提高观测值本身的精度。
例如,使用精度较高的仪器、提高观测技能、在良好的外界条件下进行观测等。
8、写出误差传播定律的公式,并说明该公式的用途。
答:设一般函数,Z =(Xl ,X2,……Xn),式中X1,X2,……X 。
为可直接观测的量,m1,m2,……mn 为各观测量相应的中误差,则:函数Z 的中误差为计算式:mZ =±2222222121)/()/()/(n n m X F m X F m X F ∂∂++∂∂+∂∂Λ此式就是误差传播定律。
可以用各变量的观测值中误差来推求函数的中误差。
六、计算题:1、设对某线段测量六次,其结果为312.581m 、312.546m 、312.551m 、312.532m 、312.537m 、312.499m 。
试求算术平均值、观测值中误差、算术平均值中误差及相对误差。
解:算术平均值[]nl n l l l L n =+++=Λ21=312.541 m 观测值中误差:m =±)1/(][-n VV =±;算术平均值中误差:L M =m /n ±(m );结果:± 相对误差: mDD mK 1===1/28412 2、已知DJ6光学经纬仪一测回的方向中误差m=±6″,问该类型仪器一测回角值的中误差是多少?如果要求某角度的算术平均值的中误差m 角=±5″,用该仪器需要观测几个测回。
解:一测回角值的中误差:由和差函数得//2222215.866±=+±=+±=m m m M=n m± ,n =3,需测3个测回3、用某经纬仪测量水平角,一测回的中误差m=±15″,欲使测角精度达到土5″问需要观测几个测回?解:由M= n m±,则n =9,需测9个测回4、同精度观测一个三角形的两内角α、β,其中误差:αm =βm =±6″,求三角形的第三角γ的中误差γm ?解:γ=180-α-β由误差传播定理得 γm =±2222)/()/(βαβγαγm m ∂∂+∂∂=±″5、设量得A 、B 两点的水平距离D=206.26m ,其中误差D m =±0.04m ,同时在A 点上测得竖直角α=30°00′,其中误差αm =±10″。