2017年广东省深圳市中考数学押题试卷(a卷)
- 格式:doc
- 大小:459.50 KB
- 文档页数:28
2023年广东省深圳市中考押题密卷数学一、选择题(本大题共10小题,每小题3分。
二、填空题(大题共5小题,每小题3分,共15分)15.如图,在ABC点P,连接AC.若AP三、解答题(本大题共7小题,其中第16题5分,第17题7分,第18题8分,第19题8分,第20题8分,第(1)求b的值及该抛物线的对称轴.(2)求点C的坐标.20.已知△ABC中,BC边的长为(1)写出y关于x的函数关系式(2)列表,得x…1234…y……在给出的坐标系中描点并连线;2023年广东省深圳市中考考前押题密卷数学·参考答案12345678910B C A D D D B C D B11.(2)(2)a b b +-12.1413.1<k 且0k ≠14.24515.16(5分).解:原式()()()221213111a a a a a a +-⎛⎫-=÷+ ⎪---⎝⎭()()221111a a a a ++=÷--()()221111a a a a +-=⨯+-21a =-,当a =-2时,原式22213==---.17.解:(1600.6100÷=(人),∴100c =,∴1006010525101000.1a b =---==÷=,,故答案为:25,0.1,100;(1.5分)(2)补全条形统计图:(3)画树状图如图:共有12种等可能的结果,甲、乙两名同学同时被选中的结果有2种,∴甲、乙两名同学同时被选中的概率为21126=.故答案为:16.(4)估计测试成绩等级在合格以上(包括合格)的学生约有人数为:()12000.60.251020⨯+=(人)(7分)18.解:(1)解:设每支定制钢笔和每本纪念卡册的价格分别为x 、y 元,依题意,得:413032140x y x y +=⎧⎨+=⎩,解得:3025x y =⎧⎨=⎩,答:每支定制钢笔的价格为30元,每本纪念卡册的价格为25元.(2)解:设购买定制钢笔m 支,则纪念卡册有()60m -本依题意,得:()3025601600603m m m m ⎧+-≤⎨-⎩<解得:1520m <≤m 取整数,m ∴=16,17,18,19,20∴总共有5种方案,分别为:方案1:购买定制钢笔16支,纪念卡册44本;方案2:购买定制钢笔17支,纪念卡册43本;方案3:购买定制钢笔18支,纪念卡册42本;方案4:购买定制钢笔19支,纪念卡册41本;方案5:购买定制钢笔20支,纪念卡册40本.19解:∵抛物线211522y x bx =-++交x 轴于点A 和点B (5,0),∴115255022b -⨯++=,∴b =1,∴抛物线为211522y x x =-++,∴抛物线的对称轴为直线1112()2x =-=⨯-;(2)解:∵点B (5,0),对称轴为直线x =1,∴A (-3,0),∴点A 先向上平移m (m >0)个单位,再向右平移n (n >0)个单位得点C (-3+n ,m ),点B 先向上平移m 单位,再向左平移3n 个单位也得点C (5-3n ,m ),∴-3+n =5-3n ,∴n =2,∴C 的横坐标为-1,把x =-1代入211522y x x =-++得,11511622y =-⨯-+=,∴C (-1,6).(5分)20(8分).解:(1)ABC ∆的面积132xy ==,即6(0)y x x =>,故答案为:6y x =;0x >;(2)对于6(0)y x x=>,当1x =,2,3,4时,6y =,3,2,32,故答案为6,3,2,32;描点绘出如下函数图象:(3)从图象看,在0x >时,y 随x 的增大而减小,当120x x >>时,12y y <.(8分)【点睛】本题考查了反比例函数图象和性质,通过三角形面积确定函数表达式是本题解题的关键.21(9分).解:(1)①连接OC ,如图1,∵CE 是⊙O 的切线,∴OC ⊥CE ,∴∠OCE =90°,∵tan 34E =,AB =6,∴OC =3,∴34OC CE =∴CE =4,∴5OE ==,∴BE =OE ﹣BO =5﹣3=2,故答案为:2.(2分)②如图2,连接OC ,BC ,取AE 的中点,连接DM ,∵D 为AC 的中点,M 为AE 的中点,∴DM 为△ACE 的中位线,∴122DM CE ==,DM ∥CE ,∴DM BE =,∠AMD =∠CEB ,∵AM =12AE =4,∴AM =CE ,在△AMD 和△CEB 中,DM BEAMD CEB AM CE=⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△CEB (SAS ),∴AD =BC ,∵AD =CD ,∴CD =BC ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠CDB =45°.(5分)(2)解:连接AF ,∵F 为弧AB 的中点,AB 是⊙O 的直径,∴AF =BF ,∠AFB =90°,∴∠ABF =45°,2AF BF ===①若BD BF ==BC,∵AB 是⊙O 的直径,∴∠ACB =90°,∴BC 2=AB 2﹣AC 2=BD 2﹣CD 2,且CD =12AC ,∴222216()2AC AC -=-,∴AC =;②若BF DF ==FA ,FC ,过点F 作FG ⊥AC 于点G ,∴AF =DF ,DG =12AD ,∵∠ACF =∠ABF =45°,∴CG =FG ,设DG =x ,则CD =AD =2x ,FG =CG =DG +CD =3x ,∵FG 2+DG 2=DF 2,∴222(3)(32)x x +=,解得355x =∴12455AC x ==;③若DF =BD ,过点D 作DN ⊥BF 于点N ,连接ON ,AF ,BC ,∴N 为BF 的中点,ON ⊥BF ,∵D 为AC 的中点,∴OD ⊥AC ,即DN ⊥AC ,∵AB 是⊙O 的直径,∴∠AFB =90°,∴四边形ADNF 是矩形,∴AD =NF ,∴32AC BF ==综合上述可得,AC 的长为2612553222(10分).(1)解:∵四边形ABCD 是正方形,∴AB =CD =AD ,∠BAD =∠C =∠D =90°,由旋转的性质得:△ABE ≌△ADM ,∴BE =DM ,∠ABE =∠D =90°,AE =AM ,∠BAE =∠DAM ,∴∠BAE +∠BAM =∠DAM +∠BAM =∠BAD =90°,即∠EAM =90°,∵∠MAN =45°,∴∠EAN =90°﹣45°=45°,∴∠MAN =∠EAN ,在△AMN 和△AEN 中,AM AEMAN EAN AN AN=⎧⎪∠=∠⎨⎪=⎩,∴△AMN ≌△AEN (SAS ),∴MN =EN ,∵EN =BE +BN =DM +BN ,∴MN =BN +DM ,在Rt △CMN 中,由勾股定理得:222CM CN MN +=∴MN ===10,则BN +DM =10,设正方形ABCD 的边长为x ,则BN =BC ﹣CN =x ﹣6,DM =CD ﹣CM =x ﹣8,∴x ﹣6+x ﹣8=10,解得:x =12,即正方形ABCD 的边长是12;故答案为:12;(2)证明:设BN =m ,DM =n ,由(1)可知,MN =BN +DM =m +n ,∵∠B =90°,tan ∠BAN 13=,∴tan ∠BAN 13BN AB ==,∴AB =3BN =3m ,∴CN =BC ﹣BN =2m ,CM =CD ﹣DM =3m ﹣n ,在Rt △CMN 中,由勾股定理得:222CM CN MN +=∴22223m m n m n +-+()()=(),整理得:3m =2n ,∴CM =2n ﹣n =n ,∴DM =CM ,即M 是CD 的中点;(3)解:延长AB 至P ,使BP =BN =4,过P 作BC 的平行线交DC 的延长线于Q ,延长AN 交PQ 于E ,连接EM ,如图③所示:则四边形APQD 是正方形,∴PQ =DQ =AP =AB +BP =12+4=16,设DM =a ,则MQ =16﹣a ,∵PQ ∥BC ,∴△ABN ∽△APE ,∴123164BN AB PE AP ===,∴PE 43=BN 163=,∴EQ =PQ ﹣PE =16163233-=,由(1)得:EM =PE +DM 163=+a ,在Rt △QEM 中,由勾股定理得:222EQ MQ EM +=3216((16)()33222a a =-++,解得:a =8,即DM的长是8;故答案为:8.(10分)。
2017届深圳市中考一模模拟拟测试数学一、选择题(本题共有12小题,每小题3分,共36分)1.﹣4的倒数是()A、-4 B、4 C、1/4 D、-1/42.如图是五个相同的小正方体搭成的几何体,这几个几何体的主视图是()A、B、C、D、3. 下列计算正确的是() A、2a3+a2=3a5B、(3a)2=6a2C、(a+b)2=a2+b2D、2a2•a3=2a54. 下列图形中既是轴对称图形又是中心对称图形的是()A、B、C、D、5. 据测算,世博会召开时,上海使用清洁能源可减少二氧化碳排放约16万吨,将16万吨用科学记数法表示为()A、1.6×103吨B、1.6×104吨C、1.6×105吨D、1.6×106吨6. 如图,AB∥CD,∠ABE=60°,∠D=50°,则∠E的度数为()A、40°B、30°C、20°D、10°7. 某商人在一次买卖中均以120元卖出两件衣服,一件赚25%,一件赔25%,在这次交易中,该商人( ) A、赚16元B、赔16元C、不赚不赔D、无法确定8. 某班级第一小组7名同学积极捐出自己的零花钱支持地震灾区,他们捐款的数额分别是(单位:元)50,20,50,30,25,50,55,这组数据的众数和中位数分别是()A、50元,20元B、50元,40元C、50元,50元D、55元,50元9.如图,观察二次函数y=ax2+bx+c的图象,下列结论:①a+b+c>0,②2a+b>0,③b2﹣4ac>0,④ac>0.其中正确的是()A 、①②B 、①④C 、②③D 、③④10. 如图,正六边形ABCDEF 内接于⊙O,半径为4,则这个正六边形的边心距OM 和的长分别为( )A 、2,3/2πB 、2,πC 、2,3πD 、2,4π11. 如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=6,AB=5,则AE 的长为( )A 、4 B 、6 C 、8 D 、1012. 如图,G ,E 分别是正方形ABCD 的边AB ,BC 的点,且AG=CE ,AE⊥EF,AE=EF ,现有如下结论:①BE=GE ; ②△AGE≌△ECF; ③∠FCD=45°; ④△GBE∽△ECH,其中,正确的结论有( )A 、1个 B 、2个 C 、3个 D 、4个11题图 12题图二、填空题(本题共有4小题,每小题3分,共12分) 13. 因式分解:a 3﹣4a= ________.14. 从﹣3、1、﹣2这三个数中任取两个不同的数,积为正数的概率是________15. 用同样大小的黑色五角星按图所示的方式摆图案,按照这样的规律摆下去,第99个图案需要的黑色五角星________ 个.16. 如图,△ABC 的内心在x 轴上,点B 的坐标是(2,0),点C 的坐标是(0,﹣2),点A 的坐标是(﹣3,b ),反比例函数y=(x <0)的图象经过点A ,则k= ________.三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题7分,第20题8分,第21题8分,第22题8分,第23题9分,共52分) 17. 计算:sin30°+(﹣1)2013﹣+(π﹣3)0﹣cos60° .18. 解不等式组并写出它的所有非负整数解.⎪⎩⎪⎨⎧-≤-〉+x x x x 996344932319. 丹东是个美丽的旅游城市,吸引了很多外地游客,某旅行社对今年五月接待的外地游客来丹东旅游的首选景点做了一次抽样调查,根据收集到的数据,绘制成如下统计图(不完整),请根据图中提供的信息,完成下列问题:(1)此次共调查了人(2)请将两幅统计图补充完整.(3)“凤凰山”部分的圆心角是度。
2024年中考数学临考押题卷01(考试时间:90分钟试卷满分:100分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题(本大题共10小题,每小题3分,满分30分,每小题有四个选项,其中只有一项是正确的.)1.下列各数中,相反数等于15-的数是()A .5B .5-C .15-D .15【答案】D【分析】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.根据相反数的意义,只有符号不同的数为相反数,即可求解.【详解】解:相反数等于15-的是15,故选:D .2.深圳图书馆北馆是深圳首批建设并完工的新时代重大文化设施,其建筑面积约7.2万平方米,设计藏书量800万册,其中800万用科学记数法表示为()A .2810⨯B .5810⨯C .6810⨯D .70.810⨯【答案】C【分析】本题考查科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,解题关键是确定a 和n .根据科学记数法定义进行表示即可得到答案.【详解】解:∵800万8000000=,∴科学记数法表示为:68.010⨯,故选:C .3.《国语》有云:“夫美也者,上下、内外、小大、远近皆无害焉,故曰美.”这是古人对于对称美的一种定义,这种审美法则在生活中体现得淋漓尽致.下列地铁图标中,是中心对称图形的是()A .武汉地铁B .重庆地铁C .成都地铁D .深圳地铁【答案】D【分析】本题考查中心对称图形,把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可判断.【详解】解:A 、该图案不是中心对称图形,故A 不符合题意;B 、该图案不是中心对称图形,故B 不符合题意;C 、该图案不是中心对称图形,故C 不符合题意;D 、图形是中心对称图形,故D 符合题意.故选:D .4.“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某班为了解同学们某季度学习“青年大学习”的情况,从中随机抽取6位同学,经统计他们的学习时间(单位:分钟)分别为:78,85,80,90,80,82.则这组数据的众数和中位数分别为()A .80和81B .81和80C .80和85D .85和80【答案】A【分析】本题考查了众数和中位数的定义,出现次数最多的数为众数,以及把数据排序(小到大或大到小)后,位于中间位置的数为中位数(当中间位置为两个数时,取它们的平均数),据此即可作答.【详解】解:80出现次数为2,是最多的,故众数是80;排序后:78,80,80,82,85,90.位于中间位置为:()18082812⨯+=∴这组数据的众数和中位数分别为80和81.故选:A5.下列运算正确的是()A .2523a a a -=B .236a a a ⋅=C .()2211b b +=+D .()3328a a -=-【答案】D【分析】本题考查了整式的运算,根据合并同类项、同底数幂的乘法、积的乘方运算法则、完全平方公式分别运算即可判断求解,掌握整式的运算法则是解题的关键.【详解】解:A .523a a a -=,该选项错误,不合题意;B .235a a a ⋅=,该选项错误,不合题意;C .()22121b b b +=++,该选项错误,不合题意;D .()3328a a -=-,该选项正确,符合题意;故选:D .6.某一时刻在阳光照射下,广场上的护栏及其影子如图1所示,将护栏拐角处在地面上的部分影子抽象成图2,已知22MAD ∠=︒,23FCN ∠=︒,则ABC ∠的大小为()A .44︒B .45︒C .46︒D .47︒【答案】B【分析】本题考查平行投影,熟练掌握平行投影的性质是解题的关键.根据平行线的性质及角的和差即可求得.【详解】解:∵某一时刻在阳光照射下,AD BE FC ∥∥,且22MAD ∠=︒,23FCN ∠=︒,∴22MAD ABE ∠=∠=︒,23EBC FCN ∠=∠=︒,∴45ABC ABE EBC ∠=∠+∠=︒.故选:B .7.下图是明代数学家程大位所著的《算法统宗》中的一个问题,其大意为:有一群人分银子,如果每人分七两,则剩余四两:如果每人分九两,则还差八两.设共有银子x 两,共有y 人,则所列方程(组)错误的是()隔壁听得客分银,不知人数不知银,七两分之多四两,九两分之少半斤.《算法统宗》注:明代时1斤=16两,故有“半斤八两”这个成语A .7498y y +=-B .4879x x -+=C .7498y x y x =-⎧⎨=+⎩D .7498y x y x=+⎧⎨-=⎩【答案】D【分析】本题考查了由实际问题抽象出一元一次方程以及数学常识,找准等量关系,正确列出一元一次方程是解题的关键.根据“如果每人分七两,则剩余四两;如果每人分九,则还差八两”,即可列出关于x 或y 的一元一次方程,此题得解.【详解】解:∵如果每人分七两,则剩余四两;如果每人分九,则还差八两.∴7498y y +=-或4879x x -+=或7498y x y x =-⎧⎨=+⎩.故选:D .8.榫卯是古代中国建筑、家具及其他器械的主要结构方式.如图,在某燕尾榫中,榫槽的横截面ABCD 是梯形,其中AD BC ∥,AB DC =,燕尾角B α∠=,外口宽AD a =,榫槽深度是b ,则它的里口宽BC 为()A .tan ba α+B .2tan ba α+C .tan b a α+D .2tan b aα+【答案】B【分析】本题考查了解直角三角形的应用,解直角三角形求出BE CF 、,再根据BC BE EF FC =++即可求解,正确作出辅助线构造直角三角形是解题的关键.【详解】解:过点A D ,分别作BC 的垂线段,垂足分别为E F 、,连接AD ,则90AEB AEF DFC DFE ∠=∠=∠=∠=︒,如图,在Rt AEB 中,tan tan AE bBE ABC α==∠,在Rt DFC △,tan tan DF bCF DCB α==∠,∵AD BC ∥,90AEF DFE ∠=∠=︒,∴90AEF DFE EAD FDA ∠=∠=∠=∠=︒,∴四边形AEFD 是矩形,∴EF AD a ==,∴2tan tan tan b b bBC BE EF FC a a ααα=++=++=+,故选:B .9.如图,在菱形ABCD 中,60ABC ∠=︒,E 是对角线AC 上一点,连接,作120BEF ∠=︒交CD 边于点F ,若12AE EC =,则DF FC的值为()A 233B .103C .43D .54【答案】D【分析】本题考查相似三角形的判定和性质,菱形的性质,等边三角形的判定和性质,由菱形的性质推出AB BC CD AD ===,60D ABC ∠=∠=︒,判定ABC ,ACD 是等边三角形,得到60BCE ACD ∠=∠=︒,BC AC =,求出18060120CBE BEC ∠+∠=︒-︒=︒,而120CEF BEC ∠+∠=︒,得到CEF CBE ∠=∠,即可证明CEF CBE ∽△△,推出::CF CE CE BC =,令AE x =,则2EC x =,得出43CF x =,得到45333DF x x x =-=,即可求出答案.【详解】解:∵四边形ABCD 是菱形,∴AB BC CD AD ===,60D ABC ∠=∠=︒,∴ABC ,ACD 是等边三角形,∴60BCE ACD ∠=∠=︒,BC AC =,∴18060120CBE BEC ∠+∠=︒-︒=︒,∵120BEF ∠=︒,∴120CEF BEC ∠+∠=︒,∴CEF CBE ∠=∠,∵ECF BCE ∠=∠,∴CEF CBE ∽△△,∴::CF CE CE BC =,∵12AE EC =,∴令AE x =,则2EC x =,∴23AC x x x =+=,∴3BC AC x ==,∴:22:3CF x x x =,∴43CF x =,∴45333DF x x x =-=,∴54DF FC =.故选:D .10.如图(a ),A ,B 是⊙O 上两定点,90AOB ∠=︒,圆上一动点P 从点B 出发,沿逆时针方向匀速运动到点A ,运动时间是()s x ,线段AP 的长度是()cm y .图(b )是y 随x 变化的关系图象,其中图象与x 轴交点的横坐标记为m ,则m 的值是()A .8B .6C .42D .143【答案】B【分析】本题考查了动点问题的函数图形,合理分析动点P 的运动时间是解题关键.根据AP 最长时经过的路程所用的运动时间,求出总路程所用的时间是之前的三倍,即可解答.【详解】解:如图,当点P 运动到PA 过圆心O ,即PA 为直径时,AP 最长,由图(b )得,AP 最长时为6,此时2x =,90AOB ∠=︒Q ,90POB ∴∠=︒,∴此时点P 路程为90度的弧,点P 从点B 运动到点A 的弧度为270度,∴运动时间为236⨯=,故选:B .第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分.)11.分解因式:3312m m -+=.【答案】3(2)(2)m m m -+-【分析】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键.先提取公因式,再用平方差公式因式分解,即得答案.【详解】323123(4)3(2)(2)m m m m m m m -+=--=-+-.故答案为:3(2)(2)m m m -+-.12.老师为帮助学生正确理解物理变化与化学变化,将4种生活现象制成如图所示的4张无差别的卡片A ,B ,C ,D .将卡片背面朝上,小明同学从中随机抽取2张卡片,则所抽取的2张卡片刚好都是物理变化的概率是.A 冰化成水B 酒精燃烧C 牛奶变质D衣服晾干【答案】16【分析】本题考查列表法与树状图法,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.画树状图得出所有等可能的结果数以及所抽取的2张卡片刚好都是物理变化的结果数,再利用概率公式可得出答案.【详解】解:物理变化的卡片有A 和D ,则画树状图如下:共有12种等可能的结果,其中所抽取的2张卡片刚好都是物理变化的结果有:AD ,DA ,共2种,∴所抽取的2张卡片刚好都是物理变化的概率为21126=.故答案为:16.13.如图,点A ,B ,C 在⊙O 上,AC 平分OAB ∠,若40OAB ∠=︒,则CBD ∠=°.【答案】70【分析】本题考查圆周角定理及其推论,解答中涉及角平分线定义,三角形外角的性质,能准确作出辅助线,掌握圆周角定理及其推论是解题的关键.延长AO 交O 于点E ,连接BE ,由已知条件求出50C E ∠=∠=︒,由角平分线定义,可得到1202CAB OAB ∠=∠=︒,最后根据“三角形的一个外角等于和它不相邻的两个内角的和”可求出CBD ∠的度数.【详解】解:延长AO 交O 于点E ,连接BE ,则90ABE ∠=︒,∵40OAB ∠=︒,∴9050E OAB ∠=︒-∠=︒,∴50C E ∠=∠=︒,∵AC 平分OAB ∠,∴1202CAB OAB ∠=∠=︒,∴205070CBD CAB C ∠=∠+∠=︒+︒=︒,故答案为:70.1R 030R =Ω.检测时,可通过电压表显示的读数()U V 换算为酒精气体浓度()3mg /m p ,设10R R R =+,电压表显示的读数()U V 与()ΩR 之间的反比例函数图象如图2所示,1R 与酒精气体浓度p 的关系式为16060R p =-+,当电压表示数为4.5V 时,酒精气体浓度为3mg m .【答案】12/0.5【分析】本题考查了反比例函数和一次函数的实际应用等知识.先求出()U V 与()ΩR 之间的反比例函数为270U R =,再根据10R R R =+求出130R =Ω,代入16060R p =-+即可求出12p =.【详解】解:设电压表显示的读数()U V 与()ΩR 之间的反比例函数为kU R=,∵反比例函数图象经过点()45,6,∴645270k =⨯=,∴()U V 与()ΩR 之间的反比例函数为270U R=,当 4.5V =时,270604.5R ==Ω,∵10R R R =+,030R =Ω,∴10603030R R R =-=-=Ω,把130R =Ω代入16060R p =-+得306060p =-+,解得12p =.故答案为:1215.如图,在ABC 中,90ACB ∠=︒,4AC BC ==,P 是ABC 的高CD 上一个动点,以B 点为旋转中心把线段BP 逆时针旋转45︒得到BP ',连接DP ',则DP '的最小值是.【答案】222-/222-+【分析】本题考查旋转的性质,等腰直角三角形的判定和性质,全等三角形的判定和性质,垂线段最短等知识点,在BC 上截取BE BD =,连接EP ,构造()SAS EBP DBP ' ≌,推出DP EP '=,根据垂线段最短,可知当EP CD ⊥时,EP 有最小值,即DP '有最小值.正确作出辅助线是解题的关键.【详解】解:如图,在BC 上截取BE BD =,连接EP ,ABC 中,90ACB ∠=︒,4AC BC ==,CD AB ⊥,∴45CBA A ∠=∠=︒,22224442AB AC BC =+=+=,1222BD CD AD AB ====,∴22BE BD ==,∴422CE BC BE =-=-.以B 点为旋转中心把线段BP 逆时针旋转45︒得到BP ',∴45PBP CBA '∠=︒=∠,BP BP '=,∴CBA BPD PBP BPD '∠-∠=∠-∠,∴EBP DBP '∠=∠,在EBP △和DBP ' 中,BE BD EBP DBP BP BP '=⎧⎪∠=∠⎨='⎪⎩,∴()SAS EBP DBP ' ≌,∴DP EP '=,当EP CD ⊥时,EP 有最小值,即DP '有最小值,EP CD ⊥,45BCD ∠=︒,∴CEP △是等腰直角三角形,∴()2242222222EP CE ==⨯-=-,∴DP '的最小值是222-.故答案为:222-.分,第21题9分,第22题10分,共55分.)16.计算()201322cos 4520202π-⎛⎫---︒+- ⎪⎝⎭.【答案】2【分析】本题考查了含特殊角的三角函数的混合运算,先化简负整数指数幂、绝对值、余弦值、零次幂,再运算加减,即可作答.【详解】解:()201322cos 4520202π-⎛⎫----︒+- ⎪⎝⎭()2432212=---⨯+43221=-+-+2=.17.先化简21221244x x x x ⎛⎫+÷ ⎪--+⎝⎭,再从不等式组13x -≤<中选择一个适当的整数,代入求值.【答案】22x -,当0x =时,原式1=-.【分析】本题考查了分式的化简求值,先利用分式的性质和运算法则对分式化简,再从不等式组13x -≤<中选择一个适当的整数代入到化简后的结果中计算即可求解,掌握分式的性质和运算法则是解题的关键.【详解】解:原式()()22212221x x x x x --⎛⎫=+⨯ ⎪---⎝⎭()()221221x x x x --=⨯--,22x -=,当1x =或2x =时,原式无意义,故取整数0x =时,原式0212-==-.18.有效的垃圾分类,可以减少污染,保护地球上的资源.为了更好地开展垃圾分类工作,某社区居委会对本社区居民掌握垃圾分类知识的情况进行调查.从中随机抽取部分居民进行垃圾分类知识测试,测试结果分为A ,B ,C ,D 四个等级,绘制成如图所示的两幅不完整的统计图.(1)求测试结果为D 等级的人数占调查总人数的百分比;(2)在扇形统计图中,求表示D 等级的扇形的圆心角的度数;(3)测试结果为A 等级的有多少人?并补全条形统计图;(4)测试结果达到A ,B 等级,社区居委会认定为优秀.若该社区共有居民1500人,请估计社区内达到优秀标准的居民大约有多少人?【答案】(1)5%(2)18︒(3)测试结果为A 等级的有12人,详见解析(4)达到优秀标准的居民大约有1125人【分析】(1)先求出调查的总人数,再用“D 组”的人数除以调查的总人数,即可求解;(2)用360︒乘以“D 组”所占的百分比,即可求解;(3)求出测试结果为A ,B 等级的人数,即可求解;(4)用1500人乘以测试结果达到A ,B 等级所占的百分比,即可求解.【详解】(1)解:调查人数为:820%40÷=(人),“D 组”所占的百分比为:240100%5%÷⨯=;(2)解:D 等级的扇形的圆心角的度数为3605%18︒⨯=︒;(3)解:测试结果为B 等级的有4045%18⨯=(人),测试结果为A 等级的有()40145%20%5%12⨯---=(人);补全条形统计图如下:(4)解:()150015%20%1125⨯--=(人).因此,达到优秀标准的居民大约有1125人.【点睛】本题主要考查了条形统计图和扇形统计图,样本估计总体,明确题意,准确从统计图中获取信息是解题的关键.19.为培养学生的阅读能力,深圳市某校八年级购进《朝花夕拾》和《西游记》两种书籍,分别花费了14000元和7000元,已知《朝花夕拾》的订购单价是《西游记》的订购单价的1.4倍.并且订购的《朝花夕拾》的数量比《西游记》的数量多300本.(1)求该校八年级订购的两种书籍的单价分别是多少元;(2)该校八年级计划再订购这两种书籍共100本作为备用,其中《朝花夕拾》订购数量不低于30本,且两种书总费用不超过1200元,请求出再订购这两种书籍的最低总费用的方案及最低费用为多少元?【答案】(1)《西游记》的单价是10元,《朝花夕拾》的单价是14元;(2)订购《朝花夕拾》30本,订购《西游记》70本时,最低总费用为1120元.【分析】本题考查了分式方程的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,找出w 关于m 的函数关系式.(1)设《西游记》的订购单价是x 元,则《朝花夕拾》的订购单价是1.4x 元,利用数量=总价÷单价,结合用14000元订购的《朝花夕拾》的数量比用7000元订购的《西游记》的数量多300本,可列出关于x 的分式方程,解之经检验后,可得出《西游记》的订购单价,再将其代入1.4x 中,即可求出《朝花夕拾》的订购单价;(2)设再次订购m 本《朝花夕拾》,则再次订购(100)m -本《西游记》,根据“《朝花夕拾》订购数量不低于30本,且两种书总费用不超过1200元”,可列出关于m 的一元一次不等式组,解之可得出m 的取值范围,设该校八年级再次订购这两种书籍共花费为w 元,利用总价=单价⨯数量,可得出w 关于m 的函数关系式,再利用一次函数的性质,即可解决最值问题.【详解】(1)解:设《西游记》的订购单价是x 元,则《朝花夕拾》的订购单价是1.4x 元,根据题意得:1400070003001.4x x-=,解得:10x =,经检验,10x =是所列方程的解,且符合题意,1.4 1.41014x ∴=⨯=(元).答:《朝花夕拾》的订购单价是14元,《西游记》的订购单价是10元;(2)设再次订购m 本《朝花夕拾》,则再次订购(100)m -本《西游记》,根据题意得:301410(100)1200m m m ≥⎧⎨+-≤⎩,解得:3050m ≤≤.设该校八年级再次订购这两种书籍共花费为w 元,则1410(100)w m m =+-,即41000w m =+,40> ,w ∴随m 的增大而增大,∴当30m =时,w 取得最小值,最小值为43010001120⨯+=(元),此时1001003070m -=-=(本).答:当再次订购30本《朝花夕拾》,70本《西游记》时,总费用最低,最低费用为1120元.20.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E .点F 在AC 的延长线上,且12∠=∠CBF CAB .(1)求证:直线BF 是O 的切线;(2)若3AB =,5sin 5CBF ∠,求BF 的长.【答案】(1)见解析(2)4【分析】本题主要考查了切线的判定,等腰三角形的性质,三角函数的定义,熟练掌握各种性质是解题的关键.(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两锐角相等得到直角,从而证明结论;(2)作CG BF ⊥于点G ,利用已知条件证明AGC ABF ∽,利用比例式求出线段长.【详解】(1)证明:连接AE ,AB 是O 的直径,90AEB ∴∠=︒,90EAB EBA ∴∠+∠=︒,AB AC = ,EAB EAC ∴∠=∠,12CBF CAB ∠=∠ ,CBF EAB ∴∠=∠,90CBF EBA ∴∠+∠=︒,即90ABF ∠=︒,∴直线BF 是O 的切线;(2)解:作CG BF ⊥于点G ,在Rt ABE △中,5sin sin 5EAB CBF ∠=∠=,55EB AB ∴=,3AB = ,355BE ∴=,6525BC BE ∴==,在Rt BCG 中,5sin 5CG CBF BC ∠==,655BC =,65CG ∴=,CG AB ∥ ,GF CG BF AB∴=,22125BG BC CG =-= ,125GF BF BG BF ∴=-=-,6,35CG AB == ,12255BF BF -∴=,解得4BF =.(),m n (),m n ()()10y k x k =-≠无论k 值如何变化,该函数图象恒过点()1,0,则点()1,0称为这个函数的“永恒点”.【初步理解】一次函数()130y mx m m =+>的定点的坐标是__________;【理解应用】二次函数()22230y mx mx m m =--+>落在x 轴负半轴的定点A 的坐标是__________,落在x 轴正半轴的定点B 的坐标是__________;【知识迁移】点P 为抛物线()22230y mx mx m m =--+>的顶点,设点B 到直线()130y mx m m =+>的距离为1d ,点P 到直线()130y mx m m =+>的距离为2d ,请问12d d 是否为定值?如果是,请求出12d d 的值;如果不是,请说明理由.【答案】【初步理解】()3,0-;【理解应用】()3,0-,()1,0;【知识迁移】是,2【分析】【初步理解】解析式变形为()()130y m x x m =+>,求解即可;【理解应用】由二次函数变形为()()()()2223130y m x x m x x m =-+-=--+>,求解即可;【知识迁移】由题意可得:()1,4P m -,()10B ,,作辅助线如解析图,则1d BC =,2d PQ =,90PQE BCF ∠=∠=︒,PEQ BFC ∠=∠,()1,2E m -,()1,4F m ,构建相似三角形,找出比例关系即可;【详解】解:【初步理解】由一次函数变形为()()130y m x m =+>,,当3x =-时,无论m 值如何变化,10y =故一次函数()()130y m x x m =+>必过一定点(3,0)-.故答案为:()3,0-.【理解应用】由二次函数变形为()()()()2223130y m x x m x x m =-+-=--+>,,当3x =-时,无论m 值如何变化,20y =当1x =时,无论m 值如何变化,20y =故二次函数()22230y mx mx m m =--+>必过定点(3,0)-,()1,0.所以二次函数()22230y mx mx m m =--+>落在x 轴负半轴的定点A 的坐标是(3,0)-,落在x 轴正半轴的定点B 的坐标是()1,0;故答案为:()3,0-,()1,0.【知识迁移】由题意得()()22223140y mx mx m m x m m =--+=-++>∴()1,4P m -,由上一小题得:()10B ,,作PE y 轴交直线()130y mx m m =+>于点E ,作BF y ∥轴交直线()130y mx m m =+>于点F ,则PEQ BFC ∠=∠,()1,2E m -,()1,4F m ,分别过点P 、B 作直线()130y mx m m =+>的垂线,垂足为Q 、C ,则1d BC =,2d PQ =,90PQE BCF ∠=∠=︒,2P E PE y y m ∴=-=,4F B BF y y m =-=,∵90PQE BCF ∠=∠=︒,PEQ BFC ∠=∠,PEQ BFC∴△∽△422BC BF m PQ PE m∴===即122d d =【点睛】本题主要考查了恒过定点的直线,抛物线以及相似三角形.本题主要理解新定义,构建相似三角形解题,有一定的难度.22.如图1,菱形ABCD 中,B α∠=,2BC =,E 是边BC 上一动点(不与点,B C 重合),连接DE ,点C 关于直线DE 的对称点为C ',连接AC '并延长交直线DE 于点,P F 是AC '的中点,连接,DC DF '.(1)填空:DC '=______,APD ∠=______(用含α的代数式表示);(2)如图2,当90α=︒,题干中其余条件均不变,连接BP .求证:2BP =.(3)(2)的条件下,连接AC .①若动点E 运动到边BC 的中点处时,ACC '△的面积为______.②在动点E 的整个运动过程中,ACC '△面积的最大值为______.【答案】(1)2,1902α︒-(2)证明见详解(3)①45;②222-【分析】(1)由C '是C 关于DE 的对称点,可得CD 沿DE 翻折后可得到C D ',可求2C D CD '==,12CDP C DP CDC ''∠=∠=∠,再由三线合一定理得到12C DF ADC ''∠=∠,90DFC '=︒∠,求出FDP ∠的度数,即可求出答案;(2)过A 作GA PA ⊥,交PD 的延长线于G ,在Rt AGP △中,可求2PG AP =,再证BAP DAG ≌得到BP DG =,则2BP DP AP +=,在Rt DFP △中,2DP FP =,由此即可证明结论;(3)连接BD 交AC 于O ,连接PC ,可证B 、P 、C 、D 四点共圆,O 为圆心,A 在O 上,再证BPE DCE ∽ ,可求255BP =,55PE =,从而可求4105AP =,在Rt AFD △中,22105AF AD DF =-=,即可求解;②过C '作C M AC '⊥,交AC 于M ,C '的运动轨迹是以D 为圆心,2C D '=为半径的 AC , AC 与BD 交于Q ,可得12222ACC S C M C M '''=⨯= ,当C M '取最大时,ACC S '△最大,所以当C '与Q 重合时,即C M QO '=,C M '最大,即可求解.【详解】(1)解: 四边形ABCD 是菱形,ADC B α∠=∠=,2AD CD AB ===,C ' 是C 关于DE 的对称点,CD ∴沿DE 翻折后可得到C D ',2C D CD '∴==,12CDP C DP CDC ''∠=∠=∠,AD C D '∴=,F 是AC '的中点,12C DF ADC ''∴∠=∠,DF AC '⊥,即90DFC '=︒∠FDP C DF C DP ∴∠=∠+'∠',1122ADC CDC ''=∠+∠12ADC =∠12α=,∴190902APD DFP α=︒-=︒-∠∠.故答案:2,1902α︒-.(2)证明:如图,过A 作GA PA ⊥,交PD 的延长线于G ,90GAP ∴∠=︒,四边形ABCD 是菱形,90B Ð=°,∴四边形ABCD 是正方形,90ADC BAD ∴∠=∠=︒,AB AD =,由(1)得:19090452DPF ∴∠=︒-⨯︒=︒,45G DPF ∴∠=∠=︒,AG AP ∴=,在Rt AGP △中,2PG AP =,2DP DG AP ∴+=;90DAG DAP ∠+∠=︒ ,90BAP DAP ∠+∠=︒,BAP DAG ∴∠=∠,在BAP △和DAG 中AB AD BAP DAG AG AP =⎧⎪∠=∠⎨⎪=⎩,∴BAP DAG ≌(SAS ),BP DG ∴=,2BP DP AP ∴+=.在Rt DFP △中,2DP FP =,∴()22BP FP AF FP +=+,∴2BP FP=(3)解:①如图,连接BD 交AC 于O ,连接PC ,由(2)得:45APB G ∠=∠=︒,90BPD BPA DPF ∴∠=∠+∠=︒90BPD BCD ∴∠=∠=︒,∴B 、P 、C 、D 四点共圆,O 为圆心, 四边形ABCD 是正方形,OA OC ∴=,A ∴在O 上,90APC ∴∠=︒,E 是BC 的中点,112CE BE CD ∴===,2222125DE CE CD ∴=+=+=,BEP DEC ∠=∠ ,90BPE DCE ∠=∠=︒,BPE DCE ∴∽ ,BE BP PE DE DC CE∴==,1215BP PE ∴==,255BP ∴=,55PE =,255DG BP ∴==,5255255AP ∴++=,4105AP ∴=,由(2)得:45FPD FDP ∠=∠=︒,∴22PD DF FP ==,655PD PE DE =+=,3105DF FP ∴==,在Rt AFD △中,22105AF AD DF =-=,105C F '∴=,2105C P FP C F ''∴=-=,,由(1)折叠得:2105CP C P '==,12ACC S AC CP ''∴=⋅ 1210210255=⨯⨯45=.②如图,过C '作C M AC '⊥,交AC 于M ,C '的运动轨迹是以D 为圆心,2C D '=为半径的 AC , AC 与BD 交于Q ,12ACC S AC C M ''∴=⋅ ,222AC AB == ,12222ACC S C M C M '''∴=⨯= ,∴当C M '取最大时,ACC S '△最大,如图,当C '与Q 重合时,即C M QO '=,C M '最大,22BD AC == ,122DM BD ∴==,22C M C D DM ''∴=-=-,()222222ACC S '∴=-=- ,故ACC '△面积的最大值为222-.【点睛】本题考查了菱形的性质,正方形的判定及性质,对称和折叠的性质,等腰三角形的判定及性质,勾股定理,三角形相似的判定及性质等,掌握相关的判定方法及性质是解题的关键.。
卷4一、选择题1.﹣2的绝对值是()A.﹣2 B.2 C.﹣ D.2.图中立体图形的主视图是()A. B. C.D.3.随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105 C.8.2×106D.82×1074.观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<37.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330 C.(1﹣10%)2x=330 D.(1+10%)x=330 8.如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM 的度数为()A.40°B.50°C.60°D.70°9.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C 处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE=,其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题13.因式分解:a3﹣4a=.14.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是.15.阅读理解:引入新数i,新数i满足分配律,结合律,交换律,已知i2=﹣1,那么(1+i)•(1﹣i)=.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.。
2017年广东省深圳市中考数学二模试卷及答案的倒数是()1.−13A.−13B.13C.﹣3D.32.人民网北京1月24日电(记者杨迪)财政部23日公布了2016年财政收支数据,全国一股公共预算收入159600亿元,将159600亿元用科学记数法表示为()A.1.596×105元B.1.596×1013元C.15.96×1013元D.1596×106元3.下列四个图案中,具有一个共有的性质,(1)那么下面四个数中,满足上述共有性质的一个是()A.228B.707C.808D.6094.下列运算正确的是()A. 8a−a=8B. (−a)4=a4C. a3⋅a2=a6D. (a−b)2=a2−b25.如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是()A.13B.35C.12D.166.一家服装店将某种服装按进价提高50%后标价,又以八折销售,售价为360元,则每件服装的进价是()A.168元B.300元C.60元D.400元7.定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A叫做“平衡点”,例如:M(1,1),N(﹣2,﹣2)都是“平衡点”,当﹣1≤x≤3时,直线y=2x+m 上有“平衡点”,则m的取值范围是()A.0≤m≤1B.﹣1≤m≤0C.﹣3≤m≤3D.﹣3≤m≤18.如图,直线m∥n,△ABC的顶点B,C分别在直线n,m上,且∠ACB=90°,若∠1=40°,则∠2的度数为()A.140°B.130°C.120°D.110°9.如图,已知△ABC(AB<BC<AC),用尺规在AC上确定一点P,使PB+PC=AC,则下列选项中,一定符合要求的作图痕迹是()(1)A.B.C.D.10.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为36,则PD+PE+PF=()A.12B.8C.4D.311.如图,在矩形ABCD中,AB=2,点E在边AD上,∠ABE=45°,BE=DE,连接BD,点P在线段DE上,过点P作PQ∥BD交BE于点Q,连接QO,设PD=x,△PQD的面积为y,则能表示y与x函数关系的图象大致是()A. B. C. D.12.如图,▱ABCD中,AE平分∠BAD,交BC于E,DE⊥AE,下列结论:①DE平分∠ADC;②E是BC的中点;③AD=2CD;④梯形ADCE的面积与△ABE的面积比是3:1,其中正确的结论的个数有()A.4B.3C.2D.113.分解因式:2a2−8=__________。
2016年广东省深圳市中考数学试卷第一部分 选择题(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是( )A .-1 B. 0 C 。
1 D 。
22.把下列图形折成一个正方体的盒子,折好后与“中"相对的字是( )A .祝 B.你 C 。
顺 D.利3.下列运算正确的是( )A 。
8a —a=8B 。
(-a )4=a 4C.a 3×a 2=a 6D.(a —b )2=a 2—b2 4.下列图形中,是轴对称图形的是( )5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为( )A.0.157×1010 B 。
1。
57×108 C 。
1.57×109 D.15.7×1086.如图,已知a ∥b,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A. ∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40°7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( )A 。
71 B. 31 C. 211 D. 1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米.设原计划每天施工x 米,则根据题意所列方程正确的是( ) A.25020002000=+-x x B 。
22000502000=-+xx C 。
2016年广东省深圳市中考数学试卷第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是( )A .—1 B. 0 C 。
1 D. 2 2.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是( )A .祝 B.你 C 。
顺 D 。
利 3.下列运算正确的是( )A 。
8a —a=8 B.(—a )4=a 4C.a 3×a 2=a 6D.(a —b )2=a 2-b 2 4.下列图形中,是轴对称图形的是( )5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为( )A 。
0.157×1010B.1。
57×108C 。
1。
57×109D 。
15。
7×1086.如图,已知a ∥b,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A 。
∠2=60° B. ∠3=60° C. ∠4=120° D. ∠5=40° 7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A 。
71 B. 31 C 。
211 D 。
1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是( )A.25020002000=+-x x B.22000502000=-+x x C 。
2016年广东省深圳市中考数学试卷第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是( )A .—1 B. 0 C. 1 D. 2 2.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是( )A .祝 B.你 C.顺 D.利 3.下列运算正确的是( )A.8a-a=8B.(-a)4=a 4C.a 3×a 2=a 6D.(a-b )2=a 2-b 24.下列图形中,是轴对称图形的是( )5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为( )A.0.157×1010B.1.57×108C.1.57×109D.15.7×1086.如图,已知a ∥b,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A. ∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40° 7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A.71 B. 31 C. 211D. 1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是( )A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx10.给出一种运算:对于函数nx y =,规定1-=n nxy 丿。
2016年广东省深圳市中考数学试卷第一部分 选择题(本部分共12小题,每小题3分,共36分。
每小题给出4个选项,其中只有一个选项是正确的)1.下列四个数中,最小的正数是( )A .—1 B. 0 C. 1 D. 2 2.把下列图形折成一个正方体的盒子,折好后与“中”相对的字是( )A .祝 B.你 C.顺 D.利 3.下列运算正确的是( )A.8a-a=8B.(-a)4=a 4C.a 3×a 2=a 6D.(a-b )2=a 2-b 24.下列图形中,是轴对称图形的是( )5.据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为( )A.0.157×1010B.1.57×108C.1.57×109D.15.7×1086.如图,已知a ∥b,直角三角板的直角顶点在直线b 上,若∠1=60°,则下列结论错误的是( )A. ∠2=60°B. ∠3=60°C. ∠4=120°D. ∠5=40° 7.数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。
则第3小组被抽到的概率是( ) A.71 B. 31 C. 211D. 1018.下列命题正确是( )A.一组对边平行,另一组对边相等的四边形是平行四边形B.两边及一角对应相等的两个三角形全等C.16的平方根是4D.一组数据2,0,1,6,6的中位数和众数分别是2和69.施工队要铺设一段全长2000米,的管道,因在中考期间需停工两天,实际每天施工需比原来计划多50米,才能按时完成任务,求原计划每天施工多少米。
设原计划每天施工x 米,则根据题意所列方程正确的是( )A.25020002000=+-x x B.22000502000=-+x x C.25020002000=--x x D.22000502000=--xx10.给出一种运算:对于函数nx y =,规定1-=n nxy 丿。
中考数学押题姓名 班级 考号(全卷三个大题,共27个题;满分150分,考试用时120分钟)注意事项:1.本卷为试题卷,考生必须在答题卷上解题作答,答案书写在答题卷相应位置上,在试题卷、草稿纸上作答无效.2.考试结束后,请将试题卷和答题卷一并交回.一、选择题:(本大题15个小题,每小题3分,共45分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在题后的括号中. 1.3的倒数是( )A .-3B .3C .D .2.计算的结果是( )A .B .C .D . 3.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是( ) A .相交 B .相切 C .相离 D .无法确定 4.使分式有意义的x 的取值范围是( )A .x =2B .x ≠2C .x =-2D .x ≠-2 5.不等式组的解集是( )A .x>2B .x<3C .2<x<3D .无解6.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD =40°,则∠DCF 等于( ) A .80° B .50° C .40° D .20°7.如图,是有几个相同的小正方体搭成的几何体的三种视图, 则搭成这个几何体的小正方体的个数是( )A .3B .4C .5D .68.观察市统计局公布的“十五”时期某市农村居民人均收入每年比上一年增长率的统计图,下列说法正确的是( )A .2003年农村居民人均收入低于2002年B .农村居民人均收入比上年增长率低于9%的有2年C .农村居民人均收入最多时2004年D .农村居民人均收入每年比上一年的增长率有大有小,但农村居民人均收入在持续增加9.免交农业税,大大提高了农民的生产积极性,镇政府引导农民对生产的耨中土特产进行加工后,分为甲、乙、丙三种不同包装推向市场进行销售,其相关信息如下表:春节期间,这三种不同的包装的土特产1313-232(3)x x ⋅-56x -56x 62x -62x 24x x -2030x x ->-<⎧⎨⎩都销售了1200千克,那么本次销售中,这三种包装的土特产获得利润最大是( ) A .甲 B .乙 C .丙 D .不能确定10.现有A 、B 两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).用小莉掷A 立方体朝上的数字为x 、小明掷B 立方体朝上的数字为x 来确定点P (x ,y ),那么它们各掷一次所确定的点P 落在已知抛物线上的概率为( ) A.B .C .D .11.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32o , 那么∠2的度数是A.32oB.58oC.68oD.60o12.小明要给刚结识的朋友小林打电话,他只记住了电话号码的前5位的顺序,后3位是3,6,8三个数字的某一种排列顺序,但具体顺序忘记了,那么小明第一次就拨通电话的概率是A .B .C .D .13.2012年3月份,某市市区一周空气质量报告中某项污染指数的数据是:31,35,31,34,30,32,31,这组数据的中位数、众数分别是A.32,31B.31,32C.31,31D.32,35 14.若反比例函数的图象经过点,其中,则此反比例函数的图象在 A .第一、三象限B .第一、二象限C .第二、四象限15.如图,已知⊙是以数轴的原点为圆心,半径为1的圆,,点在数轴上运动,若过点且与平行的直二、填空题:(本大题5个小题,每小题5分,共25分)在每小题中,请将答案直接填在题后的横线上. 16.分解因式:x 2-4=____________.17.如图,已知直线,∠1=40°,那么∠2=____________度.18.圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为____________.19.废旧电池对环境的危害十分巨大,一粒纽扣电池能污染600立方米的水(相当24y x x =-+1181121916121614131ky x=(3)m m ,0m ≠O O 45AOB ∠=︒P P OA 12l l ∥第8题于一个人一生的饮水量).某班有50名学生,如果每名学生一年丢弃一粒纽扣电池,且都没有被回收,那么被该班学生一年丢弃的纽扣电池能污染的水用科学计数法表示为____________立方米. 20.如图,已知函数y =ax+b 和y =kx 的图象交于点P, 则根据图象可得,关于的二元一次方程组的解是____________.三、解答题:(本大题7个小题,共80分)下列各题解答时必须给出必要的演算过程或推理步骤. 21.(8分)计算:22. (8分)先化简,再求值:其中.23.(12分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,该厂同意他们组装240套玩具.这些玩具分为A 、B 、C 三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A 型玩具有____________套,B 型玩具有____________套,C 型玩具有____________套.(2)若每人组装A 型玩具16套与组装C 型玩具12套所画的时间相同,那么a 的值为____________,每人每小时能组装C 型玩具____________套.24.(10分)期中考试后,九年级(1)班准备购买一批笔记本在家长会上奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本. (1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,老师决定购买笔记本和钢笔共90件,钢笔每支原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案? (3):那种方案更省钱?25.(12分)如图,在梯形ABCD 中,AB ∥DC ,∠BCD =90°,且AB =1,BC =2,tan ∠ADC =2. ⑴求证:DC =BC ;⑵E 是梯形内的一点,F 是梯形外的一点,且∠EDC =∠FBC ,DE =BF ,试判断△ECF 的形状,并证明你的结y ax b y kx=+=⎧⎨⎩12tan 601)--︒+2244242x x x x x x +++÷---,1x =论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.26.(14分)已知,如图,是以线段为直径的的切线,交于点,过点作弦垂足为点,连接. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,任选1个结论进行证明); (2)=,的半径27.(16分)已知:m 、n 是方程的两个实数根,且m<n ,抛物线的图像经过点A(m ,0)、B(0,n). (1)求这个抛物线的解析式;(2)设(1)中抛物线与x 轴的另一交点为C ,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(3)P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.BC AB O ⊙AC O ⊙D D DE AB ⊥,F BD BE 、.A ∠30°CD O ⊙r .2650x x -+=2y x bx c =-++A(第27题图)中考数学答题卡姓名 班级 考号(全卷三个大题,共27个题;满分150分,考试用时120分钟)一、选择题(本大题共15小题,每小题只有一个正确选项,每小题3分,满分45分)、1.[A][B][C][D]2.[A][B][C][D]3.[A][B][C][D]4.[A][B][C][D]5.[A][B][C][D]6.[A][B][C][D]7.[A][B][C][D] 8[A][B][C][D] 9.[A][B][C][D] 10.[A][B][C][D] 11.[A][B][C][D] 12.[A][B][C][D] 13[A][B][C][D] 14.[A][B][C][D] 15.[A][B][C][D]二、填空题(本大题共5小题,每小题5分,满分25分)16. .17. 度.18. .19. .20. . 三、解答题(本大题共7个题,满分80分) 21.(8分)计算:22. (8分)先化简,再求值:其中.23.(12分)在暑期社会实践活动中,小明所在小组的同学与一家玩具生产厂家联系,给该厂组装玩具,12tan 601)--︒+2244242x x x x x x +++÷---,1x =该厂同意他们组装240套玩具.这些玩具分为A、B、C三种型号,它们的数量比例以及每人每小时组装各种型号玩具的数量如图所示.若每人组装同一种型号玩具的速度都相同,根据以上信息,完成下列填空:(1)从上述统计图可知,A型玩具有____________套,B型玩具有____________套,C型玩具有____________套.(2)若每人组装A型玩具16套与组装C型玩具12套所画的时间相同,那么a的值为____________,每人每小时能组装C型玩具____________套.24.(10分)期中考试后,九年级(1)班准备购买一批笔记本在家长会上奖励优秀学生,在购买时发现,每本笔记本可以打九折,用360元钱购买的笔记本,打折后购买的数量比打折前多10本.(1)求打折前每本笔记本的售价是多少元?(2)由于考虑学生的需求不同,老师决定购买笔记本和钢笔共90件,钢笔每支原售价为6元,两种物品都打九折,若购买总金额不低于360元,且不超过365元,问有哪几种购买方案?(3):那种方案更省钱?25.(12分)如图,在梯形ABCD中,AB∥DC,∠BCD=90°,且AB=1,BC=2,tan∠ADC=2.⑴求证:DC =BC ;⑵E 是梯形内的一点,F 是梯形外的一点,且∠EDC =∠FBC ,DE =BF ,试判断△ECF 的形状,并证明你的结论;⑶在⑵的条件下,当BE:CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.26.(14分)已知,如图,是以线段为直径的的切线,交于点,过点作弦垂足为点,连接. (1)仔细观察图形并写出四个不同的正确结论:①________,②________ ,③________,④____________(不添加其它字母和辅助线,任选1个结论进行证明); (2)=,的半径27.(16分)已知:m 、n 是方程的两个实数根,且m<n ,抛物线的图像经过BC AB O ⊙AC O ⊙D D DE AB ⊥,F BD BE 、.A ∠30°CD O ⊙r .2650x x -+=2y x bx c =-++A(第27题图)点A(m,0)、B(0,n).(1)求这个抛物线的解析式;(2)设(1)中抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C、D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.数学参考答案一、选择题:(每小题3分,共45分)1—5 C A A B C 6—10 D B D C B 11—15 B B C A C 二、填空题:(每小题5分,共25分)16.(x+2)(x -2) 17.40 18.2π或6.28均可19. 20.三、解答题:(共80分) 21.; 22.23.(每空2分)(1)132,48,60;(2)4,6. 24.25.(1)过A 作DC 的垂线AM 交DC 于M , 则AM =BC =2.(1分) 又tan ∠ADC =2,所以.(2分)因为MC =AB =1,所以DC =DM+MC =2,即DC =BC .(3分) (2)等腰直角三角形.(4分)证明:因为DE =DF ,∠EDC =∠FBC ,DC =BC . 所以,△DEC ≌△BFC (5分)所以,CE =CF ,∠ECD =∠BCF . 所以,∠ECF =∠BCF+∠BCE =∠ECD+∠BCE =∠BCD =90° 即△ECF 是等腰直角三角形.(6分)(3)设BE =k ,则CE =CF =2k ,所以.(7分)因为∠BEC =135°,又∠CEF =45°,所以∠BEF =90°.(8分) 所以(9分) 所以.(10分) 26.(1) 等(每写出一个正确结论得1分,满分4分.)(2)解:是的直径 ∙∙∙∙∙∙∙∙∙5分 又 ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6分∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7分 又是的切线∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙8分4310⨯42x y =-=-⎧⎨⎩32212DM ==EF =3BF k ==1sin 33BFE k k ∠==BC AB AD BD ⊥⊥,,DF FE BD BE ==,,BDF BEF △≌△,BDF △∽BAD △,BDF BEF ∠=∠,A E DE BC ∠=∠,∥AB O ⊙90ADB ∴∠=°30E ∠= °30A ∴∠=°12BD AB r ∴==BC O ⊙90CBA ∴∠=°60C ∴∠=︒A(第22题图)在中, ∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙9分 10分27.(1)解方程,得(1分)由m<n ,有m =1,n =5 所以点A 、B 的坐标分别为A (1,0),B (0,5).(2分) 将A (1,0),B (0,5)的坐标分别代入.得解这个方程组,得所以,抛物线的解析式为(3分)(2)由,令y =0,得 解这个方程,得 所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).(4分) 过D 作x 轴的垂线交x 轴于M . 则,(5分)所以,.(6分)(3)设P 点的坐标为(a ,0)因为线段BC 过B 、C 两点,所以BC 所在的值线方程为y =x+5. 那么,PH 与直线BC 的交点坐标为E(a ,a+5),(7分)PH 与抛物线的交点坐标为.(8分) 由题意,得①,即解这个方程,得或(舍去)(9分)②,即解这个方程,得或(舍去)P 点的坐标为或.(10分)Rt BCD △CD =tan 60BD DC ∴==°2r ∴=2650x x -+=125,1x x ==2y x bx c =-++105b c c -++==⎧⎨⎩45b c =-=⎧⎨⎩245y x x =--+245y x x =--+2450x x --+=125,1x x =-=1279(52)22DMC S ∆=⨯⨯-=12(95)142MDBO S =⨯⨯+=梯形1255522BOC S ∆=⨯⨯=2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形245y x x =--+2(,45)H a a a --+32EH EP =23(45)(5)(5)2a a a a --+-+=+32a =-5a =-23EH EP =22(45)(5)(5)3a a a a --+-+=+23a =-5a =-3(,0)2-2(,0)3-11。
第1页(共28页) 2017年广东省深圳市中考数学押题试卷(A卷) 一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)四个数,﹣2,0,,π,其中是无理数的是( ) A.﹣2 B.0 C. D.π 2.(3分)如图是一个正方形的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( )
A.丽 B.深 C.圳 D.湾 3.(3分)下列计算正确的是( ) A.3a+2b=5ab B.(﹣3a2b2)2=﹣6a4b2 C.+=4 D.(a﹣b)2=a2﹣b2 4.(3分)下列是杀毒软件的四个logo,其中是轴对称图形又是中心对称图形的是( )
A. B. C. D. 5.(3分)《深圳都市报》报道,截止2017年3月底,深圳共享单车注册用户量超千万人,互联网自行车日均使用量2590000人次,将2590000用科学记数法表示应为( ) A.0.259×107 B.2.59×106 C.29.5×105 D.259×104 6.(3分)如图,正方形ABCD的顶点A、C分别在直线a、b上,且a∥b,∠1=65°,则∠2的度数为( )
A.65° B.55° C.35° D.25°
第2页(共28页)
7.(3分)在深圳中考体育的项目中,小明和其他四名考生参加新增的100米游泳测试,考场共设A,B,C,D,E五条泳道,考生以随机抽签的方式决定各自的泳道.若小明首先抽签,则小明抽到C泳道的概率是( ) A. B. C. D. 8.(3分)下列命题为真命题的是( ) A.有两边及一角对应相等的两个三角形全等
B.方程x2﹣x+2=0有两个不相等的实数根 C.面积之比为1:4的两个相似三角形的周长之比是1:4 D.顺次连接任意四边形各边中点得到的四边形是平行四边形 9.(3分)甲、乙两人在健身房练习跑步,甲比乙每分钟多跑40米,甲跑1200米所用时间与乙跑800米所用时间相等,设乙每分钟跑x米,根据题意可列方程为( ) A.= B.=
C.= D.= 10.(3分)规定logab(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:logaan=n,logNM=(a>0,a≠1,N>0,N≠1,M>0).例
如:log332=2,log25=,则log100010000=( ) A. B. C. D.10 11.(3分)如图,以BC为直径的⊙O与△ABC的另两边分别相交于D、E.若∠A=60°,BC=6,则图中阴影部分的面积为( ) 第3页(共28页)
A.π B.π C.π D.3π 12.(3分)如图,正方形ABCD的边长为2,对角线AC与BC相交于O,E为AB的中点,F为DE的中点,G为CF的中点,OH⊥DE于H,过A作AI⊥DE于I,交BD于J,交BC于K,连接BI,下列结论:①G到AC的距离等于;②OH=
;③BK=AK;④∠BIJ=45°.其中正确的结论是( )
A.①②③ B.①②④ C.①③④ D.①②③④ 二、填空题(本大题共4小题,每小题3分,共12分) 13.(3分)分解因式:m2n﹣2mn+n= . 14.(3分)一组数据5,5,a,6,8的平均数=6,则方差S2= . 15.(3分)如图,在△ABC中,∠ACB=90°,BC=6,分别以点A和点C为圆心,以相同的长(大于AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD,则DE的长为 .
16.(3分)如图,正方形ABCD的两个顶点A,D分别在x轴和y轴上,CE⊥y轴于点E,OA=2,∠ODA=30°.若反比例函数y=的图象过CE的中点F,则k的值为 . 第4页(共28页)
三、解答题(本大题共7小题,共52分) 17.(5分)计算:()﹣2﹣(2017﹣π)0+2sin60°+|﹣2|
18.(6分)解不等式组:. 19.(7分)某校在“6.26国际禁毒月”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题 少分数段(x表示分数) 频数 频率 50≤x<60 60≤x<70 70≤x<80
4 8 A 0.1 B 0.3 80≤x<90 10 0.25 90≤x<100 6 0.15
(1)表中a= ,b ,并补全直方图 (2)若用扇形统计图描述此成绩分布情况,则分数段60≤x<70对应扇形的圆心角度数是 ; (3)请估计该年级分数在80≤x<100的学生有多少人? 第5页(共28页)
20.(8分)随着深圳东进战略的加速实施,市勘探工程队在坪山沿惠州方向一山坡平台处搭建临时工棚,为方便搬运器材,决定降低平台CE前的坡度.已知平台与地面的铅直高为10米,坡面BC的坡度为1:1,新坡面的坡度为1:. (1)求新坡面的坡角α; (2)平台CE前的坡度降低后,原坡面底部正前方7米处(PB的长)地面上有一指示牌P是否会覆盖?请说明理由.
21.(8分)某文具店5月份购进一批A种毕业纪念册,每本进价为20元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系,当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本. (1)请求出y与x的函数关系式; (2)该文具店计划6月份新进一批A、B两种纪念册共100本,且B种纪念册的进货数量不超过A种纪念册的2倍,应如何进货才能使这批纪念册获利最多?A、B两种型号纪念册的进货和销售价格如表: A种 B种 进货价格(元/本) 20 24 销售价格(元/本) 25 30 22.(9分)如图所示,Rt△ABC中,∠C=90°,AC=6,BC=8,以B为圆心,半径为3的⊙O沿BC方向以每秒1个单位的速度平移,当⊙O运动到与直线相交于点C时(点O在BC上),⊙O停止运 第6页(共28页)
动. (1)当运动停止时,试判断直线AB与⊙O的位置关系,并证明你的结论; (2)在平移过程中,若⊙O与AB相切于点D,连接CD,求△ACD的面积; (3)在平移过程中,若⊙O经过AB的中点G时,E、F为OC上的两个动点,且EF=1.6,当四边形AGEF的周长最小时,试求OE的长度. 23.(9分)如图所示,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8),抛物线y=ax2+bx+c(a≠0)与直线y=x﹣4交于B、D两点.
(1)求抛物线的解析式并直接写出D点的坐标; (2)点P为抛物线上的一个动点,且在直线BD下方,试求出△BDP面积的最大值及此时点P的坐标; (3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,求点Q的坐标. 第7页(共28页)
2017年广东省深圳市中考数学押题试卷(A卷) 参考答案与试题解析
一、选择题(本大题共12小题,每小题3分,共36分) 1.(3分)四个数,﹣2,0,,π,其中是无理数的是( ) A.﹣2 B.0 C. D.π
【分析】根据无理数的定义求解即可. 【解答】解:﹣2,0,是有理数, π是无理数, 故选:D. 【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.
2.(3分)如图是一个正方形的平面展开图,把展开图折叠成正方体后,“美”字一面相对面的字是( )
A.丽 B.深 C.圳 D.湾 【分析】正方体的平面展开图中,相对面的特点是必须相隔一个正方形,据此作答. 【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形, “美”与“湾”是相对面, “丽”与“深”是相对面, “的”与“圳”是相对面. 故选:D. 第8页(共28页)
【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.
3.(3分)下列计算正确的是( ) A.3a+2b=5ab B.(﹣3a2b2)2=﹣6a4b2 C.+=4 D.(a﹣b)2=a2﹣b2
【分析】根据合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;完全平方公式:(a±b)2=a2±2ab+b2,进行计算即可. 【解答】解:A、3a和2b不是同类项,不能合并,故原题计算错误; B、(﹣3a2b2)2=9a4b4,故原题计算错误; C、+=3=4,故原题计算正确; D、(a﹣b)2=a2﹣2ab+b2,故原题计算错误; 故选:C. 【点评】此题主要考查了合并同类项,幂的乘方,积的乘方和完全平方公式,关键是掌握各计算法则.
4.(3分)下列是杀毒软件的四个logo,其中是轴对称图形又是中心对称图形的是( )
A. B. C. D. 【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解. 【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不符合题意; B、是轴对称图形又是中心对称图形,故本选项符合题意; C、不是轴对称图形,也不是中心对称图形,故本选项不符合题意; D、是轴对称图形,不是中心对称图形,故本选项不符合题意.