函数的单调性说课稿
- 格式:doc
- 大小:159.00 KB
- 文档页数:7
高中数学《函数的单调性》说课稿设计一、说课目标通过本节课的学习,学生将能够:1.了解函数的单调性的概念;2.理解单调递增和单调递减的定义;3.掌握判断函数的单调性的方法;4.运用单调性的性质解决实际问题。
二、说课重点1.函数的单调性的定义和判定方法;2.单调性与函数图像的关系;三、说课难点1.单调性的判定方法;2.实际问题的解决。
四、教学过程1. 导入新知识(5分钟)引入函数的概念,并提问学生是否了解函数的图像特征。
然后,引入函数的单调性的概念,引导学生思考函数的单调性与图像的关系。
2. 函数的单调性定义和判定方法(10分钟)首先,解释函数的单调性的定义:函数在定义域上递增或递减。
然后,介绍函数单调性的判定方法:•对于y=f(x),若f′(x)>0,则函数在该区间上单调递增;•对于y=f(x),若f′(x)<0,则函数在该区间上单调递减。
3. 单调性与函数图像的关系(15分钟)通过上述定义和判定方法,引导学生观察函数图像的形状,并与函数的单调性进行对比。
引导学生发现,递增函数对应的图像是上凸的,递减函数对应的图像是下凸的。
4. 判定函数单调性的例题讲解(20分钟)选择两道合适的例题进行讲解,让学生掌握判定函数单调性的具体步骤和方法。
通过讲解例题,解释函数在不同区间上单调递增或单调递减的原因。
5. 实际问题的解决(20分钟)引入实际问题,例如一辆汽车的加速度问题。
通过构建相关函数模型,运用函数的单调性的性质,解决实际问题。
引导学生分析问题的关键点,理解单调性在实际问题中的应用。
6. 总结和拓展(10分钟)回顾单调性的定义和判定方法,总结单调性与函数图像的关系,强调单调性在解决实际问题中的重要性。
鼓励学生进一步拓展单调性的应用领域,并提醒他们关注函数的单调性在高考和日常生活中的重要性。
五、课堂作业1.完成课堂上的练习题;2.思考并总结函数单调性的应用场景,写一篇300字的小结。
六、板书设计函数的单调性定义:函数在定义域上递增或递减。
《函数单调性》说课稿《函数单调性》说课稿作为一名教师,通常需要准备好一份说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。
那么优秀的说课稿是什么样的呢?以下是小编帮大家整理的《函数单调性》说课稿,仅供参考,希望能够帮助到大家。
一.说教材地位及重要性函数的单调性一节属高中数学第一册(上)的必修内容,在高考的重要考查范围之内。
函数的单调性是函数的一个重要性质,也是在研究函数时经常要注意的一个性质,并且在比较几个数的大小、对函数的定性分析以及与其他知识的综合应用上都有广泛的.应用。
通过对这一节课的学习,既可以让学生掌握函数单调性的概念和证明函数单调性的步骤,又可加深对函数的本质认识。
也为今后研究具体函数的性质作了充分准备,起到承上启下的作用。
教学目标(1)了解能用文字语言和符号语言正确表述增函数、减函数、单调性、单调区间的概念;(2)了解能用图形语言正确表述具有单调性的函数的图象特征;(3)明确掌握利用函数单调性定义证明函数单调性的方法与步骤;并能用定义证明某些简单函数的单调性;(4)培养学生严密的逻辑思维能力、用运动变化、数形结合、分类讨论的方法去分析和处理问题,以提高学生的思维品质;同时让学生体验数学的艺术美,养成用辨证唯物主义的观点看问题。
教学重难点重点是对函数单调性的有关概念的本质理解。
难点是利用函数单调性的概念证明或判断具体函数的单调性。
二.说教法根据本节课的内容及学生的实际水平,我尝试运用“问题解决”与“多媒体辅助教学”的模式。
力图通过提出问题、思考问题、解决问题的过程,让学生主动参与以达到对知识的“发现”与接受,进而完成对知识的内化,使书本知识成为自己知识;同时也培养学生的探索精神。
三.说学法在教学过程中,教师设置问题情景让学生想办法解决;通过教师的启发点拨,学生的不断探索,最终把解决问题的核心归结到判断函数的单调性。
然后通过对函数单调性的概念的学习理解,最终把问题解决。
整个过程学生学生主动参与、积极思考、探索尝试的动态活动之中;同时让学生体验到了学习数学的快乐,培养了学生自主学习的能力和以严谨的科学态度研究问题的习惯。
《函数的单调性》说课稿各位领导、老师你们好!我说课的内容是人教A版(必修一)第二章2.1.3第一节《函数的单调性》。
我将根据新课标的理念和高一学生的认知特点设计本节课的教学。
我从下面四个方面阐述我对这节课的理解和教学设计。
一、教材分析(一) 教材内容本节课内容教材共分两课时进行,这是第一课时,该课时主要学习函数的单调性的的概念,依据函数图象判断函数的单调性和依据定义证明函数的单调性。
(二) 教材的地位和作用函数是本章的核心概念,也是中学数学中的基本概念,函数贯穿整个高中数学课程。
在历年的考题中常考,函数思想也是我们学习数学中的重要思想。
在这一节中的利用函数图像研究函数性质的数形结合思想将贯穿于整个高中数学教学。
函数的单调性是代数方法研究函数图像变化的局部变化趋势。
函数的单调性是学生初中学习了一次函数、二次函数、反比例函数图像的基础上对增减性有了一个初步的感性认识,是函数概念的延伸和扩展,又是后续研究指数函数、对数函数等内容的基础,对进一步探索、研究函数的其他性质有着示范的作用,它是整个高中数学中起着承上启下作用的核心知识之一。
二、教学目标根据上述教学内容的地位和作用,结合教学大纲和学生的实际,确定了以下教学重点和难点:知识与技能:理解函数单调性和和单调函数的意义;会判断并证明简单函数的单调性。
过程与方法:培养从概念出发,进一步研究其性质的能力;体会感悟数形结合、分类讨论的数学思想。
情感态度与价值观;领会用运动的观点去观察分析事物的方法,培养学生细心观察、认真分析、严谨论证的良好思维习惯;由合适的例子引发学生探求知识的欲望,突出学生的主观能动性,激发学生学习的兴趣。
教学的重点和难点教学重点:函数单调性的概念,判断并证明函数的单调性;教学难点:根据定义证明函数的单调性和利用函数图像证明单调性教具:多媒体三、教学方法新课程标准认为课堂教学不仅仅是教师的教,更是学生主动参与、对知识自主建构的过程。
本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,本节课主要采用“创设情境、问题探究、合作交流、归纳总结、练习巩固”的教学方式,这样既增加了教师与学生、学生与学生之间的交流,又能激发学生的求知欲,调动学生的积极性,使他们思路更加开阔,思维更加敏捷。
高中数学公开课(函数的单调性)优秀教学设计及说课稿(教学目标)1.使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义推断、证明函数单调性的方法.2.通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和言语表达能力;通过对函数单调性的证明,提高学生的推理论证能力.3.通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯,让学生经历从具体到抽象,从特别到一般,从感性到理性的认知过程.(教学重点)函数单调性的概念、推断及证明.(教学难点)归纳抽象函数单调性的定义以及依据定义证明函数的单调性.(教学方法)教师启发讲授,学生探究学习.(教学手段)计算机、投影仪.(教学过程)一、创设情境,引入课题课前安排任务:(1) 由于某种原因,2022年北京奥运会开幕式时间由原定的7月25日推迟到8月8日,请查阅资料说明做出这个决定的主要原因.(2) 通过查阅历史资料研究北京奥运会开幕式当天气温变化情况.课上通过交流,可以了解到开幕式推迟主要是天气的原因,北京的天气到8月中旬,平均气温、平均降雨量和平均降雨天数等均开始下降,比拟适宜大型国际体育赛事.下列图是今年8月8日一天24小时内气温随时间变化的曲线图.引导学生识图,捕捉信息,启发学生思考.问题:观察图形,能得到什么信息?方案:(1)当天的X温度、X温度以及何时到达;(2)在某时刻的温度;(3)某些时段温度升高,某些时段温度降低.在生活中,我们关怀很多数据的变化规律,了解这些数据的变化规律,对我们的生活是很有援助的.问题:还能举出生活中其他的数据变化情况吗?方案:水位上下、燃油价格、X价格等.归纳:用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小.(设计意图)由生活情境引入新课,激发兴趣.二、归纳探究,形成概念对于自变量变化时,函数值是变大还是变小,初中同学们就有了肯定的认识,但是没有严格的定义,今天我们的任务首先就是建立函数单调性的严格定义.1.借助图象,直观感知问题1:分别作出函数的图象,并且观察自变量变化时,函数值有什么变化规律?方案:(1)函数在整个定义域内 y随x的增大而增大;函数在整个定义域内 y随x的增大而减小.(2)函数在上 y随x的增大而增大,在上y随x的增大而减小.(3)函数在上 y随x的增大而减小,在上y随x的增大而减小.引导学生进行分类描述 (增函数、减函数).同时明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质.问题2:能不能依据自己的理解说说什么是增函数、减函数方案:如果函数在某个区间上随自变量x的增大,y也越来越大,我们说函数在该区间上为增函数;如果函数在某个区间上随自变量x的增大,y越来越小,我们说函数在该区间上为减函数.教师指出:这种认识是从图象的角度得到的,是对函数单调性的直观,描述性的认识.(设计意图)从图象直观感知函数单调性,完成对函数单调性的第—次认识.2.探究规律,理性认识问题1:下列图是函数的图象,能说出这个函数分别在哪个区间为增函数和减函数吗?学生的困难是难以确定分界点确实切位置.通过商量,使学生感受到用函数图象推断函数单调性虽然比拟直观,但有时不够X,需要结合解析式进行严密化、X化的研究.(设计意图)使学生体会到用数量大小关系严格表述函数单调性的必要性.问题2:如何从解析式的角度说明在为增函数?方案: (1) 在给定区间内取两个数,例如1和2,因为12<22,所以在为增函数.(2) 仿(1),取很多组验证均满足,所以在为增函数.(3) 任取,因为,即,所以在为增函数.对于学生错误的答复,引导学生分别用图形言语和文字言语进行辨析,使学生认识到问题的根源在于自变量不可能被穷举,从而引导学生在给定的区间内任意取两个自变量.(设计意图)把对单调性的认识由感性上升到理性认识的高度,完成对概念的第二次认识.事实上也给出了证明单调性的方法,为证明单调性做好铺垫.3.抽象思维,形成概念问题:你能用X的数学符号言语表述出增函数的定义吗师生共同探究,得出增函数严格的定义,然后学生类比得出减函数的定义.(1)板书定义(2)稳固概念推断题:①.②假设函数.③假设函数在区间和(2,3)上均为增函数,则函数在区间(1,3)上为增函数.④因为函数在区间上都是减函数,所以在上是减函数.通过推断题,强调三点:①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).③函数在定义域内的两个区间A,B上都是增〔或减〕函数,一般不能认为函数在上是增〔或减〕函数.思考:如何说明一个函数在某个区间上不是单调函数(设计意图)让学生由特别到一般,从具体到抽象归纳出单调性的定义,通过对推断题的辨析,加深学生对定义的理解,完成对概念的第三次认识.三、掌握证法,适当延展例证明函数在上是增函数.1.分析解决问题针对学生可能出现的问题,组织学生商量、交流.2.归纳解题步骤引导学生归纳证明函数单调性的步骤:设元、作差、变形、断号、定论.练习:证明函数在上是增函数.问题:要证明函数在区间上是增函数,除了用定义来证,如果可以证得对任意的,且有可以吗引导学生分析这种表达与定义的等价性.让学生尝试用这种等价形式证明函数在上是增函数.(设计意图)初步掌握依据定义证明函数单调性的方法和步骤.等价形式进一步开展可以得到导数法,为用导数方法研究函数单调性埋下伏笔.四、归纳小结,提高认识学生交流在本节课学习中的体会、收获,交流学习过程中的体验和感受,师生合作共同完成小结.1.小结(1) 概念探究过程:直观到抽象、特别到一般、感性到理性.(2) 证明方法和步骤:设元、作差、变形、断号、定论.(3) 数学思想方法和思维方法:数形结合,等价转化,类比等.2.作业书面作业:课本第60页习题2.3 第4,5,6题.课后探究:(1) 证明:函数在区间上是增函数的充要条件是对任意的,且有.(2) 研究函数的单调性,并结合描点法画出函数的草图.(函数的单调性)教学设计说明一、教学内容的分析函数的单调性是学生在了解函数概念后学习的函数的第—个性质,是函数学习中第—个用数学符号言语刻画的概念,为进一步学习函数其它性质提供了方法依据.对于函数单调性,学生的认知困难主要在两个方面:〔1〕要求用X的数学符号言语去刻画图象的上升与下降,这种由形到数的翻译,从直观到抽象的转变对高一的学生是比拟困难的;〔2〕单调性的证明是学生在函数内容中第—次接触到的代数论证内容,而学生在代数方面的推理论证能力是比拟薄弱的.依据以上的分析和教学大纲的要求,确定了本节课的重点和难点.二、教学目标确实定依据本课教材的特点、教学大纲对本节课的教学要求以及学生的认知水平,从三个不同的方面确定了教学目标,重视单调性概念的形成过程和对概念本质的认识;强调推断、证明函数单调性的方法的落实以及数形结合思想的渗透;突出言语表达能力、推理论证能力的培养和良好思维习惯的养成.三、教学方法和教学手段的选择本节课是函数单调性的起始课,采纳教师启发讲授,学生探究学习的教学方法,通过创设情境,引导探究,师生交流,最终形成概念,获得方法.本节课使用了多媒体投影和计算机来辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识.四、教学过程的设计为到达本节课的教学目标,突出重点,突破难点,教学上采取了以下的措施:〔1〕在探究概念阶段, 让学生经历从直观到抽象、从特别到一般、从感性到理性的认知过程,完成对单调性定义的三次认识,使得学生对概念的认识不断深刻.〔2〕在应用概念阶段,通过对证明过程的分析,援助学生掌握用定义证明函数单调性的方法和步骤.〔3〕考虑到我校学生数学根底较好、思维较为活泼的特点,对推断方法进行适当的延展,加深对定义的理解,同时也为用导数研究单调性埋下伏笔.。
高中数学《函数的单调性》说课稿范文一、说课目的和要求本节课主要讲解高中数学中的函数的单调性,通过引入函数的递增和递减概念,帮助学生理解函数在某个区间上的变化趋势。
通过本节课的学习,学生应能正确分析函数的单调性,并能运用所学知识解决相关问题。
二、教学内容分析本节课主要围绕以下内容展开: 1. 函数的增减区间的定义; 2. 函数的递增和递减定义; 3. 函数单调性的判定方法; 4. 函数单调性与导数之间的关系。
三、教学过程设计1. 导入与引入(5分钟)通过提问或举例,引导学生思考函数的变化趋势,并引导学生思考如何描述函数的单调性。
2. 展示函数的增减区间概念(10分钟)通过给出一个具体函数的图像,引导学生理解函数在不同区间上的变化趋势并讨论函数的增减区间。
3. 函数的递增和递减定义与性质(15分钟)引导学生通过观察函数的图像体验函数的递增和递减特性,并展示函数递增和递减的定义,强调函数递增和递减的性质。
4. 函数单调性的判定方法(20分钟)介绍函数单调性的判定方法,包括求导数及利用导数判定函数单调性的原理。
通过讲解和示例演练,引导学生掌握单调性的判定方法。
5. 函数单调性与导数之间的关系(15分钟)引导学生思考导数与函数单调性之间的关系,并说明导数在函数单调性判定中的作用。
通过示例演练,帮助学生理解该关系。
6. 拓展与延伸(10分钟)通过举一些实际问题引导学生运用所学知识解答相关问题,拓展学生对函数单调性的应用能力。
7. 小结与展望(5分钟)总结本节课的主要内容,并展望下一节课将学习的内容。
四、课堂互动设计1.引导学生通过讨论、思考等方式积极参与互动,加深对函数单调性的理解。
2.在讲解函数递增和递减定义时,可以让学生用自己的语言描述相关概念,增加学生对函数性质的感性认识。
3.在判定函数单调性的方法中,可以让学生分组讨论并向全班展示自己的解题思路,促进合作学习。
五、板书设计函数的递增和递减定义:如果对于任意x1和x2(x1 < x2),有f(x1) <= f(x2),则称函数f在区间[a, b]上递增;如果对于任意x1和x2(x1 < x2),有f(x1) >= f(x2),则称函数f在区间[a, b]上递减。
高中数学说课稿《函数的单调性》.doc1、高中数学说课稿《函数的单调性》敬重的各位评委、各位老师大家好!我说课的题目是《函数的单调性》,我将从四个方面来阐述我对这节课的设计.一、教材分析1、教材的地位和作用〔1〕本节课主要对函数单调性的学习;〔2〕它是在学习函数概念的基础上进行学习的,同时又为基本初等函数的学习奠定了基础,所以他在教材中起着承前启后的重要作用;〔可以看看这一课题的前后章节来写〕〔3〕它是历年高考的热点、难点问题〔依据具体的课题转变就行了,假如不是热点难点问题就删掉〕2、教材重、难点重点:函数单调性的定义难点:函数单调性的证明重难点突破:在学生已有学问的基础上,通过仔细观看思索,并通过小组合作探究的方法来实2、现重难点突破。
〔这个必需要有〕二、教学目标学问目标:〔1〕函数单调性的定义〔2〕函数单调性的证明能力目标:培育学生全面分析、抽象和概括的能力,以及了解由简洁到冗杂,由特别到一般的化归思想情感目标:培育学生勇于探究的精神和擅长合作的意识〔这样的教学目标设计更注重教学过程和情感体验,立足教学目标多元化〕三、教法学法分析1、教法分析“教必有法而教无定法”,只有方法得当才会有效。
新课程标准之处教师是教学的组织者、引导者、合,在教学过程要充分调动学生的主动性、主动性。
本着这一原则,在教学过程中我主要采纳以下教学方法:开放式探究法、启发式引导法、小组合作商量法、反馈式评价法n 2、学法分析“3、授人以鱼,不如授人以渔”,最有价值的学问是关于方法的只是。
学生作为教学活动的主题,在学习过程中的参加状态和参加度是影响教学效果最重要的因素。
在学法选择上,我主要采纳:自主探究法、观看发觉法、合作沟通法、归纳总结法。
〔前三部分用时掌握在三分钟以内,可适当删减〕四、教学过程1、以旧引新,导入新知通过课前小讨论让学生自行绘制出一次函数f(x)=x 和二次函数f(x)=x^2的图像,并观看函数图象的特点,总结归纳。
高中数学《函数的单调性》说课稿教案模板一、教学目标1.理解函数的单调性的概念和特点;2.掌握函数单调性的判断方法;3.能够应用函数的单调性解决实际问题。
二、教学重点1.函数单调性的概念和特点;2.函数单调性的判断方法。
三、教学难点函数单调性的应用解决实际问题。
四、教学方法1.演示法:通过具体的例子,讲解函数的单调性概念和特点;2.归纳法:总结函数单调性的判断方法;3.练习法:通过练习题,巩固学生对函数单调性的理解和应用能力。
五、教学过程1. 导入(5分钟)通过引入一个与函数单调性相关的实际问题,激发学生的学习兴趣和思考。
2. 概念讲解(10分钟)分别介绍函数的递增和递减性质,并解释函数单调性的概念。
通过图像和实例,让学生理解函数的单调性的特点。
3. 判断方法(20分钟)3.1 函数求导法:讲解函数单调性的判断方法之一,介绍导函数的概念,以及导函数与原函数单调性之间的关系。
3.2 函数的增减表法:讲解函数单调性的判断方法之二,通过绘制函数的增减表,通过观察函数在不同区间的增减情况,判断函数的单调性。
4. 实例演练(15分钟)通过一些典型的函数及其图像,引导学生灵活运用函数的单调性判断方法,解决实际问题。
5. 拓展延伸(10分钟)通过引入其他函数的单调性的相关概念,如函数的局部单调性、函数的整体单调性等,对函数的单调性进行深入探讨。
6. 练习与巩固(20分钟)设计一些练习题,对函数的单调性进行巩固和提高。
其中包括判断函数的递增和递减区间、求函数的极值等。
7. 归纳总结(5分钟)通过学生的回答和讨论,归纳总结函数单调性的判断方法和注意事项。
六、教学评价1.教师观察学生的听讲和思考情况;2.学生课堂练习的成绩;3.学生课后作业的完成情况。
七、板书设计# 函数的单调性## 概念- 递增性- 递减性- 单调性## 判断方法- 函数求导法- 函数的增减表法## 实例演练## 拓展延伸## 练习与巩固八、教学反思本节课以函数的单调性为主题,通过概念讲解、判断方法的介绍和实例演练等步骤,深入浅出地向学生传授了函数单调性的相关知识。
函数的单调性说课稿我将为大家介绍《普通高中课程标准实验教科书必修1》第二章第三节——函数的单调性。
本节课的教学设计将根据新课标的理念和高一学生的认知特点进行。
我将从下面三个方面阐述我对这节课的理解和教学设计。
一、教材分析1、教材内容本节课主要研究函数的单调性的概念,依据函数图象判断函数的单调性和应用定义证明函数的单调性。
2、教材的地位和作用函数是本章的核心概念,也是中学数学中的基本概念,贯穿整个高中数学课程。
函数的单调性是函数的基本性质之一,是用代数方法研究函数图象局部变化趋势的。
它是函数概念的延续和拓展,对进一步探索、研究函数的其他性质有着示范性的作用,对解决各种数学问题有着广泛作用。
此外在比较数的大小、极限、导数以及相关的数学综合问题中也有广泛的应用,是整个高中数学中起着承上启下作用的核心知识之一。
通过对本节课的研究,让学生领会函数单调性的概念、掌握证明函数单调性的步骤,并能运用单调性知识解决一些简单的实际问题。
此外,本节教学过程中还渗透了探索发现、数形结合、归纳转化等数学思想方法,对培养学生的创新意识、发展学生的思维能力,掌握数学的思想方法具有重大意义。
根据函数单调性在整个教材内容中的地位和作用,并结合学生的认知水平,本节课教学应实现如下教学目标。
3、教学目标知识与技能:理解函数单调性和单调函数的意义;会判断和证明简单函数的单调性。
过程与方法:培养从概念出发,进一步研究其性质的意识及能力;体会感悟数形结合、分类讨论的数学思想。
本节课的重点是函数单调性,我们先来了解一下函数单调性的概念。
函数单调性是指函数在定义域内的取值随着自变量的增加或减少而单调递增或单调递减。
接下来,我们将通过多个例子来帮助学生理解函数单调性的概念,并探究如何判断和证明函数的单调性。
改写意图]:在引入概念前,先给出函数单调性的定义,让学生明确目标。
通过例子的引导,让学生感性理解概念,为后续的理性认识打下基础。
三)巩固提高,深化概念接下来,我们将通过多个例子来巩固和深化学生对函数单调性的理解。
函数的单调性说课稿一、教材的地位与作用“函数的单调性”高中数学人教版必修1第1.3.1节是函数重要性质之一,在教材中起着承上启下的作用。
一方面是初中有关内容的深化,使学生对函数单调性从感性认识提高到理性认识;另一方面可以通过对函数单调性的学习,为后面学习指数函数、对数函数、及数列这种特殊的函数打下基础,与不等式、求函数的值域、最值、导数等等都有着紧密的联系。
二、教学重点、难点重点:函数的单调性定义、单调区间的理解和单调性的判断和应用难点:理解函数单调性的概念,判断或证明函数的单调性三、教学目标1、基础知识目标:理解函数单调性概念,并能作简单的函数单调性判断及应用2、能力训练目标:培养学生细心观察、认真分析、严谨论证的良好思维习惯,培养学生数形结合,辩证思维的能力。
3、情感目标:让学生发现形和数的统一和谐美,体会自己发现、解决问题的乐趣。
四、教法(1)启发式教学(2)讨论式教学(3)计算机辅助教学五、教学过程(一)创设情境――引入课题(播放中央电视台天气预报的音乐).如图为某地区20XX年元旦这一天24小时内的气温变化图,观察这张气温变化图:(PPT出示)[教师活动]引导学生观察图象、提出问题:(PPT出示)问题1:说出气温在哪些时段内是逐步升高的或下降的?问题2:怎样用数学语言刻画上述时段内“随着时间的增大气温逐渐升高”这一特征?下面我们开始研究函数在这方面的主要性质之一―――函数的单调性设计意图:创设实际生活的情境,能够让学生切实感受到数学是源于生活的,设问使之与学生已有知识体系的矛盾,调动学生学习新课知识的欲望、兴趣,唤起学生的“主角”意识。
(二)观察归纳――形成概念1、观察引入(PPT演示)演示动画函数y=x2随自变量x 变化的情况,设置启发式问题:(1)在y轴的右侧部分图象具有什么特点?(2)指出在y轴的右侧部分自变量与函数值的变化规律?(3)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1<x2时,y1,y2的大小关系如何?是不是在定义域内任取两个点都有这个规律呢?(4)如何用数学符号语言来描述这个规律?2、形成概念(黑板板书+PPT演示)文字语言转化为数学符号:单调递增:单调递减:3、说明(1)变量属于定义域(2)注意自变量x 1、x 2取值的任意性(3)都有f(x 1 )>f(x 2 ) 或f(x 1 )<f(x 2 )成立(无一例外)(4)函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。
《函数的单调性》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《函数的单调性》。
作为一名数学教师我认为,数学这门学科不仅要让学生掌握基本的数学知识和技能,更要培养学生的思维能力和创新精神。
因此下面我将以教什么、怎么教、为什么这么教为思路,从教材、教法、学法、教学程序、教学评价与反思等几个方面加以说明。
一、说教材(一)教材内容的地位与作用本节课是北师大版高一年级数学必修一第二章第三节的内容。
学生在初中学习函数时,借助图像的直观性研究了一些函数的增减性.这节内容是初中有关内容的深化、延伸和提高,也是函数概念的延续和拓展,又是后续研究指数函数、对数函数、三角函数的单调性等内容的基础,在研究各种具体函数的性质和应用、解决各种问题中都有着广泛的应用.函数单调性概念的建立过程中蕴涵诸多数学思想方法,对于进一步探索、研究函数的其他性质有很强的启发与示范作用.(二)教学目标根据新课标的要求及高一年级学生的认知水平,我特制订本节课的教学目标如下:1.知识与技能使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;2.过程与方法引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力.3.情感态度与价值观在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度.(三)教学重点、难点1.教学重点:函数的单调性的判断与证明;2.教学难点:增、减函数形式化定义的形成及利用函数单调性的定义证明简单函数的单调性。
二、说教法数学是一门培养人的思维、发展人的思维的重要学科,本节课我将以多媒体为教学平台,将问题具体化、形象化,针对学生实情,选择引导探索发法和讲练结合法,引导学生层层深入,合作交流,有利于提高学生的思维能力,体现时代精神。
函数单调性说课稿 1 《函数的单调性》说课稿 各位评委老师:大家好! 很高兴参加这次说课活动,希望各位评委老师对我的说课提出宝贵意见.我说课的内容是《函数的单调性》的教学设计,下面我分别从教学内容分析、学生情况分析、教学目标分析、教学重难点分析、教学方法分析、教学过程的设计以及教学评价与反思这七个方面来汇报我对这节课的教学设想。 一、 教学内容的分析 1.教材内容 本节课选自江苏省职业学校文化课教材《数学》第一册第三章函数第三节函数的单调性,本节课内容教材主要学习函数的单调性的概念,判断函数的单调性和应用定义证明函数的单调性.
2. 教材的地位和作用 函数是本章的核心概念,也是中学数学中的基本概念,函数贯穿整个中职数学课程,它是整个中职数学中起着承上启下作用的核心知识之一。 函数的单调性是学生初中学习了一次函数、二次函数、反比例函数图象的基础上对增减性有一个初步的感性认识,是函数概念的延续和拓展. 函数的单调性是后续研究指数函数、对数函数等其它数学知识的重要基础,是解决数学问题的常用工具,也是培养学生逻辑推理能力和渗透数形结合思想的重要素材. 函数的单调性是学生学习函数概念后学习的第一个函数性质,也是第一个用数学符号语言来刻画的概念.函数的单调性与函数的奇偶性、周期性一样,都是研究自变量变化时,函数值的变化规律;学生对于这些概念的认识,都经历了直观感受、文字描述和严格定义三个阶段,即都从图象观察,以函数解析式为依据,经历用符号语言刻画图形语言,用定量分析解释定性结果的过程.因此,函数单调性的学习为进一步学习函数的其它性质提供了方法依据.
二、 学生情况分析 从知识结构来讲,学生已经学习过一次函数,二次函数,反比例函数,函数的概念及函数的表示,能画出一些简单函数的图象,从图象的直观变化,学生能得到函数增减性。 从能力结构来讲,通过初中对函数的学习,学生已经具备了一定的观察事物的能力,抽象归纳能力和语言转换能力,但知识整合和主动迁移的能力较弱,数形结合的意识和思维的深刻性还需进一步培养和加强。 从学习心理来讲,函数的单调性是学生从已经学习的函数中比较容易发现的一个性质,学生渴望进一步学习,这种积极心态是学生学好本节课的情感基础。 从学习习惯来讲,中职学生小动作较多,学习抗干扰能力不强,需要不断的加以引导。 三、教学目标分析 根据函数单调性在整个教材内容中的地位和作用,并结合学生的认知水平,本节课教学应实现如下教学目标。 知识与技能:使学生从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和单调性定义判断、证明函数单调性的方法。 过程与方法:通过对函数单调性定义的探究,渗透数形结合数学思想方法,培养学生观察、归纳、抽象的能力和语言表达能力;通过对函数单调性的证明,提高学生的推理论证能力。 函数单调性说课稿 2 情感态度与价值观:通过知识的探究过程培养学生细心观察、认真分析的良好思维习惯;让学生了解数学源于生活用于生活,增强中职生的实践意识,激发学习兴趣,树立正确的数学学习观。 四、教学重难点分析 对于函数的单调性,学生的认知困难主要在两个方面: 首先,要求用准确的数学符号语言去刻画图象的上升与下降,把对单调性直观感性的认识上升到理性的高度, 这种由形到数的翻译,从直观到抽象的转变对一年级的学生来说比较困难。 其次,单调性的证明是学生在函数学习中首次接触到的代数论证内容,而学生在代数方面的推理论证能力是比较薄弱的。 根据以上的分析和教学大纲对单调性的教学要求,本节课的教学重点是函数单调性的概念,判断、证明函数的单调性;难点是引导学生归纳并抽象出函数单调性的定义以及根据定义证明函数的单调性. 五、教学方法的选择 1.教学方法 本节课是函数单调性的起始课,根据教学内容、教学目标和学生的认知水平,主要采取教师启发讲授,学生探究学习的教学方法.教学过程中,根据教材提供的线索,安排适当的教学情境,让学生展示相应的数学思维过程,使学生有机会经历数学概念抽象的各个阶段,引导学生独立自主地开展思维活动,深入探究,从而创造性地解决问题,最终形成概念,获得方法,培养能力。 2.教学手段 教学中使用多媒体辅助教学,目的是充分发挥其快捷、生动、形象的特点,为学生提供直观感性的材料,有助于学生对问题的理解和认识。 六、教学过程设计 为达到本节课的教学目标,突出重点,突破难点,我把教学过程设计为四个阶段:创设情境,引入课题;归纳探索,形成概念;巩固提高,掌握证法;归纳小结,提高认识。具体过程如下: (一)创设情境,引入课题 概念的形成主要依靠对感性材料的抽象概括,只有学生对学习对象有了丰富具体经验以后,才能使学生对学习对象进行主动的、充分的理解,因此在本阶段的教学中,我从具体材料——有关学生听课的注意力指标随着老师讲课时间的变化而变化的例子出发,而不是从抽象语言入手来引入函数的单调性。使学生体会到研究函数单调性的必要性,明确本课我们要研究和学习的课题,同时激发学生的学习兴趣和主动探究的精神。 通过实验研究,专家发现:中学生听课的注意力指标是随着老师讲课时间的变化而变化的.讲课开始时,学生的兴趣激增,中间有一段时间,学生的兴趣保持平稳的状态,随后开始分散.学生注意力指标数随时间变化的函数图象如图所示(指标数越大表示学生注意力越集中). ——摘自2004年“TRULY信利杯”全国数学竞赛试题第11题 函数单调性说课稿
3 思考如何用数学语言刻画这一变化? 然后,我指出生活中我们关心很多数据的变化,并让学生举出一些实际例子(如燃油价格等). 随后进一步引导学生归纳:所有这些数据的变化,用函数观点看,其实就是随着自变量的变化,函数值是变大还是变小。 通过实际生活中的例子让学生对图像的上升和下降有一个初步感性认识,为下一步对概念的理性认识作好铺垫。同时通过多媒体展示,能够提高学生的兴趣,增强直观性,拉近数学与实际的距离,感受数学源于生活,让学生学会用数学的眼光去关注生活。 (二)归纳探索,形成概念 在本阶段的教学中,为使学生充分感受数学概念的形成与发展过程和数形结合的数学思想,加深对函数单调性的本质的认识,我设计了两个环节,引导学生分别完成对单调性定义的认识. 1、借助图象,直观感知 本环节的教学主要是从学生的已有认知出发,即从学生熟悉的常见函数的图象出发,直观感知函数的单调性,完成对函数单调性定义的第一次认识.
在本环节的教学中,我主要设计了两个问题: 问题1:分别做出函数2yx,1yx,2yx的图像,并且观察自变量变化时,函数值有什么变化规律?
2yx 1yx 2yx
在学生画图的基础上,引导学生观察图象,获得信息:第一个图象从左向右逐渐上升,y随x的增大而增大;第二个图象从左向右逐渐下降,y随x的增大而减小。然后让学生明确,对于自变量变化时,函数值具有这两种变化规律的函函数单调性说课稿 4 数,我们分别称为增函数和减函数。 而后一个函数图象的上升与下降要分段说明,通过讨论使学生明确函数的单调性是对定义域内某个区间而言的,是函数的局部性质. 对于概念教学,若学生能用自己的语言来表述概念的相关属性,则能更好的理解和掌握概念,因此我设计了问题2。
问题2:能否根据自己的理解说说什么是增函数、减函数? 教学中,我引导学生用自己的语言描述增函数的定义:
如果函数()fx在某个区间上的图象从左向右逐渐上升,或者如果函数()fx
在某个区间上随自变量x的增大,y也越来越大,我们说函数()fx在该区间上为增函数. 然后让学生类比描述减函数的定义。至此,学生对函数单调性就有了一个直观、描述性的认识. 2、步步深化,形成概念 在此环节中,通过启发式提问,实现学生从“图形语言”到 “文字语言”到 “符号语言”认识函数的单调性,实现“形”到“数”的转换。另外,对“任意性”的理解,我特设计了问题(2)、(3),达到步步深入,从而突破难点,突出重点的目的,完成对函数单调性定义的第二次认识。 观察函数y=x2随自变量x 变化的情况,设置启发式问题: (1)在y轴的右侧部分图象具有什么特点? (2)如果在y轴右侧部分取两个点(x1,y1),(x2,y2),当x1y2的大小关系如何?是不是在定义域内任取两个点都有这个规律呢? (3)如何用数学符号语言来描述这个规律? 教师补充:这时我们就说函数y=)(xf=2x在(0,+ )上是增函数。 (4)反过来,如果y=)(xf在(0,+ )上是增函数,我们能不能得到自变量与函数值的变化规律呢? 类似地分析图象在y轴的左侧部分。 通过对以上问题的分析,从正、反两方面领会函数单调性。师生共同总结出单调增函数的定义,并解读定义中的关键词,如:区间内,任意,当1x<2x时,都有)(1xf<)(2xf。 仿照单调增函数定义,由学生说出单调减函数的定义。 教师总结归纳单调性和单调区间的定义。 注意强调:函数的单调性是函数在定义域某个区间上的局部性质,也就是说,一个函数在不同的区间上可以有不同的单调性。 怎样用数学语言表达函数值的增减变化呢?(课件显示) 如果函数y=)(xf在区间I上满足:对于任意1x,2x∈I,当1x<2x时, )(1xf<)(2xf,那么就说y= f(x)在区间I上是单调增函数.如果函数y=f(x)在
区间I上满足:对于任意1x,2x∈I,当1x<2x时,)(1xf>)(2xf那么就说y=)(xf
在区间I上是单调减函数. 教师总结归纳单调性和单调区间的定义。 通过问题的分解,引导学生步步深入,直至找到最准确的数学语言来描述定义。体现从简单到复杂、具体到抽象的认知过程。在课堂教学中教师引导学生探索获得知识、技能的途径和方法。通过探索,培养学生的观察能力,同时充分利