气体辅助注塑成型的原理及优点
- 格式:doc
- 大小:26.00 KB
- 文档页数:2
阐述塑料成型工艺中注塑成型的基本原理和优点1. 注塑成型的基本原理注塑成型,简单来说,就是把塑料颗粒加热融化,然后像打针一样,把它们注入一个模具中,等它冷却后,就变成我们想要的形状了。
这个过程其实就像我们小时候玩黏土,先把黏土捏软,再压成各种各样的形状,最后等它干掉就能拿去玩了。
不过,注塑成型用的材料是塑料,不是黏土,听起来是不是很酷?1.1 融化的过程首先,塑料颗粒在加热炉里受热,逐渐融化。
这时候,塑料就像变魔术一样,从固态变成了液态。
想象一下,你把冰淇淋放在阳光下,过了一会儿,它就融化成了一滩。
这个融化的过程可是很关键哦,因为只有这样,塑料才能顺利流进模具里。
1.2 注入的过程接下来,融化的塑料会通过一个很厉害的机械装置,被迅速注入到模具里。
这就像我们用注射器打针一样,速度快得惊人,几乎一瞬间就完成了。
模具里面的空间就像是个塑料的“家”,一旦塑料流进去,待会儿就能安家落户,变成各种各样的产品。
1.3 冷却与成型最后一步是冷却。
液态塑料在模具里待着,慢慢变得坚硬。
这时候,可以想象成一颗冰淇淋球在冰箱里冷却,慢慢定型。
等到冷却完成,我们打开模具,哇!一件全新的塑料制品就诞生啦!就这样,注塑成型的神奇过程完成了,简直是科技的结晶。
2. 注塑成型的优点接下来说说注塑成型的优点,真是一堆好处让人眼前一亮啊!2.1 生产效率高首先,注塑成型的生产效率可是杠杠的。
一次可以生产出很多件产品,尤其适合大规模生产。
想想看,咱们日常生活中见到的各种塑料瓶、玩具,都是通过这种方法快速造出来的,真是让人赞叹不已。
2.2 复杂形状也能做其次,注塑成型可以做出复杂的形状,这一点简直是太神奇了!比如说,咱们见到的那些精致的小玩具,形状各异,五花八门,都是这种工艺的功劳。
可以说,只要模具设计得好,几乎没有什么不可以的。
2.3 成本低再来就是,虽然初期模具的制作成本稍微高点,但一旦模具做好了,后续的生产成本就降下来了,简直就是物美价廉的代表。
气辅注塑的缺陷及解决方法气辅注塑是一种常见的注塑成型工艺,通过对塑料熔体进行喷射,并利用气体辅助实现产品成型。
然而,尽管这种工艺有许多优点,但也存在一些缺陷。
本文将探讨气辅注塑的缺陷,并提出相应的解决方法。
气辅注塑的主要缺陷之一是瓶颈效应。
由于气辅注塑需要在注射过程中注入气体,当气体进入熔体时,会导致熔体流动速度减慢,从而形成瓶颈效应。
这种效应会导致产品表面出现疤痕、气泡等缺陷。
为了解决瓶颈效应带来的缺陷,可以采取以下措施。
首先,可以通过增加注射压力来增加熔体的流动速度,从而减轻瓶颈效应。
其次,可以调整气体注入的位置和时间,使气体能够更均匀地分布在熔体中,减少瓶颈效应的影响。
气辅注塑还存在气泡缺陷。
气泡是由于气体在注射过程中进入熔体而形成的。
气泡的存在会降低产品的质量,并且可能会导致产品的强度下降。
为了解决气泡缺陷,可以采取以下方法。
首先,可以通过加热熔体来减少熔体的粘度,从而提高气泡的排出效果。
其次,可以通过调整注射速度和注射压力来控制气泡的生成,使气泡更容易从熔体中排出。
气辅注塑还存在产品变形的缺陷。
由于气辅注塑需要在注射过程中注入气体,而气体的注入会对产品造成一定的压力,从而导致产品的变形。
为了解决产品变形的缺陷,可以采取以下措施。
首先,可以通过调整注射温度和注射速度来控制熔体的流动,从而减少产品的变形。
其次,可以通过增加模具的支撑结构来增加产品的稳定性,减少变形的发生。
气辅注塑还存在产品尺寸不一致的缺陷。
由于气辅注塑过程中需要注入气体,而气体的注入会对产品的尺寸产生一定的影响,从而导致产品的尺寸不一致。
为了解决产品尺寸不一致的缺陷,可以采取以下方法。
首先,可以通过调整注射温度和注射速度来控制熔体的流动,从而减少产品尺寸的变化。
其次,可以通过优化模具的结构和设计,使产品的尺寸更加稳定。
气辅注塑虽然有一些缺陷,但通过相应的解决方法,这些缺陷是可以被克服的。
在实际生产中,我们可以根据具体情况采取不同的措施,从而提高气辅注塑的成型质量,满足客户的需求。
Moldflow在气体辅助注塑成型中的应用一.引言气体辅助注塑成型(简称气辅成型)是塑料加工领域的一种新方法,80年代开始用于生产实际,气体辅助注射成型比传统注射成型多一个气体注射阶段,由气体推动塑料熔体充满模具型腔,因此在气辅成型制品设计和模具设计时必须提供明确的气道来引导气体的走向。
气道几何尺寸的大小、截面形状的确定和位置的布置都会影响到气体的穿透和气体对熔体流动的干涉,从而最终影响到成型制品的质量。
根据气辅成型时射入型腔的熔融塑料的体积不同,气辅成型工艺大致可分为3种方式:a、中空成型,即熔体射入型腔充填到型腔体积的60-70%时,停止注射熔体,开始注入气体,直至保压冷却定型。
这种工艺主要适用于类似把手、手柄之类的大壁厚塑料制品,应用效果最理想。
b、短射,即熔体充填到型腔体积的90-98%时,开始进气。
该方法主要用于较大平面的厚壁或偏壁制品。
c、满射,即熔体充填至完全充满型腔时才注入气体,由气体填充因熔体体积收缩而产生的空间,并将气体保压和熔体保压配合使用,使制品翘曲变形大大降低,用于较大平面的薄壁制品成型,其工艺控制较复杂。
前两种方法也称为缺料气辅注射法,后者称为满料气辅注射法。
气辅工艺原理第一阶段:塑料注射:熔体进入型腔遇到温度低的模壁,形成一个较薄的凝固层。
第二阶段:气体注射:惰性气体进入熔融的塑料,推动中心未凝固的塑料进入尚未充满的型腔。
第三阶段:气体入射结束:气体继续推动塑料熔体流动直到熔体充满整个型腔。
第四阶段:气体保压结束:在保压状态下,气道中的气体压缩熔体,进行补料确保制件的外观。
二.气辅注射成型技术的特性(1)可保证壁厚差异较大制品的成型质量采用气辅技术可将制品壁厚处“挖空”设计成气道,从而保证壁厚差异较大制品的成型质量。
可简化制品的形状,可将原来因壁厚差异较大需分成几个零件成型然后组合的制品,实现一体成型。
如图1所示。
(2)注射压力低所需注射压力为普通注射成型注射压力的10%~75%,相应成型同样投影面积制品的锁模力也只需普通注射成型锁模力的10%~75%,图2为普通注射与气辅技术成型过程中熔融树脂的压力行为。
第一章: 气体辅助注塑成型简介1、气体辅助注塑成型的发明及发展概述:多年来,人们一直在研究中空塑料制品的成型加工技术及对塑料产品的质量改善作出研究。
1944年,Opavsky将气体或液体通过注射器注入到树脂中以达到改善产品质量为目的,但未获成功,这是最早的气辅概念研究。
我们今天所知道的气体辅助注塑成型技术是从20世纪70年代中期发展起来的,德国人Ernst Friederich是第一个发明气体辅助注塑成型工艺的人(1975年)(他的原理是将已加压的气体通过喷嘴注射到熔融物料当中,使熔融物料与模具内壁表面充分接触)。
由于当时的技术存在相当的局限性,并没有得到一定的重视。
直到80年代中期,该项技术才开始得到真正的发展及运用。
后来在欧洲出现了包括: Cinpress, Battenfeld, Ferromatik, Stork, Engel 及Johnson Controls 一批设备生产商,并在不断地改良这种技术。
到了90年代后期,气体辅助注塑成型技术得到飞速的发展及运用。
2、气体辅助注塑成型制品的两个主要类型:●封闭式气道(SINGEL GAS CHANNEL)●开放式气道(GAS CHANNEL)封闭式气道制品主要由一个厚壁截面和气体穿行的通道组成,如门把手、扶手、管状把手等都属于这种结构。
因为气体的扩散有一条设定好的路线(即胶料较厚,温度较高,流动性较好的部分,亦即是气体流动的方向),制品能达到最佳的节省材料的目的,而且由于制品中空结构使刚性加强而不用增加质量。
开放式气道制品主要是薄壁制品(壁厚不能少于2MM),类似于传统的加强筋结构制品。
气体会从较厚的加强筋向前扩散(及气体流动的方向:胶料相对较厚的部分,形成气道GAS CHANNEL),但气体可能会穿透制品的薄壁部分(有时会出现指形扩散:指纹效应FINGERING),即高压气体往较厚胶料或密度较低的部分渗入。
3、气体辅助注塑成型方法的优点:●制品残余应力降低●翘曲变形较小●减少/消除缩痕●简化模具设计●制品综合性能提高●缩短成型周期●合模力吨位要求降低●射胶压力降低4、气体辅助注塑成型适用材料:ABS、ABS/PC、HIPS、PA、PBT、PC、PS、PVC、PET、PP、PPE等第二章: 气体辅助注塑成型的方法及原理1、气体辅助注塑成型的原理:通过管道与模具连接,把高压气体(氮气)注入到模腔的塑料熔体中,形成局部的中空,加速产品冷却成型。
气辅成型工艺条件分析摘要:气辅成型(GIM)是指在塑胶充填到型腔适当的时候注入惰性高压氮气,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种注塑成型技术。
关键词:成本使用条件气体发生装置溢料槽气辅成型(GIM)是指在塑胶充填到型腔适当的时候注入惰性高压氮气,气体推动融熔塑胶继续充填满型腔,用气体保压来代替塑胶保压过程的一种注塑成型技术。
作为模具生产企业和产品制造企业关注气辅成型的主要原因还在于气辅成型所拥有的许多优势。
2005年以前,中国国内存在气辅成型或者有能力进行气辅成型的企业非常少,其主要原因还在于气体发生装置设备的短板。
早先依赖进口设备,比如日系的进口设备体积小重量轻,移动灵活,调整精度高,氮气压缩的纯度能达到90%以上。
随着中国模具行业的发展,特别是广东深圳地区模具企业日新月异的变化,一些国内企业也开始对氮气发生装置进行了研发升级,从最原始的固定压力供气到后期的可通过调整供气压力时间曲率来进行调整的方式,大大提高了这些装置的实用性。
气辅成型优势很多,但被各企业看中的主要原因还在于在保证产品外观尺寸质量的同时,又能够减少实体产品的自身重量。
网上很多数据表明气辅成型最大能减少产品30%的重量,当然这个比较趋于理论化,从实际生产的角度理性的生产分析应为7%~15%。
作为模具的研发当然提高了模具制造的技术难度和模具制造成本,但从产品的角度分析,一个塑胶制品其最大的生产成本往往是塑胶原材料的价格决定,减少10%的产品质量无疑成为减少材料成本10%,这里的成本优势我想作为企业肯定能够看的到。
那么气辅成型是不是所有产品都可以进行使用呢?答案当然是否定的。
使用气体辅助成型技术需要对产品及模具进行整体分析,有许多使用条件的限制。
本文就简单从材料、产品、模具、软件、硬件设备等几个方面表达一下个人对气辅成型部分工艺条件的分析。
1 材料选择从技术条件来看首先是材料性能的要求。
当成型射胶部分基本完成但保压部分还未进行时,此时由于靠近型腔及型芯壁的胶体冷却较快开始凝固,但中心区域温度仍然很高有足够的流动性,这使得气体辅助成为可能。
内饰塑料件工艺方法介绍汽车内饰塑料件成型方法主要有以下7种:1)注射成型注射成型简称注塑,是指物料在注射机加热料筒中塑化后,由螺杆或注塞注射入闭合模具的模腔中经过冷却形成制品的成型方法。
它广泛用于热塑性塑料的成型,也用于某些热固性塑料(如酚醛塑料、氨基塑料)的成型。
注射成型的优点是能一次成型外观复杂、尺寸精确、带有金属或非金属嵌件、甚至可充以气体形成空芯结构的塑料模制品;生产效率高,自动化程度高。
新型注射方法的出现更加巩固了其在汽车塑料加工中的地位。
各种车上的硬质仪表板一般采用PP、PC、ABS、ABS/PC等一次性注射成型。
就注射技术而言,已经开发了适应性很广的很多新技术。
如采用微型注射成型自动化生产毫克级的高尺寸精度制品,如汽车传感器等自动控制和电子控制部件。
注射成型细分,还可以分成以下几类。
(1)气体辅助注射成型。
气体辅助注射成型技术是一项新兴的塑料注射成型技术,其原理是利用高压气体在塑件内部产生中空截面,利用气体保压代替塑料注射保压,消除制品缩痕完成注射成型过程。
传统注射工艺不能将厚壁和薄壁结合在一起成型,且制件残余应力大,易翘曲变形,表面有缩痕。
新发展的气辅技术通过把厚壁的内部掏空,成功地生产出厚壁不均制品,而且制品外观表面性质优异,内应力低,轻质高强。
该工艺已用于成型汽车的前后挡板、门把手、保险杠等。
(2)水辅注射成型。
同气辅注射成型类似,水辅助注射成型先将一段熔体注入模腔,随后将水注入,通过挤破使工件成型,填充过程结束后,水可以继续提供保压压力,预防翘曲,水辅助注射成型可以直接冷却制品的内部,更适合较厚和较长的制品成型,能生产出均匀的薄壁制品,零件内表面平滑。
可以在更短的成型周期下,减少制品壁厚及减少残留的壁厚,对于大件且较薄的制品可使用较均匀而且较低的压力即可成型,从而节省了材料,拓展了应用范围循环使用水而可降低生产成本,适合成型管状的零件、汽车油管和其他流体系统、把手、行李架、汽车上的仪表板、缓冲器、门把手、离合器以及驾驶杆支持架等。
气辅模具原理
气辅模具是一种利用气体流动原理来控制模具开合的模具。
它的原理是通过在模具中设置气路,利用气体的压力和流动来控制模具的开合和关闭。
下面将详细介绍气辅模具的原理。
一、气路设计原理
气辅模具的气路设计原理是将气路分为上、下两部分。
上气路主要用于控制模具的开合,下气路主要用于控制模具的顶出和顶进。
在模具的上下两部分设置气路,通过气路的压力和流动来控制模具的动作。
二、气流控制原理
气辅模具的气流控制原理是利用气体的流动原理来控制模具的动作。
在模具的上气路中设置气缸,通过气压的控制来控制气缸的伸缩,从而控制模具的开合。
在模具的下气路中设置气缸,通过气压的控制来控制气缸的伸缩,从而控制模具的顶出和顶进。
三、气路控制原理
气辅模具的气路控制原理是通过气路控制系统来控制气路的压力和流量,从而控
制模具的动作。
气路控制系统包括气源、气路管道、气缸、电磁阀等部分。
通过控制电磁阀的开关来控制气缸的伸缩,从而控制模具的动作。
四、应用范围
气辅模具的应用范围非常广泛,主要用于塑料、橡胶、金属等材料的成型加工。
它可以控制模具的开合和顶出顶进,从而实现产品的成型加工。
同时,气辅模具具有结构简单、控制方便、操作简单等优点,被广泛应用于各种工业生产领域。
以上就是气辅模具的原理,通过对气路设计、气流控制、气路控制等方面的介绍,可以更好地理解气辅模具的工作原理和应用范围。
气体辅助注塑成型的原理及优点
气体辅助注塑成型具有注射压力低、制品翘曲变形小、表面质量好以及易于
加工壁厚差异较大的制品等优点,近年来发展很快。它在发达国家用于商业化
的塑料制品生产差不多已有20多年。气体辅助注塑成型包括塑料熔体注射和气
体(一般采用氮气)注射成型两部分。与传统的注射成型工艺相比,气体辅助
注塑成型有更多的工艺参数需要确定和控制,因而对于制品设计、模具设计和
成型过程的控制都有特殊的要求。
气体辅助注射成型过程首先是向模腔内进行树脂的欠料注射,然后把经过
高压压缩的氮气导入熔融物料当中,气体沿着阻力最小方向流向制品的低压和
高温区域。当气体在制品中流动时,它通过置换熔融物料而掏空厚壁截面。这
些置换出来的物料充填制品的其余部分。当填充过程完成以后,由气体继续提
供保压压力,将射出品的收缩或翘曲问题降至最低。
气体辅助注塑成型的优点:
低的注射压力使残余应力降低,从而使翘曲变形降到最低;
低的注射压力使合模力要求降低,可以使用小吨位的机台;
低的残余应力同样提高了制品的尺寸公差和稳定性;
低的注射压力可以减少或消除制品飞边的出现 ;
成品肉厚部分是中空的,从而减少塑料,最多可达40%;
与实心制品相比成型周期缩短,还不到发泡成型的一半;
气体辅助注塑成型使结构完整性和设计自由度大幅提高;
对一些壁厚差异较大的制品通过气辅技术可以一次成型;
降低了模腔内的压力,使模具的损耗减少,提高其工作寿命;
减少射入点,气道可以取代热流道系统从而使模具成本降低;
沿筋板和凸起根部的气体通道增加了刚度,不必考虑缩痕问题;
极好的表面光洁度,不用担心会像发泡成型所带来的漩纹现象。
运用气体辅助注塑成型技术后允许设计人员将产品设计得更加复杂,而模
具制造商则能够简化模具结构。制品功能不断增加和制品组件的减少使得生产
周期缩短,无须进行装配和后期修整工作。在成型CD托盘和机动车电子中心压
配层板的生产中表明气体辅助注塑成型能够应用于薄壁制品的生产制造。尺寸
稳定性的提高,制品残余应力的减少以及翘曲量的降低是气体辅助注塑成型技
术的一个主要优点。气体辅助注塑成型技术的应用将变得越来越复杂多样。现
在,可用气体辅助注塑成型技术生产质量从30g~18kg的制品。